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SUMMARY. Recent advance in biotechnology and its wide applications have led to the generation of many high-dimensional
gene expression data sets that can be used to address similar biological questions. Meta-analysis plays an important role
in summarizing and synthesizing scientific evidence from multiple studies. When the dimensions of datasets are high, it is
desirable to incorporate variable selection into meta-analysis to improve model interpretation and prediction. According to
our knowledge, all existing methods conduct variable selection with meta-analyzed data in an “all-in-or-all-out” fashion, that
is, a gene is either selected in all of studies or not selected in any study. However, due to data heterogeneity commonly exist
in meta-analyzed data, including choices of biospecimens, study population, and measurement sensitivity, it is possible that a
gene is important in some studies while unimportant in others. In this article, we propose a novel method called meta-lasso for
variable selection with high-dimensional meta-analyzed data. Through a hierarchical decomposition on regression coefficients,
our method not only borrows strength across multiple data sets to boost the power to identify important genes, but also keeps
the selection flexibility among data sets to take into account data heterogeneity. We show that our method possesses the gene
selection consistency, that is, when sample size of each data set is large, with high probability, our method can identify all
important genes and remove all unimportant genes. Simulation studies demonstrate a good performance of our method. We
applied our meta-lasso method to a meta-analysis of five cardiovascular studies. The analysis results are clinically meaningful.
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1. Introduction

High-dimensional gene expression data analysis is a useful
tool to discover complicated biological mechanisms. Many re-
ported findings, however, are not reproducible (Ntzani et al.,
2003), sensitive to mild data perturbations (Ein-Dor et al.,
2005; Michiels, Koscielny, and Hill, 2005), or lack of gener-
alizability (Ferguson, 2004), due to small sample sizes rela-
tive to large number of genes and low signal-to-noise ratios
in most gene expression data sets. As a potential solution to
these problems, meta-analysis is a relatively inexpensive op-
tion, since many genomic databases are nowadays publicly
available. There exist gene expression meta-analysis meth-
ods based on combining univariate summary statistics (they
will be referred to as CSS in what follows), for example, p-
values (Rhodes et al., 2002), effect sizes (Choi et al., 2003;
Griitzmann et al., 2005; Bhattacharjee et al., 2012; Han and
Eskin, 2012), or ranks (DeConde et al., 2006; Zintzaras and
Toannidis, 2008). Li and Tseng (2011) extends the well-known
Fisher’s method to an adaptively weighted (AW) sum of log-
arithm of p-values with the optimal weights chosen by an
exhaustive search over all subsets of studies. Similar strate-
gies could be applied to combine effect sizes of Fixed Effects
Model (FEM) or Random Effects Model (REM) from indi-
vidual studies. A comprehensive review of these methods is
given in Tseng, Ghosh, and Feingold (2012). The CSS tends
to gain more power to identify differentially expressed (DE)
gene. But it neglects correlations among genes. This motivates
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us to develop a novel variable selection method to handle high-
dimensional gene expression data.

For a single data set, there exist many variable selection
methods, for example, lasso (Tibshirani, 1996), elastic-net
(Zou and Hastie, 2005), and others described in a review by
Fan and Lv (2010). An ad hoc approach for meta analysis is
to apply one of these methods to each individual data set. To
fully make use of different data sets, we may stack all data
sets into one large data set and then apply variable selection.
Heterogeneity among data sets may be addressed (e.g., Ma
and Jian, 2009; Liu, Dunson, and Zou, 2011; Ma, Huang, and
Song, 2011). However, most existing methods conduct vari-
able selection in an “all-in-or-all-out” fashion; that is, they
identify a gene to be either important in all studies or unim-
portant in all studies. Data heterogeneity can arise from not
only inconsistent experiment conditions, sample preparation
methods and sample qualities, but also different choices of
biospecimens, distinct study populations, and varying mea-
surement sensitivity or precision. Thus, it is quite likely that
an important gene in some studies may have null effect in
other studies, and it is important to allow such flexibility due
to the exploratory and discovery nature of gene expression
studies.

In this article, we propose a lasso method that borrows
strength across multiple data sets, but meanwhile keeps the
selection flexibility in each individual data set. We develop an
efficient algorithm and study the theoretical property of our
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proposed method. We prove a weak “oracle” property (Fan
and Lv, 2011) that with large probability, our method can
remove unimportant genes and consistently estimate the effect
of important genes in each individual data set. In a simulation
study, we examine empirical properties of the proposed lasso
and compare it with an ad hoc lasso, a stack lasso, a group
lasso, and four CSS methods in Li and Tseng (2011). A real
data example is also considered.

Since our method is likelihood-based, it has the advantage
to generate good prediction accuracy and perform variable
selection simultaneously, but is restricted to some model as-
sumptions. The simple CSS methods are model-free, easier to
compute compared with the proposed method, and may have
high power in DE gene detection. However, they do not con-
sider correlations among genes and the relationship of genes
with responses.

2. Motivational Example

Atherosclerosis accounts for the vast majority of fatal and
non-fatal cardiovascular disease (CVD) events. Additionally,
about half of all strokes are caused by atherosclerosis, the
process that leads to narrowing and hardening of the arter-
ies. Although traditional risk factors such as hyperlipidemia,
hypertension, diabetes, smoking are considered as the causes
of atherosclerosis, substantial numbers of individuals with low
burden of CVD risk factors or in middle age (40-55 years old)
still develop atherosclerosis (Rietzschel et al., 2006; Kelley
et al., 2011). Therefore, identification of molecular mecha-
nisms mediating atherogenesis is imperative to enhance cur-
rent knowledge of preventing CVD and stroke.

A wealth of recent investigations has revealed that inflam-
mation plays a central role in atherosclerosis (Libby, 2002;
Hansson, 2005). However, the essential genes modulating the
inflammatory process in atherosclerosis have yet to be identi-
fied to develop effective treatment and prevention strategies.
The immune system is the main defense machinery to regulate
inflammatory responses. It is therefore justifiable to look for
genes in the immune signaling pathways that are responsible
for initiating and perpetuating atherogenesis. Recent studies
on diseases of similar phenotype have shown that defects in
genes, alone or in combination, in the same pathway can cause
overlapping clinical manifestations (Wang, Li, and Bucan,
2007; Torkamani, Topol, and Schork, 2008; Askland, Read,
and Moore, 2009; Farber, 2013). This suggests that analy-
sis of gene expression profiling of immune cells from patients
with atherosclerosis or its clinical events such as myocardial
infarction or stroke may reveal common genes responsible
for the disease progression. As a first attempt, we perform
a meta-analysis in this article to investigate the expression
changes for 88 genes in the toll-like receptor (TLR) signaling
pathway using five microarray data sets. These 88 genes are
identified from the Reactome database (www.reactome.org)
and are found across all five data sets. TLRs are the most
studied PRRs and are the major signaling pathway in the in-
nate immunity to coordinate the adaptive immune response
and trigger inflammation (Iwasaki and Medzhitov, 2004).
Follow-up work involving multiple pathways related to the
immune system is currently under investigation. The studies
that we include in our analysis are case-control studies with
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the datasets publicly available on Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/). Table 1 gives a detailed sum-
mary of the five data sets we used for our analysis.

3. Methodology

Consider M independent studies, each of which contains
n, subjects. Denote y,; as a binary phenotype and x,; =
(XomiLs « v s Xomi, F)T as a vector of expression profiles of p genes
of the ith subject in the mth data set, where the superscript
T denotes the standard vector transpose. The p genes are as-
sumed common in all data sets. We assume the conditional
probability that y,; takes value 1 given the vector of gene
expression follows the logistic regression model

Pr(ymi = 1|xmi)

= i=1,...,0y, m=1,..., M,
Pr(ymiz()'xmi)

IOg Z.Bm[) +x;£,'ﬂm7

(1)

where f,,0 is an intercept and B,, = (Bu1, - - -, Bmp) T is a vector
of regression coefficients for the mth data. Because of the data
heterogeneity, we allow B,0 and B, in (1) to vary with m.
Variable (gene) selection amounts to finding zero components
of By, m=1,..., M.

The ad hoc separate-fit approach mentioned in the intro-
duction section maximizes M separate penalized likelihoods,
each of which is

Em (lgm()? ﬁm) - )‘mJ(ﬂm)s (2)

where £,,(Bno, Bn) is the log-likelihood for the mth data set, A,
is a non-negative tuning parameter and J is a certain sparsity-
induced penalty. In this article, we consider the lasso (L;-
norm) penalty J(B,) =7, |Bnl. We call this method as
the “separate lasso.”

A “stack lasso” assumes that 8,0 = fo and B,, = B for all m
in model (1), and conducts variable selection by maximizing
the penalized likelihood of the stacked data:

> tu(Bo.B) =2 D18l (3)

m=1

where A is a non-negative tuning parameter.

Ma et al. (2011) proposed to treat the effect vector
(Bijs---» ﬂM_,-)T for each j as a group and use a group-effect
penalty. Thus, a “group lasso” conducts variable selection by
maximizing

M p M 1/2
m=1 Jj=1 =1

Both stack lasso and group lasso select variables in an “all-
in-or-all-out” fashion. We propose a joint fitting approach
that borrows strength across different data sets as well as
incorporates data heterogeneity. We consider the following
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Table 1
Summaries of datasets in the five cardiovascular studies

GSE12288 GSE16561 GSE20129 GSE22255 GSE28829
Total sample size 222 63 119 40 29
Case group size 110 39 48 20 16
Control group size 112 24 71 20 13
No. of genes in TLR 95 95 99 98 98
Platform Affymetrix Illumina Illumina Affymetrix Affymetrix
U133A HumanRef8 HumanRef8 U133plus2 U133plus2
V3.0 V2.0
Bioassay Whole blood Whole blood Whole blood and Peripheral blood Atherosclerotic carotid

peripheral blood leukocytes mononuclear cells

artery segments

GSE12288 studied Coronary Artery Disease (CAD) with cases defined as those with at least a stenosis greater than 50% and controls

without evidence of coronary stenosis (Sinnaeve et al.,

2009). GSE16561 studied ischemic stroke with cases defined as patients with

acute ischemic cerebrovascular syndrome and controls without stroke (Barr et al., 2010). GSE20129 studied atherosclerosis that included

women aged 50 year or above in the Multi-Ethnic Study of Atherosclerosis cohort (Huang et al.,

2011). The cases are women who had

coronary artery calcium (CAC) score >100 and carotid intima-media thickness (IMT) > 1 mm and controls had CAC <10 and IMT
<0.65 mm. GSE22255 studied ischemic stroke (Krug et al., 2012). GSE28829 is an atherosclerotic progression study that used cases with

advanced lesions and controls with early lesions (Daissormont et al.,

2011). For Affymetrix data (GSE12288, 22255, 28829), the RMA

algorithm was used for data normalization. For Illumina data (GSE16561, 20129), quantile normalization procedure was applied.

hierarchical reparameterization:

ﬂmjzgj;mj, m:l,,M,]zl,,p (4)

The parameter g; is an effect of the jth gene at the first
level of the hierarchy and ¢,;’s with different m’s reflect
effect differences for the jth gene among M data sets at the
second level of the hierarchy. If there is no heterogeneity,
then g; = B, defined in (3) and ¢,; =1 for all j and m. In
reparameterization (4), exact values of g; and ¢,; are not
identifiable but we can identify whether they are equal to O.

With reparameterization (4), we propose a variable selec-
tion method by solving

max
Bo.g.¢

Ze ﬂmng ;m _)\ Z|g1|_)‘CZZ|CmI| (5)

m=1 j=1 m=1

where

6m(ﬂmOa g, Cm) = Zymi{ﬂmO +x;£i(g : Cm)}

i=1

- lOg[l + exp{ﬁmo + xr’}z‘i(g : ;m)}]v

8= (gla ey gp)T7 Cm = ({mlv cees gmp)Ta ﬂO = (ﬂlOa cees ,BMO)Tv
c=(¢T, ... &5)T, and g - ¢, means the element-wise product.

The tuning parameter A, controls variable selection at the
entire-gene level and can effectively remove genes that are
unimportant for all M data sets. The tuning parameter A,
controls variable selection at the individual data set level: if
gj is not equal to zero, some ¢,; and hence the correspond-
ing B,,; can still be shrunken to zero. Since the estimation of
g; depends on all M data sets, the estimation of regression
coefficients B,,; = g;{m; depends on all M data sets. For this
reason, we call this method as the “meta lasso.”

Two modifications may be made in the optimization prob-
lem (5). First, a pre-specified weight w, may be multiplied
t0 £ (Bumos &5 &m) in (5) to reflect the importance of mth data
set. Second, since all M data sets have the same genes, it is
intuitively appealing to require that the non-zero estimated
effects of an identified gene has the same sign across all M
data sets. Therefore, we may add a sign constraint

G20, m=1,....M; j=1...p. (6)

in (5). In fact, in the analysis of real data and simulation
studies in Section 5, constraint (6) is applied. In the rest of
this section and the theoretical study (Section 4), we ignore
weighting and constraint (6). But the results can be easily
extended to the case with the sign constraint or weights.
Although there are two tuning parameters in (5), it turns
out that they can be simplified into one. Specifically, in
Lemma 1 we can show that (5) is equivalent to the following
optimization problem with one tuning parameter A = A A,:

M

max Zlem(ﬂmo, £.%n) Z 1)1 - AE;Z: il ¢ (7)
m= j=1m

Lemma 1. If (ﬂo, 2., 2) is a solution of (5), then there exists

a solution (Bo, . &) of (7) such that 8ilnj = &Cm; and Bo = Bo.
Similarly, if (,BO, £,2) is a solution of (7), then there exists a
solution (By, &,€) of (5) such that §;&,; = &;&n; and Bo =B,

Next, we show that (7) has an equivalent form in terms of
Bmj’s, which is useful for the derivation of theoretical results
in Section 4.

thenﬁ:
..., P, 15 a

LEMMA 2.

(ﬂl()v ﬁllv ..

If (ﬂo,g ;‘) is a solution of (7),
.BM])) thh IBmI - gj{mj) fOT‘ ] - 1
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solution of

M » M 1/2
mﬂax{zém(ﬂmo’ﬂm) _Qﬁz (Zlﬂwl) } ) (8)

where B = (Bio, P11, ---» Bup)T. On the other hand, if B is
a solution of (8), then (Bo, &%) is a solution of (7), where

Bo = (Bro - Buo)™, 1By lle = 3wy 1Busl,
. Jai=04,=0 if Bijy =0,
@y=9' " o Y
&= ByIY2 &y =Bwi/& if By) #0,
where ['}(j) = (ﬁlj,--.,ﬁMj)T, 2(/’) = (G1jy--er )T, and

2 = (211, &12, cees ZMp)T

If we regard one gene’s effects among all studies as a
“group,” then (8) imposes a square root penalty on each group
and an L; penalty on individual elements within a group. It
turns out that this penalization scheme is the same as the
group bridge penalty proposed in Huang et al. (2009). How-
ever, it is hard to see why solving (8) is a reasonable way
to handle variable selection in meta-analysis, because it is
not natural to form the effects of the jth gene in M different
data sets as a group. Our reparameterization (4) is intuitively
appealing and it naturally leads to the maximization prob-
lem (5) and its equivalent form (7), which happens to have
a connection with (8) revealed by our Lemma 2. Moreover,
(8) is a non-concave problem that is hard to solve, although
Huang et al. (2009) provided an algorithm. With the aid of
reparameterization (4), (7) can be decomposed into two con-
cave problems, each of which views g or ¢ as fixed. Thus,
we in fact obtain a more effective computation method to
solve the group bridge problem (8). Finally, our theoretical
results in Section 4 are established not only for variable se-
lection in meta-analysis, but also for variable selection by the
group bridge penalty, which extends the results in Huang et al.
(2009) since they did not consider the case of large p.

We propose to solve B, g, and ¢ in (7) iteratively. We first
fix Bp and ¢ in (7) to maximize over g. Next, we maximize over
¢ by fixing B¢ and g. Finally, we maximize over By by fixing
g and ¢. We iterate between these steps until the algorithm
converges. Specifically, the algorithm is described as follows:

Algorithm:

1. For each dataset, standardize columns to have zero mean
and unit variance. Initialize 2,(,3.) =lforl<m<M;1<j<p
and,é,(,,oo) =0forl<m<M.

2. In the kth iteration, let X,;; = xm,-_jé,(n’T
the value of ¢,; at the (k — 1)th step and

) 1

, where {m ;s

,,
DS [yml (m&: >+zxm,-,,-gj)
j=1

m=1 i=1

P
—log {1 + exp (35,501)4- chmi,jgj> H ~
j=1
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Estimate g; by g(k)
3. Let X, = xm,,gﬁ") nd

p
S [ (ﬂffo Z¢>
j=1

= argmax, [¢(g) = >0, lgill, j=1,.... p.

m=1 i=1

“log {1 +exp ( +me, ,cm,> H .

—A Ef:l Zgzl |§mj|]~

Estimate ¢,; by ;‘

mj = a‘rgma‘X{m,‘ [I(C)

Add constraint ¢,; >0 for m=1,... M;j=1,...,p, if
necessary.
4. Let ﬂ,(,f;>_§§k>{,§,’; form=1,...,.M; j=1,...,pand
ZZ |;)G’Hl (ﬂm() + lemjﬂmj>
m=1 i=1
_lOg {1 +€Xp (ﬂmo + meljﬂ(k)> }] .
Jj=1

Estimate ﬂmO by ﬂ 0 - argmaxﬁmo

£(Bo)-

5. If maxy <m<m,0<j<p |,B(k) ﬁ(k 1>| is less than some predefined
threshold (we use 10~ ) terminate the algorithm; otherwise
go back to step 2 and iterate.

Since the objective function in (7) increases in each itera-
tion and the objective function itself is concave, the conver-
gence of this algorithm is guaranteed. Step 2 is a lasso-type
problem and Step 3 is a nonnegative garrote-type problem.
Both can be effectively solved by the coordinate descent al-
gorithm in (Friedman, Hastie, and Tibshirani, 2010).

4. Theoretical Properties

For the ease of presentation, we assume that the sample sizes
are equal to n in all M studies. In addition, we assume the
intercept term By = 0 and drop By from (5), (7), and (8). After
multiplying a constant, we rewrite the optimization problem
(8) in a matrix form as

gg]i]{p[YTXﬂ 1Tb(0) - n)‘np(ﬂ)] 9)

where X € RMmxMp
whose mth block contains data from mth study,

is the block-diagonal design matrix
Y:

(s y12, o )ty B= (B, iz, - Bup) ", 0=XB, b(0)
is a RM" — RM" function that b(9;) = log{l + exp(6;)}, the
penalty term p(B) = le(zrzl |Bnj1)*?, and A, >0 is a
tuning parameter. Let B = (,311, Bia, ...,/f}Mp)T and ﬁ(j) =
(31j,...,EMj)T be a subvector of B corresponding to
the effects of jth gene. In addition, we denote u(f)=
(¥'(01),....0'(0mn))" and  X(8) = diag(b"(61), ..., 5" (Ou)),

where b/'(0) = exp(0)/{1 +exp(9)} and b"(0) =exp(0)/{1+
exp(6))2.

In spirit of Theorem 1 in Fan and Lv (2011), we give the
necessary and sufficient condition for a vector ,3 to be the
solution to (9).
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THEOREM 1. Any ,ée RMP is a strict local mazimizer of
the objective function in (9) if

XY — X7 u(XB) = n1,Vo(By), (10)

XY — XJ,u(XB) = ni,00(Bnr). (11)
)"mm(XITZ(Xﬁ)XI) > n)"nK(pv Bl)v (12)

where ﬁl = {ijllémj 7é 0, ,é(j) 75 0}; Bu - {ijljémj = O, B(j) 7&

0}, X; is the submatriz of X formed by columns in I =
{(m, j)lej € B1}, X1 is the submatriz of X formed by columns
in I = {(m, j)|,3,,,j € B,,}, Vo(-) and dp(-) are the gradient and
one subgradient of p(-) satisfying that

1 R R
—sgn(Bup) IBIL> for By € Br,

2

1 - -1/2
€ (=518,

Vo(Buy) =

A 1 - _ o ~
3;0(,3m_,') 5”,3(_/) Il 1/2) for Bmj € B,

Sgn(/émj) =1 Zf .ij > 07 ASgn(,ém/) =0 Zf 3mjA= 0; BS%n(ﬁmj) =
=1 if Buj <0, and «(p, B1) = max ;s o LBy lIy 2 denotes
the local concavity of the penalty p. On the other hand, zfﬁ isa
solution to (9), then it must satisfy (10)- (12 with > replaced

by > and 3p(Bn;) € [~ LB IT"% LB IT Y] for Buj € Bur-

There is another KKT condition that X,T,,Y XT,n(XB) =
nxnap(ﬂlll)a ﬂlll = {ﬂmjl,Bm/ = 0, ﬂ(/) = 0}7 i =
{(m I /émj € ﬁ,,,} and 8,0([@1,,) is one subgradient of p(-) at
ﬂm Since p(B) = f 1(2,1‘::1 |:3mj|)1/27 3P(/§mj) € (—0o0, +00)
for ,B,,,j € ﬂm, that is, Bp(ﬁmj) could be any real number for
ﬁmj S ﬁm. Thus, this KKT condition always holds.

‘We now consider the nonasymptotic weak oracle property
of our proposed f in (9), that is, with large probability, 8 iden-
tifies the sparsity structure of the true parameter vector, and
non-zero elements of B are consistent in a rate slower than /n.

We need some notation. Let B* be the true value of pa-
rameters and let 6* = XB*. With a slight abuse of notation,
we denote I={(m, j)IB;,; #0,B(; #0} II={(m,j)lB,;=
0, }32‘]) # 0}, and 111 = {(m, j)|B;,; =0, B{; = 0}, where B(; =
(B3 Bsj»-- - ,BLj)T. Let s, =], the cardinality of set I,
and d, = 271 min{|B;;| : B,; € I} be half of the minimum sig-
and L, =

where

" . 1/2
nal. In addition, we let [, = mln[j;ﬂ?j);eo)||ﬂf,v) 1

maxj.g; <o)l 11"

We consider a fixed design matrix X. Let X;, X, and X,y
denote columns of X with indices in I, IT and II1, respectively.
We assume each block of X has been standardized to zero
mean and unit variance. We fix M and let n, p diverge with
p > n. For simplicity concern, we write several quantities in
terms of an order of n. We let log p x n'=2% d, < n™* and
sp < n®, where oy > 0, 4 > 0 and 0 < @, < 1/2 are constants.
For any two sequence a,, b,, a, < b, means a, = O(b,) and
b, = O(ay).

To present our main result, we require the following condi-
tions:

(C1) 0 <oy <y<a,<1/2, where y is shown as in (b) of
Theorem 2.

Biometrics, December 2014

(C2) 0 < ay <min{2(a, —y),2(y — ), v};

(C3) 1l [X;Fz(o* X/ e = O(bn™1),
o(min{n/?7//logn, n"=%});

(C4) 1XEx=

where b, =

(0°)X:[XTZ(0)X1] o < 1,/ (2L);

(C5) maxsenr, Max,, ; Amax | X diag{| Xl o |u"(X;8)}X;] =
O(n),

where X,,; denotes the column of X corresponding to the jth
variable in the mth dataset, the L, norm of a matrix is the
maximum of the L; norm of each row. Ny ={§ € R*» : ||§ —
Bills <d,}, the derivative of u(-) is taken componentwise, 8}
is the subvector of B* with indices in I and o denotes the
Hadamard (componentwise) product.

Condition (C1) is a requirement of the diverging rate of s,
and p. Condition (C2) is a requirement of the minimal sig-
nal of B*, which cannot be too small. Condition (C3) essen-
tially requires that X7 %(6*)X; should not be singular and
we need a lower bound for its sup-norm. (C4) is a condition
similar to irrepresentable condition of the lasso. Zhao and Yu
(2006) showed that the irrepresentable condition is sufficient
and almost necessary for the lasso to achieve model selection
consistency. Since our penalty in (9) is an L; penalty within
each gene, we need (C4). (C5) is a technical condition needed
in the proof.

THEOREM 2. Under conditions (C1)-(C5), if we choose
the penalty A, < n=* satisfying
27la, + ¥ < @) < min{2y — a, apl, (13)
Iy =0(n=%/277) and L,ko = 0(10), where ko= maxscp, k (0, §)=
- -3/3
maX‘;e/\/O max(j‘(;(j)#o,él 1”6(1')”13/ f07" 6(]) = (51]-, .. .,BM]')T

and to=minsen, rmin(n X7 X(X,8)X;), then for sufficiently

large n, with probability greater than 1—2{s,n™*+ (Mp —
5p) e~ T logny there exists a local mazimizer B of (9), such
that

(a) (sparsity) Brom = 0;
(b) (Lo consistency) [|Br — Billo <n7.

The convergence rate in (b) of Theorem 2 is slower than /n-
rate, because the L; penalty in (9) cannot achieve /n-rate.
The rate y depends on «;, «, and o, satisfying (C1)—(C2).
In general, the smaller p and s, are and the larger d, is, the
larger y we can have and the faster ||;§1 — Bill vanishes. In
the best case, the convergence rate could be very close to 4/n.
If we employ the sign constraint as in (6), then by adding
another natural condition that the non-zero elements of B*
have the same sign, our main result (Theorem 2) still holds.

5. Numerical Results

5.1.
Simulation studies are performed to compare the finite sam-
ple performance of our proposed meta lasso with the sepa-
rate lasso, stack lasso, group lasso, adaptively weighting (AW)

Simulations
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Table 2
Sensitivity and specificity of eight methods: presented values are the mean (standard error) over 100 simulations, sample size
n, = 50 for all 10 studies

g = 0.9 T = 0.5 TTp = 0.2
Meta lasso Sensitivity 0.942 (0.071) 0.921 (0.075) 0.913 (0.097)
Specificity 0.995 (0.001) 0.993 (0.002) 0.993 (0.004)
Separate lasso Sensitivity 0.028 (0.019) 0.146 (0.064) 0.537 (0.170)
Specificity 1.000 (0.000) 1.000 (0.000) 0.999 (0.000)
Stack lasso Sensitivity 0.998 (0.011) 0.729 (0.166) 0.218 (0.232)
Specificity 0.996 (0.002) 0.996 (0.002) 0.999 (0.001)
Group lasso Sensitivity 0.820 (0.089) 0.801 (0.089) 0.774 (0.098)
Specificity 0.999 (0.000) 0.996 (0.001) 0.995 (0.001)
AW Sensitivity 0.787 (0.151) 0.780 (0.069) 0.800 (0.073)
Specificity 0.997 (0.001) 0.995 (0.001) 0.992 (0.002)
Fisher Sensitivity 0.806 (0.163) 0.703 (0.077) 0.578 (0.124)
Specificity 0.999 (0.001) 0.997 (0.001) 0.996 (0.001)
FEM Sensitivity 0.957 (0.050) 0.677 (0.032) 0.067 (0.103)
Specificity 0.998 (0.001) 0.998 (0.001) 1.000 (0.000)
REM Sensitivity 0.731 (0.130) 0.333 (0.215) 0.000 (0.000)
Specificity 0.999 (0.001) 0.999 (0.001) 1.000 (0.000)

method by Li and Tseng (2011), Fisher’s method, combina-
tion of effect sizes from Fixed Effects Model (FEM), and Ran-
dom Effects Model (REM). In the simulation, the number of
studies M = 10, sample size n,, =50 for m =1,...,10, and
number of genes p = 1,000. The gene expression values x,,;
are i.i.d. from standard normal distribution. The responses
ymi’s are generated from a logistic model by Pr(y,; = 1|x,;) =
exp(x1,8,)/[1 + exp(xL,B;)], where B, = (B B .. i)™
and the intercept term B, = 0. To allow possible data het-
erogeneity, we let ﬁm] = Zmjbmj form=1,...,M,j=1,...,10,
B;,; = 0 otherwise, where z,,; are i.i.d. from N(3,0.5%) and b,,;
are i.i.d. from Bernoulli(7rp). This means that for each of the
first 10 genes, in each dataset, it is important with probabil-
ity g and unimportant with probability 1 — mg. If the gene is
important in a dataset, its effect is generated from N(3, 0.52).
We consider three values for 7g: 0.2, 0.5, and 0.9 to investigate
different levels of heterogeneity among datasets. For each case
we run 100 replicates.

The variable selection performance of the eight methods are
evaluated using selection sensitivity and specificity. For lasso-
type methods, sensitivity is the proportion of non-zero f;,;’s
that are correctly estimated as non-zero and the specificity is
the proportion of zero B, ’s that are correctly estimated as
zero. In particular, for the stack lasso, the estimated effects of
genes are the same among all studies, that is, ,311 = ,BMJ,
for j=1,..., p. For the CSS methods (AW Flsher FEM,
and REM)7 the list of genes being identified is regarded to be
significant among all studies. Sensitivity and specificity are
defined accordingly.

For the meta lasso, the tuning parameters are selected by
minimizing the BIC:

BIC Z { 26 ﬂm A) + Sm 10g(l’lm)} ’

m=1

(14)

where ﬁm,k is the estimated coefficients in the mth dataset
based on tuning parameter A, s, is the number of non-zero

elements of {Bm,k}, n, is the sample size of the mth study and
Lo (B,,m) is the log-likelihood with B, being replaced by its
estimate Bm, 5. Tuning parameters for separate lasso are chosen
dataset by dataset by minimizing BIC(A,) = —2€, (B, ) +
sm log(ny,), where Iém,/\m is the estimated coefficients based on
mth dataset with tuning parameter A,, and other notations
have the same meaning as in (14). Tuning parameters for the
stack lasso and group lasso are obtained by minimizing the
BIC in (14) with s, log(n,,) replaced by slog(zrzl Ny ), and
ﬁm, 5 replaced by ﬁx, the estimated coefficients in the stacked
data based on tuning parameter A, where s is the number of
non-zero elements of ;.

The four CSS methods are implemented by Li and Tseng’s
R package MetaDE. The simulation results are summarized in
Table 2. Among all eight methods, our proposed meta lasso
has the superior performance. The separate lasso in general
does not have enough power to identify important genes. Its
ostensibly large sensitivity for 7y = 0.2 is a mere fact that the
number of true non-zero coefficients is very small in this case.
The performance of the stack lasso changes dramatically with
9. When g = 0.9, the stack lasso performs best as expected,
due to high level of homogeneity among the data sets. On the
other hand, when my = 0.2, the stack lasso method performs
badly, due to high level of heterogeneity among the data sets.
Due to its “all-in-all-out” property, the group lasso doesn’t
perform as well as our method, especially when data hetero-
geneity is strong (mo is small). In general, the four CSS ap-
proaches perform worse than our method. AW performs the
best among the four CSS methods. Like the stack lasso, the
FEM and REM suffer from the same heterogeneity issue.

For our proposed meta lasso, it takes around 10 minutes to
run each simulation, which includes the time to find optimal
tuning parameters by the BIC.

5.2.  Real-Data Analysis

We present our analysis results for the motivational example
in Section 2. Table 1 gives some summaries of the five data
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Table 3
Gene selections of eight methods in five cardiovascular studies

Selections by meta lasso and separate lasso in each dataset

Datasets Meta lasso Separate lasso
GSE12288 IFNA4 STAT1 None
GSE16561  STAT1 TLRS CD14 CD86 CHUK MAPK11 MAPK14 PIK3CG PIK3R1 RAC1 STAT1
TLR2 TLR7 TLR8 TNF TRAF3
GSE20129 TLRS8 None
GSE22255 IFNA4 None
GSE28829 IFNA4 STAT1 TLR8 CD14 IFNAR2 IRF5 MAPK9
Selections by other methods in all datasets
Method Gene list

Stack lasso  None

Group lasso

CD86 FOS IFNAR2 IKBKE MAPK14 PIK3CA STAT1 TLR2 TLRS8
AKT1 AKT3 CASP8 CCL5 CD14 CD40 CD80 CD86 CHUK FADD FOS IFNAR1 IFNAR2 IKBKE

IL1B IL8 IRAK1 IRF5 IRF7 JUN LBP LY96 MAP2K3 MAP2K4 MAP2K7 MAP3K7 MAP3K8 MAPK1
MAPK11 MAPK13 MAPK14 MAPK9 MYDS88 PIK3CA PIK3CD PIK3CG PIK3R1 PIK3R5 RAC1 SPP1

AKT1 AKT3 CASP8 CCL5 CD14 CD40 CD80 CD86 CHUK FADD FOS IFNAR1 IFNAR2 IKBKE IL1B

IL8 IRAK1 IRF5 IRF7 JUN LBP LY96 MAP2K3 MAP2K4 MAP2K7 MAP3K7 MAP3K8 MAPK1
MAPK11 MAPK13 MAPK14 MAPK9 MYDS88 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R5

AW

STAT1 TBK1 TLR1 TLR2 TLR4 TLR5 TLR6 TLR7 TLRS8 TNF TRAF3 TRAF6
Fisher

RAC1 SPP1 STAT1 TBK1 TLR1 TLR2 TLR4 TLR5 TLR6 TLR7 TLR8 TNF TRAF3
FEM CD86 IFNA4 STAT1 TLR2 TLR4 TLR5 TLR7 TLRS8
REM None

sets. For microarray data (GSE12288, 22255, 28829) gener-
ated from the Affymetrix platform, the RMA algorithm was
used for data normalization. For Illumina data (GSE16561,
20129), quantile normalization procedure was applied. There
are 88 common genes in all five studies and our analysis is
based on those 88 genes. We coded control group as 0 and
case group as 1. We applied aforementioned eight methods
to select important genes, with the optimal tuning parame-
ters chosen by the BIC as discussed above. Table 3 gives the
names of genes selected in each data set. Our method identi-
fied Interferon Alpha-4 (IFNA4), Signal Transducer and Ac-
tivator of Transcription 1 (STAT1), and Toll-Like Receptor 8
(TLR8) as important genes that may affect the atherogene-
sis. The separate lasso resulted in disparate recommendation
of genes by over-emphasizing data heterogeneity: four genes
were recommended from GSE28829; fourteen genes selected
from GSE16561 with only one gene (CD14) that was also se-
lected in GSE28829; and none selected from the other three
data sets. The stack lasso failed to find any genes by over-
emphasizing data homogeneity.

Several TLR family members, especially TLR2 and TLRA4,
have been well studied for their role in atherogenesis and
autoimmune diseases, whereas the role of TLRS8 in vascular
diseases is less known due to the lack of a nonfunctional TLRS8
in mice, making in vivo studies difficult (Diebold, 2008).
However, the biological and clinical significance of TLR8 in
immune and inflammatory response is emerging. For exam-
ple, TLRS expressions are associated with poor outcome and
greater inflammatory response in patients experiencing acute
ischemic stroke (Brea et al., 2011). The fact that our method
identifies TLRS8 as the sole TLR associated with various vas-

cular diseases suggests its underappreciated role in modulat-
ing inflammatory signals. Once activated, pattern recognition
receptors can lead to the production of type I interferons
(IFNs), which consequently induces STAT1 phosphorylation
(Dempoya et al., 2012), indicating the importance of STAT1
in maintaining very tight regulation of the innate immune
system. Interferon (IFN)-induced Janus kinase (Jak)/Signal
Transducer and Activator of Transcription (STAT) pathway
has been known for its importance in controlling immune
responses. Therefore, our finding of the two additional genes,
INFA4 and STAT1, may provide a clue regarding major
molecules in the TLR-IFN-STAT signaling cascade that
mediates atherosclerotic and inflammatory process.

The three genes selected by our method are also being iden-
tified by other methods. In fact, STAT1 and TLRS are iden-
tified by group lasso, AW, Fisher’s method, FEM, and the
separate lasso in dataset GSE16561. In addition, IFNA4 is
also identified by FEM.

Gene CD14 is selected by separate lasso in studies
GSE16561 and GSE28829, but not by meta lasso. An ex-
planation is that CD14 is correlated with some of STATI,
TLRS8, and IFNA4 to a certain degree (see Appendix B in the
Supplementary Materials).

Study GSE20129 has demographics different from other
studies. Hence it is important to address data heterogeneity.
To show the importance of having this study with the second
largest sample size, Appendix B shows a further analysis
with this study left out. Since TLR8 is a very informative
gene and it is the only gene selected by meta lasso under
GSE20129, leaving GSE20129 out results in a reduced signal
of TLR8 and, thus, more genes are selected by meta lasso
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to compensate. This shows the importance of borrowing
strength across a reasonable number of studies with data
heterogeneity properly addressed.

6. Discussion

In this article, we proposed a meta lasso method for variable
selection in meta-analysis with high-dimensional gene expres-
sion data. Through a hierarchical decomposition on regression
coefficients, our method not only borrows strength across mul-
tiple data sets to boost the power to identify important genes,
but also takes into account data heterogeneity to relax the
“all-in-or-all-out” rule. Under certain regularity conditions,
we prove the gene selection consistency of our method. Sim-
ulation studies demonstrate that our method have good per-
formances and are much better than other lasso methods. We
applied the meta lasso to a cardiovascular study. The analysis
results are clinically meaningful.

There could be other choices of penalty in the proposed
maximization problem (5). When many genes are highly cor-
related to form clusters, the irrepresentable condition required
for the validity of lasso is questionable and any lasso-type
method may not work well. In such cases, we may replace
the lasso penalty in (5) by the elastic-net penalty (Zou and
Hastie, 2005) and select variables by maximizing

M

r P
D ln(Buos 8 ) = ke D lgl = A1 —1) > g7
j=1 j=1

m=1

p M P M
—hoa ZZ |Znjl = 2e(1 — a2) ZZ S

j=1 m=1 Jj=1 m=1

The weakness of the lasso may be alleviated and selection
sensitivity may be improved when some genes are highly cor-
related. The two tuning parameters A, and A, can be reduced
to one. Under the elastic-net penalty, it can be easily seen
from Steps 2 to 4 of the algorithm that the problem is still
concave at each iteration and can be efficiently solved. How-
ever, there are two more tuning parameters if the elastic-net
penalty is applied.

Another solution to handle high correlations is to incorpo-
rate exogenous gene functional information. Our undergoing
research extends meta lasso to pathway level, where a genome-
wide study is possible and significant pathways could also be
identified.

7. Supplementary Materials

Web Appendices A and B, referenced in Sections 3-5, are
available with this paper at the Biometrics website on Wiley
Online Library.
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