Web-based Supplementary Materials for "Meta-Analysis

Based Variable Selection for Gene Expression Data" by

Quefeng Li^{1}, Sijian Wang ${ }^{1,2}$, Chiang-Ching Huang ${ }^{3}$, Menggang Yu^{2} and Jun Shao ${ }^{1, *}$
${ }^{1}$ Department of Statistics, University of Wisconsin, Madison, Wisconsin, U.S.A
${ }^{2}$ Department of Biostatistics \& Medical Informatics, University of Wisconsin, Madison, Wisconsin, U.S.A
${ }^{3}$ Feinberg School of Medicine, Northwestern University, Illinois, U.S.A
*email: shao@stat.wisc.edu

Web Appendix A: Proofs of Lemmas and Theorems

Proof of Lemma 1. We follow the spirit of the proof of Lemma 1 in Zhou and Zhu (2010). Let $Q_{1}\left(\lambda_{g}, \lambda_{\zeta}, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$ denote the objective function in (5) and $Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$ denote the objective function in (7). Suppose $\left(\tilde{\boldsymbol{\beta}}_{0}, \tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}\right)$ is the local maximizer of $Q_{1}\left(\lambda_{g}, \lambda_{\zeta}, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$. We would like to show that $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)=\left(\tilde{\boldsymbol{\beta}}_{0}, \lambda_{g} \tilde{\boldsymbol{g}}, \frac{1}{\lambda_{g}} \tilde{\boldsymbol{\zeta}}\right)$ is a local maximizer of $Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$.

Actually, since $\left(\tilde{\boldsymbol{\beta}}_{0}, \tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}\right)$ is a local maximizer of (5), there exists $\delta>0$ such that for any $\left(\boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$ satisfying $\left\|\boldsymbol{\beta}_{0}-\tilde{\boldsymbol{\beta}}_{0}\right\|_{1}+\|\boldsymbol{g}-\tilde{\boldsymbol{g}}\|_{1}+\|\boldsymbol{\zeta}-\tilde{\boldsymbol{\zeta}}\|_{1} \leq \delta, Q_{1}\left(\lambda_{g}, \lambda_{\zeta}, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right) \leq Q_{1}\left(\lambda_{g}, \lambda_{\zeta}, \tilde{\boldsymbol{\beta}} 0, \tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}\right)$.

Choose δ^{\prime} such that $\frac{\delta^{\prime}}{\min \left(\lambda_{g}, \frac{1}{\lambda_{g}}\right)} \leq \delta$, then for any $\left(\boldsymbol{\beta}_{0}^{\prime}, \boldsymbol{g}^{\prime}, \boldsymbol{\zeta}^{\prime}\right)$ satisfying $\left\|\boldsymbol{\beta}_{0}^{\prime}-\hat{\boldsymbol{\beta}}_{0}\right\|_{1}+\left\|\boldsymbol{g}^{\prime}-\hat{\boldsymbol{g}}\right\|_{1}+$ $\left\|\boldsymbol{\zeta}^{\prime}-\hat{\boldsymbol{\zeta}}\right\|_{1} \leq \delta^{\prime}$, it holds that

$$
\begin{aligned}
& \left\|\boldsymbol{\beta}_{0}^{\prime}-\tilde{\boldsymbol{\beta}}_{0}\right\|_{1}+\left\|\frac{\boldsymbol{g}^{\prime}}{\lambda_{g}}-\tilde{\boldsymbol{g}}\right\|_{1}+\left\|\lambda_{g} \boldsymbol{\zeta}^{\prime}-\tilde{\boldsymbol{\zeta}}\right\|_{1} \\
\leq & \frac{\left\|\boldsymbol{\beta}_{0}^{\prime}-\tilde{\boldsymbol{\beta}}_{0}\right\|_{1}+\lambda_{g}\left\|\frac{\boldsymbol{g}^{\prime}}{\lambda_{g}}-\tilde{\boldsymbol{g}}\right\|_{1}+\frac{1}{\lambda_{g}}\left\|\lambda_{g} \boldsymbol{\zeta}^{\prime}-\tilde{\boldsymbol{\zeta}}\right\|_{1}}{\min \left(\lambda_{g}, \frac{1}{\lambda_{g}}\right)} \\
= & \frac{\left\|\boldsymbol{\beta}_{0}^{\prime}-\hat{\boldsymbol{\beta}}_{0}\right\|_{1}+\left\|\boldsymbol{g}^{\prime}-\hat{\boldsymbol{g}}\right\|_{1}+\left\|\boldsymbol{\zeta}^{\prime}-\hat{\boldsymbol{\zeta}}\right\|_{1}}{\min \left(\lambda_{g}, \frac{1}{\lambda_{g}}\right)}
\end{aligned}
$$

$$
\leq \delta
$$

Hence,

$$
\begin{aligned}
Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}^{\prime}, \boldsymbol{g}^{\prime}, \boldsymbol{\zeta}^{\prime}\right) & =Q_{1}\left(\lambda_{g}, \lambda_{\zeta}, \boldsymbol{\beta}_{0}^{\prime}, \boldsymbol{g}^{\prime} / \lambda_{g}, \lambda_{g} \boldsymbol{\zeta}^{\prime}\right) \\
& \leq Q_{1}\left(\lambda_{g}, \lambda_{\zeta}, \tilde{\boldsymbol{\beta}}_{0}, \tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}\right) \\
& =Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)
\end{aligned}
$$

Therefore, $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)=\left(\hat{\boldsymbol{\beta}}_{0}, \lambda_{g} \tilde{\boldsymbol{g}}, \frac{1}{\lambda_{g}} \tilde{\boldsymbol{\zeta}}\right)$ is a local maximizer of $Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$. Similarly, we can show the reverse.

Proposition 1 Suppose $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$ is a local maximizer of (7). For $j=1, \ldots, p$, let $\hat{\beta}_{m j}=\hat{g}_{j} \hat{\zeta}_{m j}$, $\hat{\boldsymbol{\beta}}_{(j)}=\left(\hat{\beta}_{1 j}, \ldots, \hat{\beta}_{M j}\right)^{T}$ and $\hat{\boldsymbol{\zeta}}_{(j)}=\left(\hat{\zeta}_{1 j}, \ldots, \hat{\zeta}_{M j}\right)^{T}$.
(a) If $\hat{g}_{j}=0$, then $\hat{\boldsymbol{\beta}}_{(j)}=\mathbf{0}$;
(b) If $\hat{g}_{j} \neq 0$, then $\hat{\boldsymbol{\beta}}_{(j)} \neq \mathbf{0}$ and $\left|\hat{g}_{j}\right|=\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}},\left|\hat{\boldsymbol{\zeta}}_{(j)}\right|=\frac{\left|\hat{\boldsymbol{\beta}}_{(j)}\right|}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}}$, where the absolute value of $\hat{\boldsymbol{\zeta}}_{(j)}$ and $\hat{\boldsymbol{\beta}}_{(j)}$ are taken componentwise.

Proof of Proposition 1. Statement (a) is obvious. Similarly, if $\hat{\boldsymbol{\beta}}_{(j)}=\mathbf{0}$, then $\hat{g}_{j}=0$.
For statement (b), suppose there exists j^{\prime} such that $\hat{g}_{j^{\prime}} \neq 0$ and $\left|\hat{g}_{j^{\prime}}\right| \neq \sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{\left(j^{\prime}\right)}\right\|_{1}}$. Let $\frac{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{\left(j^{\prime}\right)}\right\|_{1}}}{\left|\hat{g}_{j^{\prime}}\right|}=c$. Without loss of generality, we assume $c>1$.

Let $\tilde{g}_{j}=\hat{g}_{j}$ and $\tilde{\boldsymbol{\zeta}}_{(j)}=\hat{\boldsymbol{\zeta}}_{(j)}$ for $j \neq j^{\prime}$ and $\tilde{g}_{j^{\prime}}=\delta^{\prime} \hat{g}_{j^{\prime}}$ and $\tilde{\boldsymbol{\zeta}}_{\left(j^{\prime}\right)}=\frac{1}{\delta^{\prime}} \hat{\boldsymbol{\zeta}}_{\left(j^{\prime}\right)}$, where $1<\delta^{\prime}<c$ such that $\left|\tilde{g}_{j^{\prime}}-\hat{g}_{j^{\prime}}\right|+\left\|\tilde{\boldsymbol{\zeta}}_{\left(j^{\prime}\right)}-\hat{\boldsymbol{\zeta}}_{\left(j^{\prime}\right)}\right\|_{1}<\delta$ for some $\delta>0$. Then, we have

$$
\begin{aligned}
Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}\right)-Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right) & =-\delta^{\prime}\left|\hat{g}_{j^{\prime}}\right|-\frac{1}{\delta^{\prime}} \lambda\left\|\hat{\boldsymbol{\zeta}}_{\left(j^{\prime}\right)}\right\|_{1}+\left|\hat{g}_{j^{\prime}}\right|+\lambda\left\|\hat{\boldsymbol{\zeta}}_{\left(j^{\prime}\right)}\right\|_{1} \\
& =\left(-\frac{\delta^{\prime}}{c}-\frac{c}{\delta^{\prime}}+\frac{1}{c}+c\right) \sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{\left(j^{\prime}\right)}\right\|_{1}} \\
& =\frac{1}{c}\left(\delta^{\prime}-1\right)\left(\frac{c^{2}}{\delta^{\prime}}-1\right) \sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{\left(j^{\prime}\right)}\right\|_{1}} \\
& >0 .
\end{aligned}
$$

Therefore, for any $\delta>0$, we can find $\tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}$ such that $|\tilde{\boldsymbol{g}}-\hat{\boldsymbol{g}}|+\|\tilde{\boldsymbol{\zeta}}-\hat{\boldsymbol{\zeta}}\|_{1}<\delta$ and $Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \tilde{\boldsymbol{g}}, \tilde{\boldsymbol{\zeta}}\right)>$ $Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$. This contracts the fact that $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$ is a local maximizer.

Proof of Lemma 2. Let $Q_{3}(\lambda, \boldsymbol{\beta})$ be the objective function in (8) and $Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$ be the objective function in (7).

First, we show that if $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$ is a local maximizer of $Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$, then the vector $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{10}, \hat{\beta}_{11}, \ldots, \hat{\beta}_{M p}\right)^{T}$, where $\hat{\beta}_{m j}=\hat{g}_{j} \hat{\zeta}_{m j}$, for $j=1, \ldots, p$, is a local maximizer of $Q_{3}(\lambda, \boldsymbol{\beta})$.

Denote $\Delta \boldsymbol{\beta}=\Delta \boldsymbol{\beta}^{(1)}+\Delta \boldsymbol{\beta}^{(2)}$, where $\Delta \boldsymbol{\beta}_{(j)}^{(1)}=\left(\Delta \boldsymbol{\beta}_{1 j}^{(1)}, \ldots, \Delta \boldsymbol{\beta}_{M j}^{(1)}\right) \neq \mathbf{0}$ if and only if $\hat{\boldsymbol{\beta}}_{(j)} \neq \mathbf{0} ;$ $\Delta \boldsymbol{\beta}_{(j)}^{(2)}=\left(\Delta \boldsymbol{\beta}_{1 j}^{(2)}, \ldots, \Delta \boldsymbol{\beta}_{M j}^{(2)}\right) \neq \mathbf{0}$ if and only if $\hat{\boldsymbol{\beta}}_{(j)}=0$. Then we have $\|\Delta \boldsymbol{\beta}\|_{1}=\left\|\Delta \boldsymbol{\beta}^{(1)}\right\|_{1}+$ $\left\|\Delta \boldsymbol{\beta}^{(2)}\right\|_{1}$.

First, we show that there exists $\delta^{\prime}>0$ such that for any $\left\|\Delta \boldsymbol{\beta}^{(1)}\right\|_{1}<\delta^{\prime}, Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}\right) \leq$
$Q_{3}(\lambda, \hat{\boldsymbol{\beta}})$. By Proposition 1, we have, for $j=1, \ldots, p,\left|\hat{g}_{j}\right|=\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}},\left|\hat{\boldsymbol{\zeta}}_{(j)}\right|=\left|\hat{\boldsymbol{\beta}}_{(j)}\right| / \sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}$ if $\hat{g}_{j} \neq 0$ and $\hat{\boldsymbol{\zeta}}_{(j)}=\mathbf{0}$, if $\hat{g}_{j}=0$. Now, let

$$
\begin{gathered}
\hat{g}_{j}^{\prime}=\operatorname{sgn}\left(\hat{g}_{j}\right) \sqrt{\lambda\left(\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}\right)}, \\
\hat{\boldsymbol{\zeta}}_{(j)}^{\prime}=\operatorname{sgn}\left(\hat{\boldsymbol{\zeta}}_{(j)}\right) \frac{\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}}{\sqrt{\lambda\left(\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}\right)}},
\end{gathered}
$$

if $\hat{g}_{j} \neq 0$ and $\hat{g}_{j}^{\prime}=0, \hat{\boldsymbol{\zeta}}_{(j)}^{\prime}=\mathbf{0}$ if $\hat{g}_{j}=0$. Then, it holds that,

$$
\begin{aligned}
Q_{3}(\lambda, \hat{\boldsymbol{\beta}}) & =Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right) \\
Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}\right) & =Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}^{\prime}, \hat{\boldsymbol{g}}^{\prime}, \hat{\boldsymbol{\zeta}}^{\prime}\right)
\end{aligned}
$$

Therefore, it suffices to show $Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}^{\prime}, \hat{\boldsymbol{g}}^{\prime}, \hat{\boldsymbol{\zeta}}^{\prime}\right) \leq Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$.
Since $\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$ is a local maximizer of $Q_{2}\left(\lambda, \boldsymbol{\beta}_{0}, \boldsymbol{g}, \boldsymbol{\zeta}\right)$, there exists $\delta>0$ such that for any $\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}^{\prime}$, $\hat{\boldsymbol{\zeta}}^{\prime}$ satisfying $\left\|\hat{\boldsymbol{\beta}}_{0}^{\prime}-\hat{\boldsymbol{\beta}}_{0}\right\|_{1}+\left\|\hat{\boldsymbol{g}}^{\prime}-\hat{\boldsymbol{g}}\right\|_{1}+\left\|\hat{\boldsymbol{\zeta}}^{\prime}-\hat{\boldsymbol{\zeta}}\right\|_{1}<\delta$, it holds that $Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}^{\prime}, \hat{\boldsymbol{g}}^{\prime}, \hat{\boldsymbol{\zeta}}^{\prime}\right) \leq Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)$.

Note that,

$$
\begin{aligned}
\left|\hat{g}_{j}^{\prime}-\hat{g}_{j}\right| & =\left|\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}-\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}\right| \\
& \leq \frac{1}{2} \frac{\lambda\left\|\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}-\lambda\left\|\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}} \\
& \leq \frac{1}{2} \frac{\lambda\left\|\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}{\sqrt{\lambda l-\lambda \delta^{\prime}}} \\
& \leq \frac{1}{2} \frac{\lambda\left\|\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}{\sqrt{\lambda l / 2}}
\end{aligned}
$$

where $l=\min _{j: \hat{\boldsymbol{\beta}}_{(j)} \neq \mathbf{0}}\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}$ and $\delta^{\prime}<l / 2$.

Meanwhile,

$$
\begin{aligned}
&\left\|\hat{\boldsymbol{\zeta}}_{(j)}^{\prime}-\hat{\boldsymbol{\zeta}}_{(j)}\right\|_{1}=\left\|\frac{\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}}-\frac{\hat{\boldsymbol{\beta}}_{(j)}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}}\right\|_{1} \\
& \leq\left\|\frac{\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}}-\frac{\hat{\boldsymbol{\beta}}_{(j)}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}}\right\|_{1} \\
&+\left\|\frac{\hat{\boldsymbol{\beta}}_{(j)}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}}-\frac{\hat{\boldsymbol{\beta}}_{(j)}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}}\right\|_{1} \\
& \leq\left\|\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1} \\
& \sqrt{\lambda l / 2}+\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1} \cdot \frac{\mid \sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}}-\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}}{\sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}+\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}} \sqrt{\lambda\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}}} \\
& \leq\left\|\Delta \boldsymbol{\beta}_{(j)}^{(1)}\right\|_{1}\left(\frac{1}{\sqrt{\lambda l / 2}}+\frac{L}{l \sqrt{\lambda l}}\right),
\end{aligned}
$$

where $L=\max _{j: \hat{\boldsymbol{\beta}}_{(j)} \neq \boldsymbol{0}}\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}$. In addition, $\left\|\hat{\boldsymbol{\beta}}_{0}^{\prime}-\hat{\boldsymbol{\beta}}_{0}\right\|_{1}=\left\|\Delta \boldsymbol{\beta}_{0}^{(1)}\right\|_{1}$. Therefore, by choosing a proper δ^{\prime}, we have $\left\|\hat{\boldsymbol{\beta}}_{0}^{\prime}-\hat{\boldsymbol{\beta}}_{0}\right\|_{1}+\left\|\hat{\boldsymbol{g}}^{\prime}-\boldsymbol{g}\right\|_{1}+\left\|\hat{\boldsymbol{\zeta}}^{\prime}-\boldsymbol{\zeta}\right\|_{1}<\delta$. Then,

$$
Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}\right)=Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}^{\prime}, \hat{\boldsymbol{g}}^{\prime}, \hat{\boldsymbol{\zeta}}^{\prime}\right) \leq Q_{2}\left(\lambda, \hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{g}}, \hat{\boldsymbol{\zeta}}\right)=Q_{3}(\lambda, \hat{\boldsymbol{\beta}}) .
$$

Next, we show that $Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}+\Delta \boldsymbol{\beta}^{(2)}\right) \leq Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}\right)$. By mean-value theorem,

$$
\begin{align*}
& Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}+\Delta \boldsymbol{\beta}^{(2)}\right)-Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}\right) \\
= & {[\nabla \ell(\tilde{\boldsymbol{\beta}})]^{T} \Delta \boldsymbol{\beta}^{(2)}-2 \sqrt{\lambda} \sum_{j=1}^{p} \sqrt{\left\|\Delta \boldsymbol{\beta}^{(2)}\right\|_{1}}, } \tag{A.1}
\end{align*}
$$

where $\tilde{\boldsymbol{\beta}}$ lies in the line segment connecting $\hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}$ and $\hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}+\Delta \boldsymbol{\beta}^{(2)}$. When $\left\|\Delta \boldsymbol{\beta}^{(2)}\right\|_{1}<\delta^{\prime}$ is small enough, the second term in (A.1) is larger than the first term. Hence, it holds that $Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}+\Delta \boldsymbol{\beta}^{(2)}\right) \leq Q_{3}\left(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}^{(1)}\right)$.

In conclusion, we have shown that there exists a small enough δ^{\prime} such that if $\|\Delta \boldsymbol{\beta}\|_{1} \leq \delta^{\prime}$, then $Q_{3}(\lambda, \hat{\boldsymbol{\beta}}+\Delta \boldsymbol{\beta}) \leq Q_{3}(\lambda, \hat{\boldsymbol{\beta}})$, namely $\hat{\boldsymbol{\beta}}$ is a local maximizer of $Q_{3}(\lambda, \boldsymbol{\beta})$. Similarly, we can show the reverse.

Proof of Theorem 1. We follow the technique in the proof of Theorem 1 in Fan and Lv (2011). Firstly we show the necessary condition. For the log-likelihood $\ell(\boldsymbol{\beta})=\boldsymbol{Y}^{T} \boldsymbol{X} \boldsymbol{\beta}-\mathbf{1}^{T} \boldsymbol{b}(\boldsymbol{X} \boldsymbol{\beta})$, we have

$$
\nabla \ell(\boldsymbol{\beta})=\boldsymbol{X}^{T} \boldsymbol{Y}-\boldsymbol{X}^{T} \boldsymbol{\mu}(\boldsymbol{X} \boldsymbol{\beta}) \quad \text { and } \quad \nabla^{2} \ell(\boldsymbol{\beta})=-\boldsymbol{X}^{T} \boldsymbol{\Sigma}(\boldsymbol{X} \boldsymbol{\beta}) \boldsymbol{X}
$$

By the classical Karush-Kuhn-Tucker (KKT) condition, if $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{11}, \hat{\beta}_{12}, \ldots, \hat{\beta}_{M p}\right)^{T}$ is a local maximizer of the regularized likelihood (9), there exists gradient $\nabla \rho(\hat{\boldsymbol{\beta}})$ and one sub-gradient $\partial \rho(\hat{\boldsymbol{\beta}})$ of $\rho(\cdot)$ such that

$$
\begin{array}{r}
\boldsymbol{X}_{I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})-n \lambda_{n} \nabla \rho\left(\hat{\boldsymbol{\beta}}_{I}\right)=\mathbf{0} \\
\boldsymbol{X}_{I I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I I}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})-n \lambda_{n} \partial \rho\left(\hat{\boldsymbol{\beta}}_{I I}\right)=\mathbf{0} \\
\boldsymbol{X}_{I I I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I I I}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})-n \lambda_{n} \partial \rho\left(\hat{\boldsymbol{\beta}}_{I I I}\right)=\mathbf{0}
\end{array}
$$

where

$$
\begin{gather*}
\nabla \rho\left(\hat{\beta}_{m j}\right)=\frac{1}{2} \operatorname{sgn}\left(\hat{\beta}_{m j}\right)\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}^{-1 / 2} \tag{A.2}\\
\partial \rho\left(\hat{\beta}_{m j}\right) \begin{cases}\in\left[-\frac{1}{2}\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}^{-1 / 2}, \frac{1}{2}\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}^{-1 / 2}\right] & \text { for } \hat{\boldsymbol{\beta}}_{I j} \in \hat{\boldsymbol{\beta}}_{I I} \\
\in(-\infty,+\infty) & \text { for } \hat{\beta}_{m j} \in \hat{\boldsymbol{\beta}}_{I I I}\end{cases} \tag{A.3}
\end{gather*}
$$

where $\hat{\boldsymbol{\beta}}_{I}$ and $\hat{\boldsymbol{\beta}}_{I I}$ are defined in Theorem 1 and $\hat{\boldsymbol{\beta}}_{I I I}=\left\{\hat{\beta}_{m j} \mid \hat{\beta}_{m j}=0, \hat{\boldsymbol{\beta}}_{(j)}=\mathbf{0}\right\}$. In view of (A.4), $\boldsymbol{X}_{I I I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I I I}^{T} \boldsymbol{\mu}\left(\boldsymbol{X}^{T} \hat{\boldsymbol{\beta}}\right)=\lambda_{n} \partial \rho\left(\hat{\boldsymbol{\beta}}_{I I I}\right)$ always holds. Hence, necessary conditions only require (10) and (11) hold for $\partial \rho(\cdot)$ in (A.2) and (A.3), respectively. Moreover, since $\hat{\boldsymbol{\beta}}$ is also a local maximizer of (9) constrained on the $|I|$-dimensional subspace $\mathcal{S}_{1}=\left\{\boldsymbol{\beta} \in \mathcal{R}^{M p}: \boldsymbol{\beta}_{I I \cup I I I}=\mathbf{0}\right\}$ of $\mathcal{R}^{M p}$, where $\boldsymbol{\beta}_{\text {II } \cup I I I}$ denotes the subvector of $\boldsymbol{\beta}$ formed by coordinates in $I I \cup I I I$. By the second order condition,

$$
\lambda_{\min }\left(\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}(\boldsymbol{X} \hat{\boldsymbol{\beta}}) \boldsymbol{X}_{I}\right) \geq n \lambda_{n} \kappa\left(\rho, \hat{\boldsymbol{\beta}}_{I}\right)
$$

where $\kappa\left(\rho ; \hat{\boldsymbol{\beta}}_{I}\right)$ is given in Theorem 1.

Next, we show the sufficient condition. Firstly, we constrain $Q_{n}(\boldsymbol{\beta})$ in a $|I|$-dimensional subspace \mathcal{S}_{1} of $\mathcal{R}^{M p}$. It follows from condition (10) and (12) that $\hat{\boldsymbol{\beta}}$ is the unique maximizer of $Q_{n}(\boldsymbol{\beta})$ in a neighborhood $\mathcal{N}_{1} \subset \mathcal{S}_{1}$. Next, we show that there exists a neighborhood \mathcal{N}_{2} in a $(|I \cup I I|)$ dimensional space \mathcal{S}_{2}, such that $\mathcal{S}_{1} \subset \mathcal{S}_{2} \subset \mathcal{R}^{M p}$ and $\hat{\boldsymbol{\beta}}$ is the unique local maximizer of $Q_{n}(\boldsymbol{\beta})$ constrained in \mathcal{S}_{2}.

Take a sufficiently small L_{1}-ball \mathcal{N}_{2} in \mathcal{S}_{2} centered at $\hat{\boldsymbol{\beta}}$ such that $\mathcal{N}_{2} \cap \mathcal{S}_{1} \subset \mathcal{N}_{1}$. We next show that $Q_{n}(\hat{\boldsymbol{\beta}})>Q_{n}\left(\boldsymbol{\eta}_{2}\right)$ for any $\boldsymbol{\eta}_{2} \in \mathcal{N}_{2} \backslash \mathcal{N}_{1}$. Let $\boldsymbol{\eta}_{1}$ be the projection of $\boldsymbol{\eta}_{2}$ onto the subspace \mathcal{S}_{1}. Then we have $\boldsymbol{\eta}_{1} \in \mathcal{N}_{1}$, which entails that $Q_{n}(\hat{\boldsymbol{\beta}})>Q_{n}\left(\boldsymbol{\eta}_{1}\right)$ if $\boldsymbol{\eta}_{1} \neq \hat{\boldsymbol{\beta}}$. It then suffices to show that $Q_{n}\left(\boldsymbol{\eta}_{1}\right)>Q_{n}\left(\boldsymbol{\eta}_{2}\right)$.

By the mean-value theorem, we have

$$
\begin{equation*}
Q_{n}\left(\boldsymbol{\eta}_{2}\right)-Q_{n}\left(\boldsymbol{\eta}_{1}\right)=\left[\nabla Q_{n}\left(\boldsymbol{\eta}_{0}\right)\right]^{T}\left(\boldsymbol{\eta}_{2}-\boldsymbol{\eta}_{1}\right), \tag{A.5}
\end{equation*}
$$

where $\boldsymbol{\eta}_{0}$ lies in the line connecting $\boldsymbol{\eta}_{1}$ and $\boldsymbol{\eta}_{2}$. Since the coordinate of $\boldsymbol{\eta}_{2}-\boldsymbol{\eta}_{1}$ are zero for indices in I and $\operatorname{sgn}\left(\eta_{0, m j}\right)=\operatorname{sgn}\left(\eta_{2, m j}\right)$ where $\eta_{0, m j}$ and $\eta_{2, m j}$ are the (m, j) th coordinate of $\boldsymbol{\eta}_{0}$ and $\boldsymbol{\eta}_{2}$, respectively. Therefore, the right hand side of (A.5) equals to

$$
\begin{align*}
& {\left[\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{Y}-\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\eta}_{0}\right)\right\}\right]^{T} \boldsymbol{\eta}_{2,1}-n \lambda_{n} \sum_{(m, j) \in I I} \nabla \rho\left(\eta_{0, m j}\right) \eta_{2, m j} } \\
= & n \lambda_{n} \sum_{(m, j) \in I I} z_{m j}\left(\boldsymbol{\eta}_{0}\right) \eta_{2, m j}-n \lambda_{n} \sum_{(m, j) \in I I} \nabla \rho\left(\left|\eta_{0, m j}\right|\right)\left|\eta_{2, m j}\right| \tag{A.6}\\
\leq & n \lambda_{n} \sum_{(m, j) \in I I}\left|z_{m j}\left(\boldsymbol{\eta}_{0}\right)\right| \cdot\left|\eta_{2, m j}\right|-n \lambda_{n} \sum_{(m, j) \in I I} \nabla \rho\left(\left|\eta_{0, m j}\right|\right)\left|\eta_{2, m j}\right| \\
= & n \lambda_{n} \sum_{(m, j) \in I I}\left|z_{m j}\left(\boldsymbol{\eta}_{0}\right)\right| \cdot\left|\eta_{2, m j}\right|-n \lambda_{n} \sum_{(m, j) \in I I} \frac{1}{2}\left(\sum_{m=1}^{M}\left|\eta_{0, m j}\right|\right)^{-1 / 2}\left|\eta_{2, m j}\right|,
\end{align*}
$$

where $z_{m j}\left(\boldsymbol{\eta}_{0}\right)$ denotes the (m, j) th coordinate of $\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{Y}-\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\eta}_{0}\right)\right\}$.
By continuity of $b^{\prime}(\cdot)$ and $\nabla \rho(\cdot)$ and (11), there exists $\delta>0$ such that for any $\boldsymbol{\eta}$ in an L_{1}-ball in \mathcal{S}_{2} centered at $\hat{\boldsymbol{\beta}}$ with radius $\delta,\left|z_{m j}(\boldsymbol{\eta})\right|<\frac{1}{2}\left(\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}+\delta\right)^{-1 / 2}$. Let \mathcal{N}_{2} be that ball. Therefore,
(A.6) could be strictly bounded by

$$
n \lambda_{n} \sum_{(m, j) \in I I} \frac{1}{2}\left(\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}+\delta\right)^{-1 / 2}\left|\eta_{2, m j}\right|-n \lambda_{n} \sum_{(m, j) \in I I} \frac{1}{2}\left(\sum_{m=1}^{M}\left|\eta_{0, m j}\right|\right)^{-1 / 2}\left|\eta_{2, m j}\right| \leq 0
$$

since $\sum_{m=1}^{M}\left|\eta_{0, m j}\right|=\sum_{m=1}^{M}\left|\eta_{0, m j}-\hat{\beta}_{m j}+\hat{\beta}_{m j}\right| \leq \sum_{m=1}^{M}\left|\eta_{0, m j}-\hat{\beta}_{m j}\right|+\sum_{m=1}^{M}\left|\hat{\beta}_{m j}\right| \leq\left\|\hat{\boldsymbol{\beta}}_{(j)}\right\|_{1}+\delta$, because $\boldsymbol{\eta}_{0}$ is within the L_{1}-ball. This shows that there exists a neighborhood of $\hat{\boldsymbol{\beta}}$, namely \mathcal{N}_{2}, in the space of \mathcal{S}_{2} such that $\hat{\boldsymbol{\beta}}$ constrained on \mathcal{S}_{2} is the unique maximizer in that neighborhood.

Applying the same projection technique, we can show that $\hat{\boldsymbol{\beta}}$ is indeed a local maximizer in $\mathcal{R}^{M p}$ by noting the fact that $\partial \rho\left(\hat{\beta}_{m j}\right) \in(-\infty,+\infty)$ for any $\hat{\beta}_{m j} \in \hat{\boldsymbol{\beta}}_{I I I}=\left\{\hat{\beta}_{m j} \mid \hat{\beta}_{m j}=0, \hat{\boldsymbol{\beta}}_{(j)}=\mathbf{0}\right\}$, so the third KKT condition $\boldsymbol{X}_{I I I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I I I}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})=\lambda_{n} \partial \rho\left(\hat{\boldsymbol{\beta}}_{I I I}\right)$ always holds.

Proof of Theorem 2. Let $\boldsymbol{\xi}=\left(\xi_{11}, \xi_{12}, \ldots, \xi_{M p}\right)^{T}=\boldsymbol{X}^{T} \boldsymbol{Y}-\boldsymbol{X}^{T} \boldsymbol{\mu}\left(\boldsymbol{\theta}^{*}\right)$. Consider events

$$
E_{1}=\left\{\left\|\boldsymbol{\xi}_{I}\right\|_{\infty} \leq \sqrt{2^{-1} n \log n}\right\} \text { and } E_{2}=\left\{\left\|\boldsymbol{\xi}_{I I \cup I I I}\right\|_{\infty} \leq n^{1-\alpha_{p}} \sqrt{2^{-1} \log n}\right\}
$$

where $\boldsymbol{\xi}_{I}$ and $\boldsymbol{\xi}_{I I \cup I I I}$ are the sub-vectors of $\boldsymbol{\xi}$ with indices in I and $I I \cup I I I$, respectively.
Since $y_{m i} \in\{0,1\}$, by Hoeffding's inequality,

$$
P\left(\left|\xi_{m j}\right| \geq t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{n}\right)
$$

Then, it follows from Bonferroni's inequality that

$$
\begin{aligned}
P\left(E_{1} \cap E_{2}\right) \geq 1 & -\sum_{(m, j) \in I} P\left(\left|\xi_{m j}\right| \geq \sqrt{2^{-1} n \log n}\right) \\
& -\sum_{(m, j) \in I I \cup I I I} P\left(\left|\xi_{m j}\right| \geq n^{1-\alpha_{p}} \sqrt{2^{-1} \log n}\right) \\
\geq & 1-2\left\{s_{p} n^{-1}+\left(M p-s_{p}\right) e^{-n^{1-2 \alpha_{p}} \log n}\right\} .
\end{aligned}
$$

Next, we will show that, in event $E_{1} \cap E_{2}$, there exists a solution to (9) that achieve the weak oracle properties in (a) and (b).

Step 1: Existence of a solution to equation (10). We prove that, when n is sufficiently large, there exists a solution to (10) in the hypercube

$$
\mathcal{N}=\left\{\boldsymbol{\delta} \in \mathcal{R}^{s_{p}}:\left\|\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}\right\|_{\infty}=n^{-\gamma}\right\} .
$$

Let $\boldsymbol{\eta}=n \lambda_{n} \nabla \rho(\boldsymbol{\delta})$, where $\eta_{m j}=n \lambda_{n} \frac{2^{-1} \operatorname{sgn}\left(\delta_{m j}\right)}{\sqrt{\sum_{m=1}^{M}\left|\delta_{m j}\right|}}$. We have, for any $(m, j) \in I$,

$$
\begin{aligned}
\left|\eta_{m j}\right| & \leq \frac{2^{-1} n \lambda_{n}}{\left(\sum_{m=1}^{M}\left|\delta_{m j}\right|\right)^{1 / 2}} \\
& \leq \frac{2^{-1} n \lambda_{n}}{\left(\sum_{m=1}^{M}\left|\beta_{m j}^{*}\right|-\sum_{m=1}^{M}\left|\delta_{m j}-\beta_{m j}^{*}\right|\right)^{1 / 2}} \\
& \leq \frac{2^{-1} n \lambda_{n}}{\left(\sum_{m=1}^{M}\left|\beta_{m j}^{*}\right|-\frac{1}{2} \sum_{m=1}^{M}\left|\beta_{m j}^{*}\right|\right)^{1 / 2}} \\
& \leq \frac{n \lambda_{n}}{\sqrt{2} l_{p}}
\end{aligned}
$$

because under (C2), for sufficiently large $n,\left|\beta_{m j}^{*}\right|>d_{p}>n^{-\gamma} \geq\left|\delta_{m j}-\beta_{m j}^{*}\right|$. Clearly, $\frac{n \lambda_{n}}{\sqrt{2} l_{p}} \leq$ $n \lambda_{n}\left(2 M d_{p}\right)^{-1 / 2}$. Hence, it holds that

$$
\begin{equation*}
\|\boldsymbol{\eta}\|_{\infty} \leq \frac{n \lambda_{n}}{\sqrt{2} l_{p}} \leq n \lambda_{n}\left(2 M d_{p}\right)^{-1 / 2} \tag{A.7}
\end{equation*}
$$

Then, in event E_{1},

$$
\left\|\boldsymbol{\xi}_{I}-\boldsymbol{\eta}\right\|_{\infty} \leq\left\|\boldsymbol{\xi}_{I}\right\|_{\infty}+\|\boldsymbol{\eta}\|_{\infty} \leq \sqrt{2^{-1} n \log n}+n \lambda_{n}\left(2 M d_{p}\right)^{-1 / 2}
$$

Define

$$
\begin{equation*}
\boldsymbol{\Psi}(\boldsymbol{\delta})=\boldsymbol{X}_{I}^{T}\left\{\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \boldsymbol{\delta}\right)-\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \boldsymbol{\beta}_{I}^{*}\right)\right\}-\left(\boldsymbol{\xi}_{I}-\boldsymbol{\eta}\right) \tag{A.8}
\end{equation*}
$$

Note that, (10) is equivalent to $\boldsymbol{\Psi}(\boldsymbol{\delta})=0$. For the first term in (A.8). By a second order Taylor expansion, we obtain,

$$
\boldsymbol{X}_{I}^{T}\left\{\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \boldsymbol{\delta}\right)-\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \boldsymbol{\beta}_{I}^{*}\right)\right\}=\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\left(\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}\right)+\boldsymbol{r},
$$

where the Lagrange reminder term can be expressed as $\boldsymbol{r}=\left(r_{m j},(m, j) \in I\right)^{T}$ that

$$
r_{m j}=\frac{1}{2}\left(\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}\right)^{T} \boldsymbol{R}\left(\tilde{\boldsymbol{\delta}}_{m j}\right)\left(\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}\right),
$$

where $\boldsymbol{R}\left(\tilde{\boldsymbol{\delta}}_{m j}\right)=\boldsymbol{X}_{I}^{T}\left\{\operatorname{diag}\left(\left|\boldsymbol{X}_{m j}\right| \circ\left|\boldsymbol{\mu}^{\prime \prime}\left(\boldsymbol{X}_{I} \tilde{\boldsymbol{\delta}}_{m j}\right)\right|\right\} \boldsymbol{X}_{I}\right.$ and $\tilde{\boldsymbol{\delta}}_{m j}$ being some vector lying on the line segment joining $\boldsymbol{\delta}$ and $\boldsymbol{\beta}_{I}^{*}$. By condition (C5) and a similar argument as (43) of Fan and Lv (2011),

$$
\begin{equation*}
\|\boldsymbol{r}\|_{\infty}=O\left(s_{p} n^{1-2 \gamma}\right) \tag{A.9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\overline{\boldsymbol{\Psi}}(\boldsymbol{\delta})=\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1} \boldsymbol{\Psi}(\boldsymbol{\delta})=\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}+\boldsymbol{u} \tag{A.10}
\end{equation*}
$$

where $\boldsymbol{u}=-\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\left(\boldsymbol{\xi}_{I}-\boldsymbol{\eta}-\boldsymbol{r}\right)$. Then, it follows from (C2)-(C3) and the choice of λ_{n} in (13) that

$$
\begin{aligned}
\|\boldsymbol{u}\|_{\infty} & \leq\left\|\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\right\|_{\infty}\left(\left\|\boldsymbol{\xi}_{I}-\boldsymbol{\eta}\right\|_{\infty}+\|\boldsymbol{r}\|_{\infty}\right) \\
& =O\left(b_{s} n^{-1 / 2} \sqrt{\log n}+b_{s} \lambda_{n} d_{p}^{-1 / 2}+b_{s} s_{p} n^{-2 \gamma}\right) \\
& =o\left(n^{-\gamma}\right)
\end{aligned}
$$

By (A.10), for sufficiently large n, if $\left(\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}\right)_{m j}=n^{-\gamma}$, we have

$$
\overline{\boldsymbol{\Psi}}_{m j}(\boldsymbol{\delta}) \geq n^{-\gamma}-\|\boldsymbol{u}\|_{\infty} \geq 0
$$

and if $\left(\boldsymbol{\delta}-\boldsymbol{\beta}_{I}^{*}\right)_{m j}=-n^{-\gamma}$, we have

$$
\overline{\boldsymbol{\Psi}}_{m j}(\boldsymbol{\delta}) \leq-n^{-\gamma}+\|\boldsymbol{u}\|_{\infty} \leq 0
$$

where $(\boldsymbol{\delta}-\boldsymbol{\beta})_{m j}$ is the (m, j) th element of $\boldsymbol{\delta}-\boldsymbol{\beta}$ and $\overline{\mathbf{\Psi}}_{m j}(\boldsymbol{\delta})$ is the (m, j) th element of $\overline{\mathbf{\Psi}}$. By the continuity of $\overline{\mathbf{\Psi}}(\boldsymbol{\delta})$, an application of Miranda's existence theorem shows that equation $\overline{\mathbf{\Psi}}(\boldsymbol{\delta})=\mathbf{0}$ has a solution $\hat{\boldsymbol{\beta}}_{I}$ in \mathcal{N}. In view of (A.10), $\hat{\boldsymbol{\beta}}_{I}$ is also a solution to $\boldsymbol{\Psi}(\boldsymbol{\delta})=\mathbf{0}$. Hence, we have shown that there exits a solution $\hat{\boldsymbol{\beta}}_{I}$ inside \mathcal{N}.

Step 2: Verify equation (11). Let $\hat{\boldsymbol{\beta}} \in \mathcal{R}^{M p}$ that $\hat{\boldsymbol{\beta}}=\left(\hat{\boldsymbol{\beta}}_{I}, \mathbf{0}\right)$ where $\hat{\boldsymbol{\beta}}_{I}$ is the solution to (10) as shown above. Next, we prove that $\hat{\boldsymbol{\beta}}$ satisfies (11) for the choice of λ_{n} in (13). Indeed, (11)
requires that

$$
\left|\boldsymbol{X}_{m j}^{T} \boldsymbol{Y}-\boldsymbol{X}_{m j}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})\right|<\frac{1}{2} n \lambda_{n}\left(\sum_{m^{\prime}:\left(m^{\prime}, j\right) \in I}\left|\hat{\beta}_{m^{\prime} j}\right|\right)^{-1 / 2}
$$

for any $(m, j) \in I I$, where $\boldsymbol{X}_{m j}$ denotes the column of \boldsymbol{X} corresponding to the expression of j th gene in the m th dataset.

Since

$$
\begin{aligned}
\sum_{m^{\prime}:\left(m^{\prime}, j\right) \in I}\left|\hat{\beta}_{m^{\prime} j}\right| & \leq \sum_{m^{\prime}:\left(m^{\prime}, j\right) \in I}\left|\hat{\beta}_{m^{\prime} j}-\beta_{m^{\prime} j}^{*}\right|+\left|\beta_{m^{\prime} j}^{*}\right| \\
& \leq 2 \sum_{m^{\prime}:\left(m^{\prime}, j\right) \in I}\left|\beta_{m^{\prime} j}^{*}\right| \\
& \leq 2 L_{p}^{2}
\end{aligned}
$$

it follows that,

$$
\min _{(m, j) \in I I} \frac{1}{2}\left(\sum_{m^{\prime}:\left(m^{\prime}, j\right) \in I}\left|\hat{\beta}_{m^{\prime} j}\right|\right)^{-1 / 2} \geq \frac{1}{2 \sqrt{2} L_{p}}
$$

Then, it suffices to show that

$$
\begin{equation*}
\left\|\boldsymbol{X}_{I I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I I}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})\right\|_{\infty}<\frac{n \lambda_{n}}{2 \sqrt{2} L_{p}} \tag{A.11}
\end{equation*}
$$

Note that,

$$
\begin{align*}
& \boldsymbol{X}_{I I}^{T} \boldsymbol{Y}-\boldsymbol{X}_{I I}^{T} \boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}}) \tag{A.12}\\
= & \boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{Y}-\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\beta}^{*}\right)\right\}+\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\beta}^{*}\right)-\boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})\right\} .
\end{align*}
$$

In event $E_{2},\left\|\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{Y}-\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\beta}^{*}\right)\right\}\right\|_{\infty}=O\left(n^{1-\alpha_{p}} \sqrt{\log n}\right)$. Then, by the choice of λ_{n} as in (13),

$$
\begin{equation*}
\left(n \lambda_{n}\right)^{-1}\left\|\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{Y}-\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\beta}^{*}\right)\right\}\right\|_{\infty}=o(1) . \tag{A.13}
\end{equation*}
$$

For the second term in (A.12), by Taylor expansion,

$$
\begin{aligned}
\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{\mu}(\boldsymbol{X} \hat{\boldsymbol{\beta}})-\boldsymbol{\mu}\left(\boldsymbol{X} \boldsymbol{\beta}^{*}\right)\right\} & =\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \hat{\boldsymbol{\beta}}_{I}\right)-\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \boldsymbol{\beta}_{I}^{*}\right)\right\} \\
& =\boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\left(\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{I}^{*}\right)\right\}+\boldsymbol{w}
\end{aligned}
$$

where $\boldsymbol{w}=\left(w_{m j},(m, j) \in I I\right)^{T}$ that $w_{m j}=\frac{1}{2}\left(\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{I}^{*}\right)^{T} \boldsymbol{R}\left(\overline{\boldsymbol{\delta}}_{m j}\right)\left(\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{I}^{*}\right)$, in which $\overline{\boldsymbol{\delta}}_{m j}$ are some vector lying on the line segment joining $\hat{\boldsymbol{\beta}}_{I}$ and $\boldsymbol{\beta}_{I}^{*}$. $\mathrm{By}(\mathrm{C} 5), \hat{\boldsymbol{\beta}}_{I} \in \mathcal{N}$ and a similar argument as (43) in Fan and Lv (2011), we have

$$
\begin{equation*}
\|\boldsymbol{w}\|_{\infty}=O\left(s_{p} n^{1-2 \gamma}\right) \tag{A.14}
\end{equation*}
$$

Since $\hat{\boldsymbol{\beta}}_{I}$ solves $\overline{\boldsymbol{\Psi}}(\boldsymbol{\delta})=\mathbf{0}$ in (A.10), we have,

$$
\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{I}^{*}=\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\left(\boldsymbol{\xi}_{I}-\boldsymbol{\eta}-\boldsymbol{r}\right) .
$$

Therefore,

$$
\begin{aligned}
& \left(n \lambda_{n}\right)^{-1} \boldsymbol{X}_{I I}^{T}\left\{\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \hat{\boldsymbol{\beta}}_{I}\right)-\boldsymbol{\mu}\left(\boldsymbol{X}_{I} \boldsymbol{\beta}_{I}^{*}\right)\right\} \\
\leq & \left(n \lambda_{n}\right)^{-1}\left\|\boldsymbol{X}_{I I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\right\|_{\infty} \cdot\left(\left\|\boldsymbol{\xi}_{I}-\boldsymbol{\eta}\right\|_{\infty}+\|\boldsymbol{r}\|_{\infty}\right) \\
& +\left(n \lambda_{n}\right)^{-1}\|\boldsymbol{w}\|_{\infty} \\
\leq & \left(n \lambda_{n}\right)^{-1} O\left(\left\|\boldsymbol{\xi}_{I}\right\|_{\infty}+\|\boldsymbol{r}\|_{\infty}\right)+\left(n \lambda_{n}\right)^{-1}\|\boldsymbol{w}\|_{\infty} \\
& +\left(n \lambda_{n}\right)^{-1}\left\|\boldsymbol{X}_{I I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\right\|_{\infty} \cdot\|\boldsymbol{\eta}\|_{\infty}
\end{aligned}
$$

because by (C4), $\left\|\boldsymbol{X}_{I I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\right\|_{\infty}=O(1)$.
It follows from (13), (A.7) and (A.9) that $\left(n \lambda_{n}\right)^{-1} O\left(\left\|\boldsymbol{\xi}_{I}\right\|_{\infty}+\|\boldsymbol{r}\|_{\infty}\right)=o(1)$. Meanwhile, by (13) and (A.14), $\left(n \lambda_{n}\right)^{-1}\|\boldsymbol{w}\|_{\infty}=o(1)$. By (A.7) and (C4),

$$
\left(n \lambda_{n}\right)^{-1}\left\|\boldsymbol{X}_{I I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\left[\boldsymbol{X}_{I}^{T} \boldsymbol{\Sigma}\left(\boldsymbol{\theta}^{*}\right) \boldsymbol{X}_{I}\right]^{-1}\right\|_{\infty} \cdot\|\boldsymbol{\eta}\|_{\infty}<\left(2 \sqrt{2} L_{p}\right)^{-1}
$$

Therefore, (A.11) holds. At this moment, we have shown that $\hat{\boldsymbol{\beta}}$ satisfies (11).
Next, by the choice of λ_{n}, (12) holds for sufficiently large n. Therefore, by Theorem 1 , we have shown that, in event $E_{1} \cap E_{2}, \hat{\boldsymbol{\beta}}$ is a local maximizer of (9) that $\left\|\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{I}^{*}\right\|_{\infty} \leq n^{-\gamma}$ and $\hat{\boldsymbol{\beta}}_{\text {IIUIII }}=\mathbf{0}$. This completes the proof.

Web Appendix B: Additional Results in Data Analysis in

Section 5.2

Table B1. Correlations between CD14 and (IFNA4, STAT1, TLR8) in each study

	GSE12288	GSE16561	GSE20129	GSE22255	GSE28829
			CD14		
IFNA4	-0.075	0.046	-0.013	0.449	-0.359
STAT1	0.339	0.062	0.044	0.055	0.507
TLR8	0.602	0.437	0.077	0.686	0.818

Table B2. Correlations between selections by meta lasso and separate lasso in GSE16561 and GSE28829
GSE16561

| | CD14 | CD86 | CHUK | MAPK11 | MAPK14 | PIK3CG | PIK3R1 | RAC1 | STAT1 | TLR2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| STAT1 | 0.062 | 0.266 | 0.171 | 0.018 | 0.297 | 0.139 | 0.181 | 0.103 | 1.000 | 0.169 |
| TLR8 | 0.437 | 0.185 | 0.674 | 0.118 | 0.679 | 0.017 | 0.161 | 0.481 | 0.251 | 0.741 |
| | TLR7 | TLR8 | TNF | TRAF3 | | | | | | |
| STAT1 | 0.306 | 0.251 | -0.014 | -0.081 | | | | | | |
| TLR8 | 0.238 | 1.000 | -0.113 | -0.004 | | | | | | |
| | | GSE28829 | | | | | | | | |
| IFNA4 | -0.359 | -0.112 | 0.297 | -0.208 | | | | | | |
| STAT1 | 0.507 | 0.547 | 0.058 | -0.169 | | | | | | |
| TLR8 | 0.818 | 0.619 | 0.343 | -0.583 | | | | | | |

Table B3. Gene selections of eight methods in four cardiovascular studies (excluding GSE20129)

Selections by meta lasso and separate lasso in each dataset

Datasets	meta lasso	separate lasso
GSE12288	CD40 CD86 CHUK IFNA2 IFNA21 IFNA4 IFNA8	none
	IFNB1 IRF5 JUN LBP MAPK13 MAPK14 STAT1 TLR2	
	TLR7 TNF	
GSE16561	CD14 CHUK JUN LBP MAPK11 PIK3CG PIK3R1	CD14 CD86 CHUK MAPK11 MAPK14
	TLR7 TLR8	PIK3CG PIK3R1 RAC1 STAT1 TLR2 TLR7
		TLR8 TNF TRAF3
GSE22255	IFNA2 JUN LBP MAPK14 PIK3R1 TLR8	none
GSE28829	CD14 IFNAR2 IRF5 PIK3CG	CD14 IFNAR2 IRF5 MAPK9

Selections by other methods in all datasets

Method	Gene list
stack lasso	none
group lasso	CD86 FOS IFNAR2 MAPK14 MAPK9 PIK3CA STAT1 TLR2 TLR7 TLR8 TNF
AW	AKT1 AKT3 CASP8 CCL5 CD14 CD40 CD80 CD86 CHUK FOS IFNAR1 IFNAR2 IKBKE IL1B
	IL8 IRAK1 IRF5 IRF7 JUN LBP LY96 MAP2K4 MAP3K7 MAP3K8 MAPK1 MAPK11 MAPK13
Fisher	MAPK14 MAPK9 MYD88 PIK3CA PIK3CD PIK3CG PIK3R1 PIK3R5 RAC1 SPP1 STAT1 TBK1
	TLR1 TLR2 TLR4 TLR5 TLR6 TLR7 TLR8 TNF TRAF3 TRAF6
	ML8 IRAK1 IRF5 IRF7 JUN LBP LY96 MAP2K3 MAP2K4 MAP3K7 MAP3K8 MAPK1 MAPK11
FEM	TBK1 TLR1 TLR2 TLR4 TLR5 TLR6 TLR7 TLR8 TNF TRAF3
REM	none

References

Fan, J. and Lv, J. (2011). Nonconcave penalized likelihood with np-dimensionality. Information Theory, IEEE Transactions 57, 5467-5484.

Zhou, N. and Zhu, J. (2010). Group variable selection via a hierarchical lasso and its oracle property. Statistics and Its Interface 3, 557-574.

