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Web Appendix A: Proofs of Lemmas and Theorems

Proof of Lemma 1. We follow the spirit of the proof of Lemma 1 in Zhou and Zhu (2010). Let

Q1(λg, λζ ,β0, g, ζ) denote the objective function in (5) and Q2(λ,β0, g, ζ) denote the objective

function in (7). Suppose (β̃0, g̃, ζ̃) is the local maximizer of Q1(λg, λζ ,β0, g, ζ). We would like to

show that (β̂0, ĝ, ζ̂) = (β̃0, λgg̃,
1
λg
ζ̃) is a local maximizer of Q2(λ,β0, g, ζ).

Actually, since (β̃0, g̃, ζ̃) is a local maximizer of (5), there exists δ > 0 such that for any

(β0, g, ζ) satisfying ‖β0−β̃0‖1+‖g− g̃‖1+‖ζ− ζ̃‖1 ≤ δ, Q1(λg, λζ ,β0, g, ζ) ≤ Q1(λg, λζ , β̃0, g̃, ζ̃).

Choose δ′ such that δ′

min
(
λg ,

1
λg

) ≤ δ, then for any (β′0, g
′, ζ ′) satisfying ‖β′0− β̂0‖1 + ‖g′− ĝ‖1 +

‖ζ ′ − ζ̂‖1 ≤ δ′, it holds that

‖β′0 − β̃0‖1 + ‖ g
′

λg
− g̃‖1 + ‖λgζ ′ − ζ̃‖1

≤
‖β′0 − β̃0‖1 + λg‖ g

′

λg
− g̃‖1 + 1

λg
‖λgζ ′ − ζ̃‖1

min
(
λg,

1
λg

)
=
‖β′0 − β̂0‖1 + ‖g′ − ĝ‖1 + ‖ζ ′ − ζ̂‖1

min
(
λg,

1
λg

)
≤ δ.

Hence,

Q2(λ,β
′
0, g
′, ζ ′) = Q1(λg, λζ ,β

′
0, g
′/λg, λgζ

′)

≤ Q1(λg, λζ , β̃0, g̃, ζ̃)

= Q2(λ, β̂0, ĝ, ζ̂).

Therefore, (β̂0, ĝ, ζ̂) = (β̂0, λgg̃,
1
λg
ζ̃) is a local maximizer of Q2(λ,β0, g, ζ). Similarly, we can

show the reverse.

Proposition 1 Suppose (β̂0, ĝ, ζ̂) is a local maximizer of (7). For j = 1, . . . , p, let β̂mj = ĝj ζ̂mj,

β̂(j) = (β̂1j, . . . , β̂Mj)
T and ζ̂(j) = (ζ̂1j, . . . , ζ̂Mj)

T .

2



(a) If ĝj = 0, then β̂(j) = 0;

(b) If ĝj 6= 0, then β̂(j) 6= 0 and |ĝj| =
√
λ‖β̂(j)‖1, |ζ̂(j)| =

|β̂(j)|√
λ‖β̂(j)‖1

, where the absolute value of

ζ̂(j) and β̂(j) are taken componentwise.

Proof of Proposition 1. Statement (a) is obvious. Similarly, if β̂(j) = 0, then ĝj = 0.

For statement (b), suppose there exists j′ such that ĝj′ 6= 0 and |ĝj′| 6=
√
λ‖β̂(j′)‖1. Let√

λ‖β̂(j′)‖1
|ĝj′ |

= c. Without loss of generality, we assume c > 1.

Let g̃j = ĝj and ζ̃(j) = ζ̂(j) for j 6= j′ and g̃j′ = δ′ĝj′ and ζ̃(j′) = 1
δ′
ζ̂(j′), where 1 < δ′ < c such

that |g̃j′ − ĝj′ |+ ‖ζ̃(j′) − ζ̂(j′)‖1 < δ for some δ > 0. Then, we have

Q2(λ, β̂0, g̃, ζ̃)−Q2(λ, β̂0, ĝ, ζ̂) = −δ′|ĝj′ | −
1

δ′
λ‖ζ̂(j′)‖1 + |ĝj′|+ λ‖ζ̂(j′)‖1

=

(
−δ
′

c
− c

δ′
+

1

c
+ c

)√
λ‖β̂(j′)‖1

=
1

c
(δ′ − 1)

(
c2

δ′
− 1

)√
λ‖β̂(j′)‖1

> 0.

Therefore, for any δ > 0, we can find g̃, ζ̃ such that |g̃ − ĝ|+ ‖ζ̃ − ζ̂‖1 < δ and Q2(λ, β̂0, g̃, ζ̃) >

Q2(λ, β̂0, ĝ, ζ̂). This contracts the fact that (β̂0, ĝ, ζ̂) is a local maximizer.

Proof of Lemma 2. Let Q3(λ,β) be the objective function in (8) and Q2(λ,β0, g, ζ) be the

objective function in (7).

First, we show that if (β̂0, ĝ, ζ̂) is a local maximizer of Q2(λ,β0, g, ζ), then the vector

β̂ = (β̂10, β̂11, . . . , β̂Mp)
T , where β̂mj = ĝj ζ̂mj, for j = 1, . . . , p, is a local maximizer of Q3(λ,β).

Denote ∆β = ∆β(1) + ∆β(2), where ∆β
(1)
(j) = (∆β

(1)
1j , . . . ,∆β

(1)
Mj) 6= 0 if and only if β̂(j) 6= 0;

∆β
(2)
(j) = (∆β

(2)
1j , . . . ,∆β

(2)
Mj) 6= 0 if and only if β̂(j) = 0. Then we have ‖∆β‖1 = ‖∆β(1)‖1 +

‖∆β(2)‖1.

First, we show that there exists δ′ > 0 such that for any ‖∆β(1)‖1 < δ′, Q3(λ, β̂ + ∆β(1)) ≤
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Q3(λ, β̂). By Proposition 1, we have, for j = 1, . . . , p, |ĝj| =
√
λ‖β̂(j)‖1, |ζ̂(j)| = |β̂(j)|/

√
λ‖β̂(j)‖1

if ĝj 6= 0 and ζ̂(j) = 0, if ĝj = 0. Now, let

ĝ′j = sgn(ĝj)
√
λ(‖β̂(j) + ∆β

(1)
(j)‖1),

ζ̂
′
(j) = sgn(ζ̂(j))

β̂(j) + ∆β
(1)
(j)√

λ(‖β̂(j) + ∆β
(1)
(j)‖1)

,

if ĝj 6= 0 and ĝ′j = 0, ζ̂
′
(j) = 0 if ĝj = 0. Then, it holds that,

Q3(λ, β̂) = Q2(λ, β̂0, ĝ, ζ̂),

Q3(λ, β̂ + ∆β(1)) = Q2(λ, β̂
′
0, ĝ
′, ζ̂
′
),

Therefore, it suffices to show Q2(λ, β̂
′
0, ĝ
′, ζ̂
′
) ≤ Q2(λ, β̂0, ĝ, ζ̂).

Since (β̂0, ĝ, ζ̂) is a local maximizer ofQ2(λ,β0, g, ζ), there exists δ > 0 such that for any β̂0, ĝ
′,

ζ̂
′
satisfying ‖β̂

′
0− β̂0‖1 +‖ĝ′− ĝ‖1 +‖ζ̂

′
− ζ̂‖1 < δ, it holds that Q2(λ, β̂

′
0, ĝ
′, ζ̂
′
) ≤ Q2(λ, β̂0, ĝ, ζ̂).

Note that,

|ĝ′j − ĝj| =
∣∣∣∣√λ‖β̂(j) + ∆β

(1)
(j)‖1 −

√
λ‖β̂(j)‖1

∣∣∣∣
≤ 1

2

λ‖∆β(1)
(j)‖1√

λ‖β̂(j)‖1 − λ‖∆β
(1)
(j)‖1

≤ 1

2

λ‖∆β(1)
(j)‖1√

λl − λδ′

≤ 1

2

λ‖∆β(1)
(j)‖1√

λl/2
,

where l = min
j:β̂(j) 6=0

‖β̂(j)‖1 and δ′ < l/2.
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Meanwhile,

‖ζ̂
′
(j) − ζ̂(j)‖1 =

∥∥∥∥∥∥ β̂(j) + ∆β
(1)
(j)√

λ‖β̂(j) + ∆β
(1)
(j)‖1

−
β̂(j)√
λ‖β̂(j)‖1

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥ β̂(j) + ∆β
(1)
(j)√

λ‖β̂(j) + ∆β
(1)
(j)‖1

−
β̂(j)√

λ‖β̂(j) + ∆β
(1)
(j)‖1

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥ β̂(j)√
λ‖β̂(j) + ∆β

(1)
(j)‖1

−
β̂(j)√
λ‖β̂(j)‖1

∥∥∥∥∥∥
1

≤
‖∆β(1)

(j)‖1√
λl/2

+ ‖β̂(j)‖1 ·

∣∣∣∣√λ‖β̂(j) + ∆β
(1)
(j)‖1 −

√
λ‖β̂(j)‖1

∣∣∣∣√
λ‖β̂(j) + ∆β

(1)
(j)‖1

√
λ‖β̂(j)‖1

≤ ‖∆β(1)
(j)‖1

(
1√
λl/2

+
L

l
√
λl

)
,

where L = max
j:β̂(j) 6=0

‖β̂(j)‖1. In addition, ‖β̂
′
0 − β̂0‖1 = ‖∆β(1)

0 ‖1. Therefore, by choosing a proper

δ′, we have ‖β̂
′
0 − β̂0‖1 + ‖ĝ′ − g‖1 + ‖ζ̂

′
− ζ‖1 < δ. Then,

Q3(λ, β̂ + ∆β(1)) = Q2(λ, β̂
′
0, ĝ
′, ζ̂
′
) ≤ Q2(λ, β̂0, ĝ, ζ̂) = Q3(λ, β̂).

Next, we show that Q3(λ, β̂ + ∆β(1) + ∆β(2)) ≤ Q3(λ, β̂ + ∆β(1)). By mean-value theorem,

Q3(λ, β̂ + ∆β(1) + ∆β(2))−Q3(λ, β̂ + ∆β(1))

= [∇`(β̃)]T∆β(2) − 2
√
λ

p∑
j=1

√
‖∆β(2)‖1,

(A.1)

where β̃ lies in the line segment connecting β̂+∆β(1) and β̂+∆β(1)+∆β(2). When ‖∆β(2)‖1 < δ′

is small enough, the second term in (A.1) is larger than the first term. Hence, it holds that

Q3(λ, β̂ + ∆β(1) + ∆β(2)) ≤ Q3(λ, β̂ + ∆β(1)).

In conclusion, we have shown that there exists a small enough δ′ such that if ‖∆β‖1 ≤ δ′, then

Q3(λ, β̂+ ∆β) ≤ Q3(λ, β̂), namely β̂ is a local maximizer of Q3(λ,β). Similarly, we can show the

reverse.
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Proof of Theorem 1. We follow the technique in the proof of Theorem 1 in Fan and Lv (2011).

Firstly we show the necessary condition. For the log-likelihood `(β) = Y TXβ − 1Tb(Xβ), we

have

∇`(β) = XTY −XTµ(Xβ) and ∇2`(β) = −XTΣ(Xβ)X.

By the classical Karush-Kuhn-Tucker (KKT) condition, if β̂ = (β̂11, β̂12, . . . , β̂Mp)
T is a local

maximizer of the regularized likelihood (9), there exists gradient ∇ρ(β̂) and one sub-gradient

∂ρ(β̂) of ρ(·) such that

XT
I Y −XT

I µ(Xβ̂)− nλn∇ρ(β̂I) = 0

XT
IIY −XT

IIµ(Xβ̂)− nλn∂ρ(β̂II) = 0

XT
IIIY −XT

IIIµ(Xβ̂)− nλn∂ρ(β̂III) = 0

where

∇ρ(β̂mj) =
1

2
sgn(β̂mj)‖β̂(j)‖

−1/2
1 for β̂mj ∈ β̂I , (A.2)

∂ρ(β̂mj)


∈ [−1

2
‖β̂(j)‖

−1/2
1 ,

1

2
‖β̂(j)‖

−1/2
1 ] for β̂mj ∈ β̂II , (A.3)

∈ (−∞,+∞) for β̂mj ∈ β̂III . (A.4)

where β̂I and β̂II are defined in Theorem 1 and β̂III = {β̂mj|β̂mj = 0, β̂(j) = 0}. In view of (A.4),

XT
IIIY − XT

IIIµ(XT β̂) = λn∂ρ(β̂III) always holds. Hence, necessary conditions only require

(10) and (11) hold for ∂ρ(·) in (A.2) and (A.3), respectively. Moreover, since β̂ is also a local

maximizer of (9) constrained on the |I|-dimensional subspace S1 = {β ∈ RMp : βII∪III = 0} of

RMp, where βII∪III denotes the subvector of β formed by coordinates in II ∪ III. By the second

order condition,

λmin(XT
I Σ(Xβ̂)XI) ≥ nλnκ(ρ, β̂I),

where κ(ρ; β̂I) is given in Theorem 1.
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Next, we show the sufficient condition. Firstly, we constrain Qn(β) in a |I|-dimensional sub-

space S1 of RMp. It follows from condition (10) and (12) that β̂ is the unique maximizer of Qn(β)

in a neighborhood N1 ⊂ S1. Next, we show that there exists a neighborhood N2 in a (|I ∪ II|)-

dimensional space S2, such that S1 ⊂ S2 ⊂ RMp and β̂ is the unique local maximizer of Qn(β)

constrained in S2.

Take a sufficiently small L1-ball N2 in S2 centered at β̂ such that N2∩S1 ⊂ N1. We next show

that Qn(β̂) > Qn(η2) for any η2 ∈ N2\N1. Let η1 be the projection of η2 onto the subspace S1.

Then we have η1 ∈ N1, which entails that Qn(β̂) > Qn(η1) if η1 6= β̂. It then suffices to show

that Qn(η1) > Qn(η2).

By the mean-value theorem, we have

Qn(η2)−Qn(η1) = [∇Qn(η0)]
T (η2 − η1), (A.5)

where η0 lies in the line connecting η1 and η2. Since the coordinate of η2−η1 are zero for indices

in I and sgn(η0,mj) = sgn(η2,mj) where η0,mj and η2,mj are the (m, j)th coordinate of η0 and η2,

respectively. Therefore, the right hand side of (A.5) equals to

[XT
II{Y − µ(Xη0)}]Tη2,1 − nλn

∑
(m,j)∈II

∇ρ(η0,mj)η2,mj

= nλn
∑

(m,j)∈II

zmj(η0)η2,mj − nλn
∑

(m,j)∈II

∇ρ(|η0,mj|)|η2,mj|

≤ nλn
∑

(m,j)∈II

|zmj(η0)| · |η2,mj| − nλn
∑

(m,j)∈II

∇ρ(|η0,mj|)|η2,mj|

= nλn
∑

(m,j)∈II

|zmj(η0)| · |η2,mj| − nλn
∑

(m,j)∈II

1

2
(
M∑
m=1

|η0,mj|)−1/2|η2,mj|,

(A.6)

where zmj(η0) denotes the (m, j)th coordinate of XT
II{Y − µ(Xη0)}.

By continuity of b′(·) and ∇ρ(·) and (11), there exists δ > 0 such that for any η in an L1-ball

in S2 centered at β̂ with radius δ, |zmj(η)| < 1
2
(‖β̂(j)‖1 + δ)−1/2. Let N2 be that ball. Therefore,
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(A.6) could be strictly bounded by

nλn
∑

(m,j)∈II

1

2
(‖β̂(j)‖1 + δ)−1/2|η2,mj| − nλn

∑
(m,j)∈II

1

2
(
M∑
m=1

|η0,mj|)−1/2|η2,mj| ≤ 0,

since
∑M

m=1 |η0,mj| =
∑M

m=1 |η0,mj − β̂mj + β̂mj| ≤
∑M

m=1 |η0,mj − β̂mj|+
∑M

m=1 |β̂mj| ≤ ‖β̂(j)‖1 + δ,

because η0 is within the L1-ball. This shows that there exists a neighborhood of β̂, namely N2,

in the space of S2 such that β̂ constrained on S2 is the unique maximizer in that neighborhood.

Applying the same projection technique, we can show that β̂ is indeed a local maximizer in

RMp by noting the fact that ∂ρ(β̂mj) ∈ (−∞,+∞) for any β̂mj ∈ β̂III = {β̂mj|β̂mj = 0, β̂(j) = 0},

so the third KKT condition XT
IIIY −XT

IIIµ(Xβ̂) = λn∂ρ(β̂III) always holds.

Proof of Theorem 2. Let ξ = (ξ11, ξ12, . . . , ξMp)
T = XTY −XTµ(θ∗). Consider events

E1 = {‖ξI‖∞ ≤
√

2−1n log n} and E2 = {‖ξII∪III‖∞ ≤ n1−αp
√

2−1 log n},

where ξI and ξII∪III are the sub-vectors of ξ with indices in I and II ∪ III, respectively.

Since ymi ∈ {0, 1}, by Hoeffding’s inequality,

P (|ξmj| ≥ t) ≤ 2 exp(−2t2

n
).

Then, it follows from Bonferroni’s inequality that

P (E1 ∩ E2) ≥ 1−
∑

(m,j)∈I

P (|ξmj| ≥
√

2−1n log n)

−
∑

(m,j)∈II∪III

P (|ξmj| ≥ n1−αp
√

2−1 log n)

≥ 1− 2{spn−1 + (Mp− sp)e−n
1−2αp logn}.

Next, we will show that, in event E1 ∩E2, there exists a solution to (9) that achieve the weak

oracle properties in (a) and (b).
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Step 1: Existence of a solution to equation (10). We prove that, when n is sufficiently large,

there exists a solution to (10) in the hypercube

N = {δ ∈ Rsp : ‖δ − β∗I‖∞ = n−γ}.

Let η = nλn∇ρ(δ), where ηmj = nλn
2−1sgn(δmj)√∑M

m=1 |δmj |
. We have, for any (m, j) ∈ I,

|ηmj| ≤
2−1nλn

(
∑M

m=1 |δmj|)1/2

≤ 2−1nλn

(
∑M

m=1 |β∗mj| −
∑M

m=1 |δmj − β∗mj|)1/2

≤ 2−1nλn

(
∑M

m=1 |β∗mj| −
1
2

∑M
m=1 |β∗mj|)1/2

≤ nλn√
2lp

,

because under (C2), for sufficiently large n, |β∗mj| > dp > n−γ ≥ |δmj − β∗mj|. Clearly, nλn√
2lp
≤

nλn(2Mdp)
−1/2. Hence, it holds that

‖η‖∞ ≤
nλn√

2lp
≤ nλn(2Mdp)

−1/2. (A.7)

Then, in event E1,

‖ξI − η‖∞ ≤ ‖ξI‖∞ + ‖η‖∞ ≤
√

2−1n log n+ nλn(2Mdp)
−1/2.

Define

Ψ(δ) = XT
I {µ(XIδ)− µ(XIβ

∗
I)} − (ξI − η). (A.8)

Note that, (10) is equivalent to Ψ(δ) = 0. For the first term in (A.8). By a second order Taylor

expansion, we obtain,

XT
I {µ(XIδ)− µ(XIβ

∗
I)} = XT

I Σ(θ∗)XI(δ − β∗I) + r,

where the Lagrange reminder term can be expressed as r = (rmj, (m, j) ∈ I)T that

rmj =
1

2
(δ − β∗I)TR(δ̃mj)(δ − β∗I),

9



where R(δ̃mj) = XT
I {diag(|Xmj| ◦ |µ′′(XI δ̃mj)|}XI and δ̃mj being some vector lying on the line

segment joining δ and β∗I . By condition (C5) and a similar argument as (43) of Fan and Lv (2011),

‖r‖∞ = O(spn
1−2γ). (A.9)

Let

Ψ̄(δ) = [XT
I Σ(θ∗)XI ]

−1Ψ(δ) = δ − β∗I + u, (A.10)

where u = −[XT
I Σ(θ∗)XI ]

−1(ξI − η − r). Then, it follows from (C2)-(C3) and the choice of λn

in (13) that

‖u‖∞ ≤ ‖[XT
I Σ(θ∗)XI ]

−1‖∞(‖ξI − η‖∞ + ‖r‖∞)

= O(bsn
−1/2

√
log n+ bsλnd

−1/2
p + bsspn

−2γ)

= o(n−γ).

By (A.10), for sufficiently large n, if (δ − β∗I)mj = n−γ, we have

Ψ̄mj(δ) ≥ n−γ − ‖u‖∞ ≥ 0,

and if (δ − β∗I)mj = −n−γ, we have

Ψ̄mj(δ) ≤ −n−γ + ‖u‖∞ ≤ 0,

where (δ−β)mj is the (m, j)th element of δ−β and Ψ̄mj(δ) is the (m, j)th element of Ψ̄. By the

continuity of Ψ̄(δ), an application of Miranda’s existence theorem shows that equation Ψ̄(δ) = 0

has a solution β̂I in N . In view of (A.10), β̂I is also a solution to Ψ(δ) = 0. Hence, we have

shown that there exits a solution β̂I inside N .

Step 2: Verify equation (11). Let β̂ ∈ RMp that β̂ = (β̂I ,0) where β̂I is the solution to (10)

as shown above. Next, we prove that β̂ satisfies (11) for the choice of λn in (13). Indeed, (11)
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requires that

|XT
mjY −XT

mjµ(Xβ̂)| < 1

2
nλn

 ∑
m′:(m′,j)∈I

|β̂m′j|

−1/2 ,
for any (m, j) ∈ II, where Xmj denotes the column of X corresponding to the expression of jth

gene in the mth dataset.

Since

∑
m′:(m′,j)∈I

|β̂m′j| ≤
∑

m′:(m′,j)∈I

|β̂m′j − β∗m′j|+ |β∗m′j|

≤ 2
∑

m′:(m′,j)∈I

|β∗m′j|

≤ 2L2
p,

it follows that,

min
(m,j)∈II

1

2

 ∑
m′:(m′,j)∈I

|β̂m′j|

−1/2 ≥ 1

2
√

2Lp
.

Then, it suffices to show that

‖XT
IIY −XT

IIµ(Xβ̂)‖∞ <
nλn

2
√

2Lp
. (A.11)

Note that,

XT
IIY −XT

IIµ(Xβ̂)

= XT
II{Y − µ(Xβ∗)}+XT

II{µ(Xβ∗)− µ(Xβ̂)}.
(A.12)

In event E2, ‖XT
II{Y − µ(Xβ∗)}‖∞ = O(n1−αp

√
log n). Then, by the choice of λn as in (13),

(nλn)−1‖XT
II{Y − µ(Xβ∗)}‖∞ = o(1). (A.13)

For the second term in (A.12), by Taylor expansion,

XT
II{µ(Xβ̂)− µ(Xβ∗)} = XT

II{µ(XIβ̂I)− µ(XIβ
∗
I)}

= XT
II{Σ(θ∗)XI(β̂I − β∗I)}+w,

11



where w = (wmj, (m, j) ∈ II)T that wmj = 1
2
(β̂I − β∗I)TR(δ̄mj)(β̂I − β∗I), in which δ̄mj are some

vector lying on the line segment joining β̂I and β∗I . By (C5), β̂I ∈ N and a similar argument as

(43) in Fan and Lv (2011), we have

‖w‖∞ = O(spn
1−2γ). (A.14)

Since β̂I solves Ψ̄(δ) = 0 in (A.10), we have,

β̂I − β∗I = [XT
I Σ(θ∗)XI ]

−1(ξI − η − r).

Therefore,

(nλn)−1XT
II{µ(XIβ̂I)− µ(XIβ

∗
I)}

≤ (nλn)−1‖XT
IIΣ(θ∗)XI [X

T
I Σ(θ∗)XI ]

−1‖∞ · (‖ξI − η‖∞ + ‖r‖∞)

+ (nλn)−1‖w‖∞

≤ (nλn)−1O(‖ξI‖∞ + ‖r‖∞) + (nλn)−1‖w‖∞

+ (nλn)−1‖XT
IIΣ(θ∗)XI [X

T
I Σ(θ∗)XI ]

−1‖∞ · ‖η‖∞,

because by (C4), ‖XT
IIΣ(θ∗)XI [X

T
I Σ(θ∗)XI ]

−1‖∞ = O(1).

It follows from (13), (A.7) and (A.9) that (nλn)−1O(‖ξI‖∞ + ‖r‖∞) = o(1). Meanwhile, by

(13) and (A.14), (nλn)−1‖w‖∞ = o(1). By (A.7) and (C4),

(nλn)−1‖XT
IIΣ(θ∗)XI [X

T
I Σ(θ∗)XI ]

−1‖∞ · ‖η‖∞ < (2
√

2Lp)
−1.

Therefore, (A.11) holds. At this moment, we have shown that β̂ satisfies (11).

Next, by the choice of λn, (12) holds for sufficiently large n. Therefore, by Theorem 1, we

have shown that, in event E1 ∩ E2, β̂ is a local maximizer of (9) that ‖β̂I − β∗I‖∞ ≤ n−γ and

β̂II∪III = 0. This completes the proof.
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Web Appendix B: Additional Results in Data Analysis in

Section 5.2

Table B1. Correlations between CD14 and (IFNA4, STAT1, TLR8) in each study

GSE12288 GSE16561 GSE20129 GSE22255 GSE28829

CD14

IFNA4 -0.075 0.046 -0.013 0.449 -0.359

STAT1 0.339 0.062 0.044 0.055 0.507

TLR8 0.602 0.437 0.077 0.686 0.818

Table B2. Correlations between selections by meta lasso and separate lasso in GSE16561 and GSE28829

GSE16561

CD14 CD86 CHUK MAPK11 MAPK14 PIK3CG PIK3R1 RAC1 STAT1 TLR2

STAT1 0.062 0.266 0.171 0.018 0.297 0.139 0.181 0.103 1.000 0.169

TLR8 0.437 0.185 0.674 0.118 0.679 0.017 0.161 0.481 0.251 0.741

TLR7 TLR8 TNF TRAF3

STAT1 0.306 0.251 -0.014 -0.081

TLR8 0.238 1.000 -0.113 -0.004

GSE28829

CD14 IFNAR2 IRF5 MAPK9

IFNA4 -0.359 -0.112 0.297 -0.208

STAT1 0.507 0.547 0.058 -0.169

TLR8 0.818 0.619 0.343 -0.583
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Table B3. Gene selections of eight methods in four cardiovascular studies (excluding GSE20129)

Selections by meta lasso and separate lasso in each dataset

Datasets meta lasso separate lasso

GSE12288 CD40 CD86 CHUK IFNA2 IFNA21 IFNA4 IFNA8

IFNB1 IRF5 JUN LBP MAPK13 MAPK14 STAT1 TLR2

TLR7 TNF

none

GSE16561 CD14 CHUK JUN LBP MAPK11 PIK3CG PIK3R1

TLR7 TLR8

CD14 CD86 CHUK MAPK11 MAPK14

PIK3CG PIK3R1 RAC1 STAT1 TLR2 TLR7

TLR8 TNF TRAF3

GSE22255 IFNA2 JUN LBP MAPK14 PIK3R1 TLR8 none

GSE28829 CD14 IFNAR2 IRF5 PIK3CG CD14 IFNAR2 IRF5 MAPK9

Selections by other methods in all datasets

Method Gene list

stack lasso none

group lasso CD86 FOS IFNAR2 MAPK14 MAPK9 PIK3CA STAT1 TLR2 TLR7 TLR8 TNF

AW AKT1 AKT3 CASP8 CCL5 CD14 CD40 CD80 CD86 CHUK FOS IFNAR1 IFNAR2 IKBKE IL1B

IL8 IRAK1 IRF5 IRF7 JUN LBP LY96 MAP2K4 MAP3K7 MAP3K8 MAPK1 MAPK11 MAPK13

MAPK14 MAPK9 MYD88 PIK3CA PIK3CD PIK3CG PIK3R1 PIK3R5 RAC1 SPP1 STAT1 TBK1

TLR1 TLR2 TLR4 TLR5 TLR6 TLR7 TLR8 TNF TRAF3 TRAF6

Fisher AKT1 AKT3 CASP8 CCL5 CD14 CD40 CD80 CD86 CHUK FOS IFNAR1 IFNAR2 IKBKE IL1B

IL8 IRAK1 IRF5 IRF7 JUN LBP LY96 MAP2K3 MAP2K4 MAP3K7 MAP3K8 MAPK1 MAPK11

MAPK13 MAPK14 MAPK9 MYD88 PIK3CA PIK3CD PIK3CG PIK3R1 PIK3R5 RAC1 SPP1 STAT1

TBK1 TLR1 TLR2 TLR4 TLR5 TLR6 TLR7 TLR8 TNF TRAF3

FEM AKT1 CD86 IFNA4 LBP MAP3K7 MAP3K8 MYD88 NFKB2 STAT1 TLR2 TLR4 TLR5 TLR7 TLR8

REM none
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