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SuMMARY. To facilitate comparative treatment selection when there is substantial heterogeneity of treatment effectiveness,
it is important to identify subgroups that exhibit differential treatment effects. Existing approaches model outcomes directly
and then define subgroups according to interactions between treatment and covariates. Because outcomes are affected by
both the covariate—treatment interactions and covariate main effects, direct modeling outcomes can be hard due to model
misspecification, especially in presence of many covariates. Alternatively one can directly work with differential treatment effect
estimation. We propose such a method that approximates a target function whose value directly reflects correct treatment
assignment for patients. The function uses patient outcomes as weights rather than modeling targets. Consequently, our method
can deal with binary, continuous, time-to-event, and possibly contaminated outcomes in the same fashion. We first focus on
identifying only directional estimates from linear rules that characterize important subgroups. We further consider estimation
of comparative treatment effects for identified subgroups. We demonstrate the advantages of our method in simulation studies

and in analyses of two real data sets.
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1. Introduction

Subgroup identification for differential outcomes is becom-
ing an increasingly important methodological research topic
in this era of personalized medicine and high medical costs
(Ruberg, Chen, and Wang, 2010). Identification of subgroups
via valid predictive markers can facilitate tailored intervention
to maximize effectiveness. The controversy and challenges of
subgroup identification have been well documented (Brookes
et al., 2004; Lagakos, 2006; Ruberg et al., 2010). Yet there
are still great needs for descriptive and exploratory subgroup
identification using existing data to develop new hypothesis,
to facilitate study population selection for further investi-
gation, and to generate new evidence for medical decision
making (Varadhan et al., 2013).

The classical approach to identify subgroups involves fitting
of a parametric outcome model which includes covariate main
effects as well as interactions between covariates and treat-
ment. Subgroups are identified based on significance of specific
interaction terms (Kehl and Ulm, 2006). Besides the multiplic-
ity issue, misspecification of the main effects in the presence
of many covariates interferes with the covariate—treatment
interaction estimation and thus impedes valid subgroup
identification. Nonparametric approaches based on the clas-
sification and regression tree methodology (Breiman et al.,
1984) were attempted to separate the main effects from the
covariate-treatment interaction effects, either through multi-
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ple testing strategies (Su et al., 2008, 2009; Lipkovich et al.,
2011; He, 2012) or prediction (Foster, Taylor, and Ruberg,
2011). For example, Su et al. (2009) developed an interaction
tree method by building splitting rules based on covariate—
treatment interaction tests. Foster et al. (2011) developed the
virtual twins method by first estimating treatment differences
based on random forests and then applying tree to those esti-
mates to form subgroups. Alternatively, Cai et al. (2011) built
in calibration steps to alleviate the model misspecification
problem when using parametric or semiparametric models.
In this article, we propose an approach that works directly
with differential treatment effect estimation. Instead of mod-
eling the outcome, we use a causal inference formulation (Zhao
et al., 2012) that leads to a target function directly reflecting
the covariate-treatment interaction effect. This spares the
need to model the covariate main effects. The function uses
patient outcomes as weights rather than modeling targets.
Consequently, our method can deal with binary, continuous,
time-to-event, and possibly contaminated outcomes in the
same fashion, and can be implemented using existing pack-
ages. Foster et al. (2011) pointed out that instead of focusing
on finding the optimal or largest subgroup with enhanced
treatment effects, it may be more desirable to determine a
sub-optimal subgroup from simple and interpretable predic-
tive variables. Similar to Imai and Ratkovic (in press), we
focus on linear rules and build in smoothness constraints that

645



646

allow the resulting subgroup to be more interpretable. Recent
applications often involve a large number of covariates. Con-
sidering covariate-treatment interaction terms also increases
the dimension of the covariate matrix. Thus, we add a reg-
ularization step in the subgroup identification process. The
framework and details of our methodology are given in
Section 2. We note that such regularization has been used in
dynamic treatment regimens (Song et al., in press).

Our motivating example is a mammography screening ran-
domized trial that tested the efficacy of interventions to
promote mammography screening among eligible women who
were 51 years or older (Champion et al., 2007). Data were col-
lected from 09/01/96 to 11/30/02. Different from the usual
drug trial, this study intended to change health behavior of
the study subjects, which was more complicated and challeng-
ing. Besides establishing an overall efficacy, it was also highly
desirable to determine whether the interventions were more
effective for certain subgroups determined by their social and
behavioral variables. For this reason, in addition to demo-
graphics and social economic variables, the study collected
many health behavioral variables such as self-efficacy, suscep-
tibility, knowledge, fear, fatalism, benefits, and barriers based
on the well-established Health Belief Model (Janz and Becker,
1984). These variables intended to capture corresponding
behavioral constructs. If interventions benefit subjects dif-
ferently according to their characteristics, then they can be
applied more cost-effectively. In addition, newer interven-
tions can be designed to target relevant behavioral constructs
and other modifiable characteristics. It is therefore highly
desirable that the resulting treatment assignment rules are
interpretable and simple. For this purpose, we focus on find-
ing one-way and two-way interactions among the covariates
and interventions. Nevertheless, a large number of variables
still need to be investigated due to the many levels of the
behavioral variables, prompting us to focus on parsimonious
and interpretable models.

In Section 2, we argue that for many popular models, it
suffices to find the optimal linear rule. The linearity allows
regularization that can lead to sparse solutions, in contrast
with Zhao et al. (2012). In Section 3, we develop an infer-
ence procedure on the enhanced treatment effects to further
evaluate the benefit of the identified subgroup. Such a step
is important to aid practical decision making. Our method
is compared with some other recent subgroup identification
methods, including a sparse version of Zhao et al. (2012),
through simulation studies in Section 4, and is applied to two
real life examples in Section 5. We conclude with a discussion
of our findings and future work in Section 6.

2. Subgroup Identification

Assume data are collected from a randomized trial with
a binary treatment T € {—1, 1} being assigned according to
P(T =1) =7, a clinical outcome Y, and a p-dimensional
covariates vector X = (X1,...,X,). We allow X to contain
derived covariates such as interaction terms as well as dummy
variables for categorical covariates. Let D(X) be an assign-
ment rule based on X, P the distribution of (¥, 7, X) in the
data and PP the distribution of (¥, 7, X) given that T = D(X).
Then, the expected outcome EP(Y) under the rule D is given
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by (Qian and Murphy, 2011; Zhao et al., 2012; Zhang et al.,
2012)

D
qu=/nw9=/Y¢PdP=E[
dp

where I(+) is the indicator function. Our main goal is to assign
each individual to an appropriate treatment based on X to
optimize the clinical outcome. Assuming larger Y is preferable,
we want to find the optimal rule D* that maximizes EP(Y),
or equivalently

I(T =D(X)) Y}
Tn+(1-7)/2 |

D*(X) = argmin E
D

[ I(T # D(X)) Y] "

Tn+(1-T)/2

In general, the optimal rule D*(X) could be a very com-
plicated function of X. However, we show in the following
proposition that, under mild conditions, the optimal rule D*
only depends on the sign of a linear function of X.

PROPOSITION 1. Suppose E(Y|T, X) = h(X, TX'B'), where
for any real number a € R, the bivariate function h(a, b) sat-
isfies h(a,b) > h(a, —b) for b >0 and h(a,b) < h(a, —b) for
b < 0. Then, for almost surely any fized x, D*(x) = sign(x’B),
where sign(x) =1 if x > 0 and sign(x) = —1 otherwise.

Indeed, many popular statistical models satisfy the require-
ments of Proposition 1, including the following two classes of
models.

EXAMPLE 1. The response Y follows a single index model,
E(Y|T, X) = h{l(X) + g(TX'B")}, where h(x) and g(x) are
increasing functions. This example satisfies the assumptions
in Proposition 1 and includes the logistic model as a special
case. The optimal rule D* is unrelated to I(X), the main effects
of X, which may not be linear in X.

ExXAMPLE 2. The response Y is a time-to-event wvari-
able and follows the Aalen-Cox model Aiy(y|X,T)=
ro(y, X)exp(=TX'B"). In right-censored data, Y is cen-
sored by another wvariable C where C is independent of
(Y, T) given X. That is we only observe ¥ A C = min(¥, C).
Then E(Y ACIT, X) :fe‘AU(“*X)eXp(_TX/ﬁT)G(ulX)du, where
G(u|X) is the conditional survival distribution of C given
X. Therefore, by considering Y AC as the outcome, we
have h(a,b) = [e 2@ exe(DG(y|X)du and h satisfies the
conditions in Proposition 1.

Obviously, one way to find the optimal rule is to estimate
B' by modeling E(Y|T, X) = h(X, TX'B") directly. However,
unless the form of 4 is simple and the dimension of X is low,
this outcome modeling based approach may not be prefer-
able as model misspecification can be severe. On the other
hand, as implied by Proposition 1, correct treatment selection
may not depend so much on the outcome model. Important
variables for predicting the outcome also may not be rele-
vant for treatment selection (Janes et al., 2011; Sargent and
Mandrekar, 2013). Even if & is a complicated function, the
resulting treatment assignment rule can still be very simple
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and interpretable. For this reason, in the rest of this article
we focus on finding a linear rule D*(x) = sign(x'g") with

IT # sign(X'B))

B caremin B\ = o

BeRP

(2)

Under the assumptions of Proposition 1, B! is one solution.
If B* is a solution, so is kB* for any positive constant k, since
D*(x) = sign(x'B*) = sign(x’kp*) for any k > 0.

The 0-1 loss in (2) is not only non-convex but also non-
continuous. In practice, it is computationally hard to solve (2).
Similar to the common practice in classification algorithms
(Bartlett, Jordan, and McAuliffe, 2006), we propose to replace
the 0-1 loss with a convex and continuous surrogate loss ¢(-)
and solve the following optimization problem:

ﬁ =argmin E
BeRP

{ $(TX'B) Y} . 3)

T +(1—T)/2

Since (3) is a convex optimization problem, B is its
unique solution. We approximate the optimal rule D*(X) =
sign(X'B*) by sign(X’B). In general, B can differ from 8* due to
the surrogate loss ¢(-). In some cases, ,B and B! differ only by a
multiplier and, hence, sign(X'g") = sign(X’B). One example is
when E(Y|T, X) = h(TX'B") for some function & and when the
conditional expectation E(X'b|X'B") is linear in X'' for any
b € R”. This latter condition is satisfied when the distribution
of X is elliptically symmetric, for example the normal distri-
bution (Li, 1991). Even if the distribution of X is not exactly
elliptically symmetric, Li (1991) argued that for most direc-
tions b, E(X'b|X'B) is approximately linear in X’8. Hence B
is expected to be approximately parallel to BT, which makes
sign(X'B) a good approximation of sign(X'B").

In applications, we solve (3) with expectation being
replaced by the sample average based on independent samples
(Y:, T;, X;),i = 1, ..., n, identically distributed as (¥, T, X). The
dimension of B in (3) could be very high, especially when we
include interactions between covariates. Hence, we propose to
add two sparsity induced penalties and solve

. I ¢(TXB)
B= ar};geglpln {n z:; mx + 211811 + Aznn(ﬂ)}s
(4)

where ||B|l; is the L; norm of B. The second penalty n(B)
is optional and is imposed on the effects of ordinal variables
with more than two levels. It could combine adjacent levels of
such ordinal variables to result in simpler interpretation. In
particular, we use a fused LASSO penalty (Tibshirani et al.,
2004). For example, if one ordinal variable has C; levels, then
the corresponding penalty term is ZZ’;; |Bjm — Bjm-1l, where
(Bj1s---» Bjc;—1) C B. If there are no ordinal variables or if
there is no strong evidence that adjacent levels of an ordinal
variable can have similar effects, we can also remove the cor-
responding fused LASSO penalty. As discussed in Section 1,
the solution ﬁ directly reflects the covariate-treatment effects.
Subgroups of patients that receive different treatment effects
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could be identified according to the non-zero elements of B
Finally, our empirical rule is defined as D = sign(X’B).

Since B and B* may be different, in Section 3 we propose
an inference procedure to characterize the treatment effects
for the identified subgroup. The validity of the inference pro-
cedure hinges on the stability of ,B We therefore prove a
theoretical property of B to ensure the validity of the proposed
procedure. We show in the Web Appendix A the consistency
ofﬁ to B as both # and p diverge to infinity with n~! log p — 0.
The results are shown for the case of bounded Y under the
logistic loss: ¢(x) =log(1l 4+ e™), but can be easily extended
to other types of outcomes. We also assume that X contains
both categorical and continuous covariates as well as their
pairwise interactions. In particular, we show that B possesses
the weak oracle property (Fan and Lv, 2011), namely with
large probability, f? identifies all zero components of f? and
gives consistent estimates to non-zero components of B in a
rate slower than /n.

3. Inference on Enhanced Comparative
Treatment Effects

To evaluate the effect of subgroup identification, we con-
sider the following quantity measuring the improvement of
response when assigning subgroups of subjects to appropriate
treatments:

d(X,T.B) = E(Y|D(X) = T) = E(Y|D(X) #T)
= B(Y|sign(X'B) = T} — E{Y|sign(X'B) # T}
(5)

The actual comparative treatment effect for the subgroup
identified for T =1 via D(X) = 1 is reflected by d(X, 1, B) =
dX, T = 1,/:}), and the mean effect is Ex{d(X, 1,/@)} for the
identified subgroup. The expectation Ey is with respect to X
and we treat B as “fixed” for future studies, similar to Foster et
al. (2011). Correspondingly, the actual comparative treatment
effect for the subjects identified for T = —1 is reflected by
d(X,—1, B), and the mean effect is Ex{d(X, —1, B)}. Ideally,
both Ex{d(X, 1, ii)} and Ex{d(X, -1, ﬁ)} should be as large as
possible. However it is also likely that one of them is small,
for example when T = —1 is an inactive control. Inference
about both Ex{d(X,1, /.23)} and Ex{d(X, -1, [.23)} is important
and can aid practical decision making regarding the identified
subgroups.

In the following, we propose a bootstrap method to
construct confidence intervals (Cls) for Ex{d(X,1,8)} and
Ex{d(X, -1, ﬁ)} If such intervals only contain positive num-
bers, we conclude that subgroup identification is indeed
beneficial for treatment enhancement. We consider cases when
P(X'B' = 0) =0 and when P(X'B' = 0) > 0. The first case is
regular and we can use the usual bootstrap. The second case
is irregular (Shao, 1994; Laber and Murphy, 2011) due to
a non-negligible probability concentrated at the discontinu-
ous points of d(X, T, /}) as a function of B. In this case, we
adopt the m-out-of-n bootstrap (Shao, 1994; Bickel, Gotze,
and van Zwet, 1997; Chakraborty, Laber, and Zhao, 2013).
The method uses the bootstrap sample size m smaller than
n to asymptotically avoid the non-negligible probability con-
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centrated at the discontinuous points. Usually m is chosen as
n® for some o < 1. Chakraborty et al. (2013) used « = 0.8.
We also adopt this choice in our simulation and data analy-
sis. Some preliminary sensitivity analysis on different choices
of o is presented in the Web Appendix D. In practice, if
many covariates are continuous, we can use the ordinary boot-
strap (Moodie and Richardson, 2010). If many covariates are
categorical, we propose to use m-out-of-n bootstrap.

Let {(Y;, T;, X;),i = 1,...,n} be the original dataset. The
m-out-of-n bootstrap algorithm comprises the following two
steps.

Step 1: Generate a bootstrap sample with size m, {(Yk(b), Tk(b),

Xib)),k =1,...,m}, from the original dataset. Obtain the
corresponding estimates ﬁ(b). Let A, = {k|X;(B(b) >0, T, =1},
Ay = KIXB" 20, Ti= — 1), As=tkiX;B” < 0. Ti=-1), A, =
{le;ﬁ(b) < 0,7, =1} and |A;| be the size of the set A;
for j=1,2,3, and 4. Calculate 8(1,[3(’7)):2:,{9\1 Yi/|A1]—

~ ~(b)
ZkeAg Yi/|Asland d(—=1, 8 )= Zszg Yi/|As|— ZkeA4 Vi Agl.
Step 2: Repeat Step 1 B times. Let L and 2, be the o/2 and
1 — a/2 quantiles of {EJ(L ii(b)), b=1,...,B), and I and i_

corresponding quantiles of {d(—1, B(h)), b=1,..., B} respec-
tively. Then, the (1—a) CI of Ex{d(X,1,B)} is given by
[l+,i.], and the (1 —a) CI of Ex{d(X,—1, B)} is given by
(-, i_].

4. Numerical Results

In this section, we consider binary outcomes. Some of our
simulation studies for time-to-event outcomes are presented
in the Web Appendix B. We numerically compare our pro-
posed regularized outcome weighted subgroup identification
(ROWSIi) method with some other recent subgrouping meth-
ods: (1) the FindIt by Imai and Ratkovic (in press), (2) the
virtual twins (VT) by Foster et al. (2011), (3) the interaction
tree (IT) by Su et al. (2009), (4) the logistic regression with
LASSO penalty (logLASSO) by Qian and Murphy (2011), 5)
the Lj-penalized support vector machine (L1-SVM) method
adapted from Zhao et al. (2012).

To implement the Findlt, we used the R package FindIt
developed by Imai and Ratkovic with optimal tuning param-
eters chosen by their algorithm. We only considered two-way
or three-way interactions among the treatment and covari-
ates. To implement the VT, we first used the R function
randomForest to estimate individual treatment effect P(Y; =
1T =1,X;) — f’(Y,- =1|T; = -1, X;) for subject i, and the
average treatment effect P(Y = 1|T = 1) — P(Y = 1|T = —1).
Then, we assigned subjects to treatment T = 1 if their indi-
vidual treatment effects were greater than the average effect
plus a constant, 0.05, as in Foster et al.(2011). We also
followed Foster et al.(2011) for the choices of the terminal
node size and complexity parameter. For the IT method,
we first grew a large regression tree, where each split was
induced by a threshold on some selected covariates. We then
pruned the tree and selected the best-sized subtree based
on an interaction-complexity measurement and an additional
penalty on the total number of internal nodes (Su et al., 2009).

In presence of a large number of interaction terms espe-
cially when many categorical variables exist, we adopted two
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options in our method. For the first option, we used a screen-
ing step similar to the sure independence screening method
(Fan and Lv, 2008) to ease the computational burden of solv-
ing (4). In particular, we used a group LASSO procedure
(Yuan and Lin, 2005) to pre-screen the interaction terms
at the variable level in (4). For example, for the interaction
between one variable with C; levels and one variable with Cy
levels, we treated the total C; x Cy levels of interactions as a
group and imposed a group LASSO penalty on it. For the sec-
ond option, we abandoned this interaction screening step and
directly solved (4). We chose tuning parameters A1, and Ag,
by the Akaike Information Criterion (AIC). We labeled our
method using the latter option as “ROWSi_onestep” which
allows us to investigate the advantage from the “screening
step.”

All of our simulated data sets contained five binary
covariates X, Xp, Xc, Xp, Xg, five ordinal covariates X,, X,
X, X4, X, and one continuous covariate Xc,. Here we use
capital letters in the subscript for binary variables, small let-
ters for ordinal variables, and Ca for the continuous variable.
For binary covariates, we use, for example X 41, to denote the
case level of X,. For ordinal covariates, we use, for example
X.3 to denote the third level of X,. All binary covariates
were simulated from the Bernoulli distribution with success
probability of 1/2. All ordinal covariates had four uniformly
distributed levels. The continuous covariate was simulated
from the standard normal distribution. The treatment T
was independent of the aforementioned covariates and took
values of —1 and 1 with equal probabilities. We examined
three different sample sizes: n = 500, 1000, and 2000 for each
simulated data set and ran 200 simulations in each setting.

We considered a variety of models for logit P(Y = 1) as fol-
lows.

(A) 0.5Xc1 +2(Xp1 + Xuz#Xa1)*T;

(B) 0.5Xc1 +2{Xp1 + Xuzx(Xp2 + Xp3)}*T

(C) 0.05(=Xa1+Xp1) +{(Xaz + Xaz) + (Xoz + Xp3)* X o }*T;
(D) loglog{(Xss + Xe3) + 5(Xaz + Xaz+Xa1 Xp1)+T + 20)%;
(E) (Xa1+ Xp1) + 2%T;

(F) 0.5X41+0.5Xp; +21{Xc, <5, X, < 2}xT

(G) 0.5Xa1 +0.5Xg1 +21{Xcy < 5, Xep < 2J+T

(H) 0.5Xc,+0.5Xc, +2I1{Xc, < =2, Xcp > 2}xT

Models (A)—(C) are logistic models with various interaction
structures. In particular, Model (A) has one main effect (Xc¢1),
one first-order interactions (Xp; * T), and one second-order
interaction (X,3* Xa1 % T). Model (B) is similar to (A) but
has different second-order interactions. Model (C) has more
complicated structure of main effects and interaction effects.
Model (D) is not a logistic model and can be used to compare
the robustness of different methods in case of link func-
tion misspecification. Model (E) is a logistic model without
covariate—treatment interactions. Models (F)—(H) take tree-
like forms which are not linear in terms of covariates.
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Figure 1. Comparison of the product of sensitivity and specificity by seven methods, represented by various types of points
and lines as in the legend of Model A (number of simulations = 200).

We evaluated the performance of each method by four
criteria: sensitivity, specificity, prediction accuracy, and the
expected outcome EP(Y) under the resulting rules D (a.k.a
the value function, Zhao et al. (2012)). Sensitivity is the
proportion of true non-zero interactions (including both
first-order and second-order interactions) being estimated as
non-zero. Specificity is the proportion of true zero interactions
being estimated as zero. Prediction accuracy is the propor-
tion of empirical treatment assignments, sign(X/ii), that are
consistent to the “oracle” assignments sign(X’g"). Finally,
interaction term selection accuracy is the proportion of a
particular interaction term being selected.

To evaluate the sensitivity and specificity, Figure 1 plots
the product of sensitivity and specificity for each method.
Our method appears to outperform the competitors notably.
Figure 2 plots prediction accuracy. Again, our method seem-
ingly surpasses all other methods in almost all settings except
under Model (H), where the true assignment rule is not lin-
ear. We present comparison of the value function in the Web
Appendix C.

We used Models (A) and (C) to illustrate the construction
of CI for enhanced comparative treatment effects. Model (A)
does not satisfy the property that P(X'8' =0) =0 whereas
Model (C) does. Hence, we used the m-out-of-n bootstrap for
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Figure 2. Comparison of prediction accuracy by seven methods,

legend of Model A (number of simulations = 200).

Model (A) and the regular bootstrap for Model (C). The boot-
strap resampling was repeated for 1000 runs, from which a CI
was obtained. We ran the above procedures for 1000 repe-
titions and report the mean length of CIs in Table 1. The
length of Cls decreases as n increases. We also see that all
ClIs only include positive numbers, which indicates that treat-
ment effects are enhanced in the subgroups identified by our
method. In addition, we also report the coverage probabili-
ties of the Cls for Ex[d(X, 1, B)] and Ex[d(X, —1, B)]. Both
of the two expectations were evaluated from a large inde-

n

represented by various types of points and lines as in the

pendent testing data set with a sample size of 100,000. The
performance seems satisfactory when the same size is 2000.
There is some over-coverage when n = 1000. We noted that
the performance depended on the choice of @ in the m-out-of-n
bootstrap. For this reason, we also investigated the sensitiv-
ity of this choice in Web Appendix D. Instead of a subjective
choice, a double bootstrap procedure (Davison and Hinkley,
1997; Chakraborty et al., 2013) can be used for choosing « in
a data-driven manner. Due to its computational intensity, we
do not pursue here.
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Table 1
Confidence intervals of enhanced comparative treatment
effects in Models (A) and (C). Reported values are the
means from 1000 repetitions, each of which uses 1000

subsamples for the bootstrap. For notational simplicity, we
denote dy = Ex{d(X, 1, B)} and d_ = Ex{d(X, —1, B)}.

n = 500 n = 1000 n = 2000

de d. d. d. d. d

Model (A)
CI length MEAN 0.55 0.57 0.41 034 024 0.24
coverage 093 098 097 099 096 0.96
Model (C)
CI length MEAN 0.17 0.19 0.13 0.14 0.09 0.10
coverage 093 094 097 097 095 0.96

5. Data Analysis

In this section, we apply our proposed method to two real
studies and compare it with the Findlt, VT and IT meth-
ods. The first is the National Supported Work (NSW) study
(LaLonde, 1986) that appeared in Imai and Ratkovic (in
press) and the FindIt package. The second is the mammog-
raphy screening study discussed in the introduction section.

5.1.  National Supported Work Study

In the NSW study, a training program was administered
to a heterogeneous group of workers. The treatment is ran-
domly assigned to each subject. It is of interest to investigate
whether the treatment effect varies as a function of individ-
ual characteristics. The treatment and control groups consist
of 297 and 425 individuals, respectively. There are seven
pre-analysis covariates including age, years of education, log-
arithm of annual earnings, race, marriage status, college
degree status, and employment status. Including first and sec-
ond order interactions, there are 45 covariates in total. The
response is whether there is an increase on earnings from the
year of 1975-1978.

Our method indicated that being married, having no high
school degree and lower earnings had positive effects from
the program; being Hispanics, employed, and having older
age with higher earnings had negative effects. The FindIt
method found that black people, people having lower edu-
cation were positively affected by the program, but Hispanics
who had higher earnings were negatively affected. The VT
method found that the youth with lower earnings tended to
get benefits. The IT method found that the white youth with
lower earnings, or the youth with lower earnings and lower
education tended to get benefits. The detailed resulting rules
for subgroup identification from these methods are included
in Web Appendix E.

To compare the performance of various methods, we ran-
domly used 4/5 of samples (rounded to integers) as training
sets to tune penalty parameters and the rest as test sets
to evaluate the enhanced comparative treatment effects. The
procedures were repeated for 200 random splits and the mean
enhanced treatment effects are reported in Table 2. The esti-
mated comparative treatment effects of each training set were

651

Table 2
NSW study: the average estimated enhanced comparative
treatment effects and subgroup sizes based on
cross-validation. The cross-validation used 200 random splits
and reported values are the means from these random splits.
For notational simplicity, we denote d, (ﬂ) Ex{d(X,1,B)}

and d_(B) = Ex{d(X, -1, B)}.
Enhanced treatment effect (subgroup size)
ROWSi FindIt VT IT
d.(B) 18.9% (121) 5.61% (74) 3.53% (97) 3.66% (106)
d_(B)  4.5% (23) —2.34% (70) —3.84% (47) —5.66% (38)

estimated from the following formula:

Z’lT 1 Yk=1 T)(Xk) _Tkzt)
Z”T 1 Xk = Tk = l)
(Y, =1,D(X)) =

LID(X) =1, T = —1)

Ex{d(X.1, .B)

where ny is the sample size of the corresponding test set
and =1 or —1. The assignment rules D(X;) were deter-
mined from the comparison methods and the training set.
Results are shown in Table 2, including average subgroup
sizes from the 200 random training sets. We see that our
method led to higher increments of response rate than the
other methods. Based on the whole data, we further cal-
culated the 95% CIs for Ex{d(X, 1, B)} and Ex{d(X, -1, B)}
using the m-out-of-n bootstrap, which were (6.92%, 23.90%)
and (3.03%, 21.41%), respectively. Since 0 is not contained
in the above two intervals, we conclude that the treatment
effects were likely enhanced in the subgroups identified by
our method.

5.2.  Mammography Screening Study

This is a randomized study that included female subjects who
were non-adherent to mammography screening guidelines at
baseline (i.e., no mammogram in the year prior to baseline)
(Champion et al., 2007). One primary interest of the study
was to compare the intervention effects of phone counseling
on mammography screening (phone intervention) versus usual
care at 21 months post-baseline. The outcome is whether
the subject took mammography screening during this time
period. There are 530 subjects with 259 in the phone inter-
vention group and 271 in the usual care group. There are 16
binary variables, including socio-demographics, health belief
variables, and stage of readiness to undertake mammography
screening, and 1 categorical variable, number of years had a
mammogram in past 2 to 5 years, in the study. Considering
the covariates’ main effects and the first and second order
interactions with T, there are 409 covariates in total.

Our method found that people having more past mam-
mograms or with higher self efficacy score benefited from the
phone intervention. On the other hand, people with low house-
hold income or higher barriers scale score were negatively
affected by the phone intervention. The FindIt method did
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Table 3
Mammography screening study: the average estimated
enhanced comparative treatment effects and subgroup sizes
based on cross-validation. The cross-validation used 200
random splits and reported values are the means from these
_random Asplits. For notational sAimpliAcity, we denote
d,(B) = Exld(X, 1, B)} and d_(B) = Ex{d(X, 1, )},

Enhanced treatment effect (subgroup size)

ROWSI FindIt vT IT

d,(B) 7.88% (149) 2.83% (265) 3.58% (135) 3.42% (126)
d_

(B) 6.89% (116) NA 0.38% (130) 3.10% (139)

not find any covariate-treatment interaction. The VT method
found that people having more past mammograms and at the
ready stage with higher household income, or married people
with fewer past mammograms and at the ready stage bene-
fited from the phone intervention. The I'T method found that
people having more past mammograms, or people who were
at the ready stage with higher household income benefited
from the phone intervention. The resulting rules from these
methods are included in Web Appendix E.

Similar to the cross-validation procedure we used for
Table 2, we report the average estimated enhanced treat-
ment effects and subgroup sizes in Table 3. Due to the
smaller sample size, we used half-half random splits. Our
identified subgroups again have higher increments of response
rate than the other methods on average. We were not able
to obtain Eyx{d(X,—1,B)} for Findlt because it did not
find any covariate-treatment interaction in many training
sets. We further calculated the 95% Cls for Ex{d(X,1, 8)}
and Ex{d(X,—1, B)} for our method using the m-out-of-n
bootstrap, which were (5.88%, 11.21%) and (4.39%, 10.91%)
respectively. The CIs do not include 0, indicating plausible
identifications for subgroups.

6. Conclusion and Discussion

In this article, we proposed a regularized outcome weighted
method for subgroup identification. The method differs from
many existing methods for subgroup identification in that it
is based on a target function that directly relates to covariate-
treatment interaction. Such separation from the covariate
main effects is important as these main effects usually affect
the estimation of interactions. Because the clinical outcomes
are used as weights instead of as modeling targets, our method
can be extended to deal with continuous, time-to-event, and
possibly contaminated outcomes. Another advantage of our
method is that it could be easily implemented by using
standard packages. In fact, under the logistic surrogate loss
¢(x) =log(1 + ™), if the regularization part of (4) is ignored,
we can essentially solve

" 1 < log(1 4 ¢ 7iXi#
Zog( +e )Y

= argmin - — 1
Sy il WA (Yo

based on a logistic regression model for T weighted by
outcomes. This can be conveniently fitted using standard
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packages such as the SAS LOGISTIC procedure by using
subject-specific weights. For more general settings, we have
presented some codes in the Web Appendix F. To keep it
easier for the readers to implement, we have only presented
codes that use LASSO as the penalty. We are developing an R
package that will also incorporate the fused LASSO penalty.

We demonstrated the impressive performance of our
method compared with other methods in various settings.
Moreover, we not only identified the subgroups, but also car-
ried out an additional inference procedure to assess how much
benefit such a subgroup identification procedure could bring.
Our approach for subgroup identification is mainly used to
determine the rules for treatment assignment. This should be
distinguished from other approaches for “subgroup identifi-
cation” that focus on identifying some natural regions in the
covariate space with enhanced treatment effects with no impli-
cation that the complement of that region constitutes another
subgroup with a negative treatment effect (Kehl and Ulm,
2006; Lipkovich et al., 2011; Dusseldorp and Van Mechelen,
2014). This distinction is important as it may lead to dif-
ferent strategies in personalized medicine: one is to find the
right drugs for patients and the other to find right patients
for drugs.

For simplicity of presentation, we have assumed a com-
plete randomization scheme from clinical trial data, that is
P(T =1) = n. Our method also works when the treatment
assignment depends on X, that is, P(T = 1|1X) = n(X) by
replacing Tr+ (1 —1T7)/2 in (1)-(4) with Tn(X)+ (1 -T7)/2.
The approach can also be extended to multiple interval treat-
ments. The framework will be similar to dynamic treatment
regimes, which are customized sequential decision rules for
individual patients that can adapt over time to an evolving
illness (Murphy, 2003; Zhao et al., in press). We can gener-
alize the proposed method based on dynamic programming,
which identifies the best rule at each interval backwards and
recursively.

Zhang et al. (2012) showed that the optimal treatment
regime could be regarded as the solution of the classifi-
cation problem that D* = argmin, E(|C(X)|[/{C(X) > 0} —
D(X)]?), in which C(X) = E(Y|T =1, X) —E(Y|T = -1, X) is
the treatment contrast. Our formulation in (1) can be gener-
alized by using C(X) based subject-specific weight. However,
C(X) is unknown and needs to be estimated. Zhang et al.
(2012) proposed a doubly robust estimator of C(X), which
protects the estimation against model misspecification, espe-
cially when treatment assignment probabilities are known as
in a randomized clinical trial. It will be of great interest to
further investigate such a procedure as well as its theoretical
properties.

7. Supplementary Materials

Web Appendices and program codes, referenced in Sections
2-5, are available with this paper at the Biometrics website
on Wiley Online Library.
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