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Web Appendix A: Proofs

Proof of Proposition 1

For almost surely any fixed x, the optimal rule

D∗(x) = sign{E[Y |X = x, T = 1]− E[Y |X = x, T = −1]}

= sign{h(x,x′β†)− h(x,−x′β†)}.

Then under the assumptions of Proposition 1, D∗(x) = 1 if and only if x′β† ≥ 0. Hence,

D∗(x) = sign(x′β†).

Theoretical properties of β̂

We present the theoretical properties of our proposed method under the framework that both n

and p diverge to infinity with p� n but n−1 log p→ 0. For the ease of presentation, we first give

the main result without the second penalty η(β) in (4). We then address the case when η(β) is

present.

We begin with some notations. Let Mβ̃ = {j : β̃j 6= 0} be the set of non-zero components of

β̃, and correspondingly Mβ̂ = {j : β̂j 6= 0}. Denote β̃1 and β̃0 the subvector of β̃ with indices in

and out of Mβ̃, respectively. Denote X1 and X0 the subvector of X with indices in and out of

Mβ̃, respectively. Let sp = |Mβ̃|, the cardinality of Mβ̃; dp = minj∈Mβ̃
|β̃j|, the minimal signal.

Finally, let µ(x) = ex/(1 + ex). We write several quantities in terms of an order of n. We let

log p � n1−2αp and sp � nαs , where 0 < αp < 1/2 and αs > 0. For any two sequence an and bn,

an � bn means an = O(bn) and bn = O(an). Without loss of generality, we assume E(X) = 0.

The following results show that β̂ possesses the “weak oracle property” (Fan and Lv, 2011),

namely with large property, β̂ identifies all zero components of β̃ and give consistent estimate to
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non-zero components of β̃ in a rate slower than
√
n.

Theorem 1 (weak oracle property) Under the following conditions,

(C1) max1≤j≤p EetXj ≤ ect
2/2, for any real number t, where c is a constant.

(C2) |Y | ≤M a.s.

(C3) 0 < αs < γ < αp < 1/2.

(C4) 0 < αd < γ.

(C5) ‖[E{Wµ′(X ′1β̃1)X1X
′
1}]−1‖∞ = O(bn), where W = Y/(πT + (1 − T )/2), µ′(·) is the

derivative of µ(x), and bn = o(min{n1/2−γ/
√

log n, nγ−αs}).

(C6) ‖[E{Wµ′(X ′1β̃1)X0X
′
1}][E{Wµ′(X ′1β̃1)X1X

′
1}]−1‖∞ < 1.

(C7) max1≤j≤p λmax(E|XjX1X
′
1|) = O(1), where λmax(A) is the maximal eigenvalue of A.

If we choose λ1n � n−αλ1 such that

0 < αλ1 < min{2γ − αs, αp}, and λ1nbn = o(n−γ), (A.1)

and λ2n = 0, then for sufficiently large n, with probability greater than 1 − 4{spn−1 + (p −

sp)e
−n1−2αp logn}, the solution to (4), β̂ satisfies:

(a) (sparsity) Mβ̂ =Mβ̃;

(b) (L∞ consistency) ‖β̂1 − β̃1‖∞ ≤ n−γ.

Proof. Let p1(β) = λ1n
∑p

j=1 |βj|. Then, the subgradient of p1(β) is ∂p1(βj) = s(βj), where s(βj)

is a set-valued function such that

s(βj) =


sign(βj), if βj 6= 0;

c, if βj = 0.

(A.2)

where 0 < c < 1.
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Then, by classical optimization theory, any vector β̂ ∈ Rp satisfying the following KKT con-

ditions is a solution to (4).

1

n
X̃′1[µ(X̃1β̂1) ◦W −W ] + λ1n sign(β̂1) = 0, (A.3)

‖ 1

n
X̃′0[µ(X̃1β̂1) ◦W −W ]‖∞ < λ1n, (A.4)

where X = (X1, . . . , Xn)′ is the design matrix,W = ( Y1
πT1+(1−T1)/2 , . . . ,

Yn
πTn+(1−Tn)/2)′, T = (T1, . . . , Tn)′,

X̃ = (T1X1, . . . , TnXn)′, X̃1 is the submatrix of X̃ with columns in Mβ̂ and X̃0 is the submatrix

of X̃ with columns not in Mβ̂, β̂1 is the subvector of β̂ with indices in Mβ̂. µ(x) : Rn → Rn is

a function such that the ith element µ(xi) = exi/(1 + exi), and ◦ denotes componentwise product.

In the following, we show that within a neighborhood of β̃, such a vector exists and satisfies (a)

and (b). Since the original problem (4) is convex, it has a unique solution. Then, the theorem

follows.

Let ε1 = 1
n
X̃′1W − E(WX̃1), ε0 = 1

n
X̃′0W − E(WX̃0), where W = Y

πT+(1−T )/2 , X̃ = TX, X̃1

and X̃0 are subvectors of X with indices in and out ofMβ̂, respectively. Let ξ1 = 1
n
X̃′1[µ(X̃β) ◦

W ]− E[µ(X̃
′
β)WX̃1], ξ0 = 1

n
X̃′0[µ(X̃β) ◦W ]− E[µ(X̃

′
β)WX̃0].

Let event E1 = {‖ε1‖∞ ≤ C1

√
log n/n}, E2 = {‖ε0‖∞ ≤ C1n

−αp
√

log n}, E3 = {‖ξ1‖∞ ≤

C2

√
log n/n} and E4 = {‖ξ0‖∞ ≤ C2n

−αp
√

log n}, where C1 and C2 are constants depending on

c and M .

Condition (C1) ensures that Xj is a sub-Gaussian random variable. It then follows from (C2)

that X̃jW is also sub-Gaussian with mean zero, i.e. there exists a constant c1 depending on c and

M that

max
1≤j≤p

EetX̃jW ≤ ec1t
2/2.
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By the Hoeffding’s bound for sub-Gaussian random variables, it holds that

max
1≤j≤sp

P

(
| 1
n

n∑
i=1

X̃ijWi − E(X̃jW )| >
√

2c1 log n/n

)
≤ 2 exp(− log n) = 2/n.

Let C1 =
√

2c1, it follows from Bonferroni inequality that

P
(
‖ε1‖∞ > C1

√
log n/n

)
≤ sp max

1≤j≤sp
P

(
| 1
n

n∑
i=1

X̃ijWi − E(X̃jW )| ≥ 2C1

√
log n/n

)

≤ 2sp/n.

Similarly, we can show that

P
(
‖ε0‖∞ > C1n

−αp
√

log n
)
≤ 2(p− sp)e−n

1−2αp logn.

Since |µ(x)| ≤ 1, following the same technique as in the above, we can show that

P
(
‖ξ1‖∞ > C2

√
log n/n

)
≤ 2sp/n,

P
(
‖ξ0‖∞ > C2n

−αp
√

log n
)
≤ 2(p− sp)e−n

1−2αp logn.

Therefore,

P (E1 ∩ E2 ∩ E3 ∩ E4) ≥ 1− 4{sp/n+ (p− sp)e−n
1−2αp logn}.

Next, we show that within event E1 ∩E2 ∩E3 ∩E4, there exists a solution to (A.3) and (A.4) and

satisfies (a) and (b).

Step 1: Solution to (A.3). First, we prove that, when n is sufficiently large, there exists a

solution to (A.3) in the hypercube

N = {δ ∈ Rsp : ‖δ − β̃1‖∞ = n−γ}.

Since β̃ is the minimizer of (3), and | ∂
∂β
W log(1 + e−X̃

′
β)| = |{µ(X̃

′
β̃)− 1}WX̃| ≤ C|X|, which

is integrable, it follows that

E
[
{µ(X̃

′
β̃)− 1}WX̃

]
=

∂

∂β
E
[
W log(1 + e−X̃

′
β)
] ∣∣∣∣
β=β̃

= 0. (A.5)
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Then, (A.3) is equivalent to

1

n
X̃′1[µ(X̃1δ) ◦W ]− 1

n
X̃′1W − E

[
{µ(X̃

′
1β̃1)− 1}WX̃1

]
= −λ1n sign(δ).

It is further equivalent to

E
[
µ(X̃

′
1δ)WX̃1

]
− E

[
µ(X̃

′
1β̃1)WX̃1

]
= ε1 − ξ1 − λ1n sign(δ). (A.6)

By Taylor expansion,

E
[
µ(X̃

′
1δ)WX̃1

]
− E

[
µ(X̃

′
1β̃1)WX̃1

]
= E

[
WX̃1µ

′(X̃
′
1β̃)X̃

′
1

]
(δ − β̃1) + r, (A.7)

where the jth component of the reminder term r,

rj = (δ − β̃1)
′E
[
2−1WX̃jµ

′′(X̃
′
δ̄)X̃1X̃

′
1

]
(δ − β̃1),

where δ̄ lies on the line segment connecting δ and β̃1. Since µ′′(X̃
′
δ̄) = O(1) for all δ ∈ N , by

(C2),

λmax(E|2−1WX̃jµ
′′(X̃

′
δ̄)X̃1X̃

′
1|) = O(λmax(E|WTXjX̃1X̃

′
1|)) = O(λmax(E|XjX1X

′
1|)). (A.8)

Then, by (C7), ‖r‖∞ = O(||δ − β̃1||2) = O(spn
−2γ). It follows from (A.6) and (A.7) that (A.3) is

equivalent to

E
[
WX̃1µ

′(X̃
′
1β̃1)X̃

′
1

]
(δ − β̃1)− ε1 + ξ1 + r + λ1n sign(δ)

= E
[
WX1µ

′(X ′1β̃1)X
′
1

]
(δ − β̃1)− ε1 + ξ1 + r + λ1n sign(δ)

= 0.

Let Ψ(δ) = δ − β̃1 −
{

E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
(ε1 − ξ1 − r − λ1n sign(δ)). Then, if δ solves

Ψ(δ) = 0, it also solves (A.3).
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It follows from (C5) and the choice of λ1n that

‖
{

E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
(ε1 − ξ1 − r − λ1n sign(δ))‖∞

≤ ‖
{

E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
‖∞(‖ε1‖∞ + ‖ξ1‖∞ + ‖r‖∞ + λ1n)

= o(n−γ).

Then, for sufficiently large n, if δj − β̃j = n−γ, Ψ(δj) > 0; if δj − β̃j = −n−γ, Ψ(δj) < 0. By

continuity of Ψ(δ), an application of Miranda’s existence theorem shows that Ψ(δ) = 0 has a

solution in N , which is also the solution to (A.3).

Step 2: verify (A.4). Let β̂ = (β̂1,0)′, where β̂1 is the solution to (A.3) as shown above. Next,

we prove that β̂ satisfies (A.4).

Since, by (A.5), E
[
{µ(X̃

′
1β̃1)− 1}WX̃0

]
= 0. Then, it follows that

1

n
X̃′0[µ(X̃1β̂1) ◦W −W ] =

1

n
X̃′0[µ(X̃1β̂1) ◦W −W ]− E

[
{µ(X̃

′
1β̃1)− 1}WX̃0

]
= E

[
µ(X̃

′
1β̂1)WX̃0

]
− E

[
µ(X̃

′
1β̃1)WX̃0

]
− ξ0 + ε0

(A.9)

By Taylor expansion,

E
[
µ(X̃

′
1β̂1)WX̃0

]
− E

[
µ(X̃

′
1β̃1)WX̃0

]
= E

[
WX̃0µ

′(X̃
′
1β̃)X̃

′
1

]
(β̂1 − β̃1) + u,

= E
[
WX0µ

′(X ′1β̃1)X
′
1

]
(β̂1 − β̃1) + u,

(A.10)

where the jth component of u is

uj = (β̂1 − β̃1)
′E
[
2−1X̃jµ

′′(X̃
′
δ̃)X̃1X̃

′
1

]
(β̂1 − β̃1),

where δ̃ lies on the line segment connecting β̂1 and β̃1. In analogous to (A.8), under (C7), we can

show that ‖u‖∞ = O(spn
−2γ).

Since β̂1 is the solution to Ψ(δ) = 0, it holds that

β̂1 − β̃1 =
{

E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
(ε1 − ξ1 − r − λ1n sign(δ)).
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Then, by (A.9) and (A.10),

1

nλ1n
X̃′0[µ(X̃1β̂1) ◦W −W ]

=
1

λ1n
E
[
WX0µ

′(X ′1β̃1)X
′
1

]{
E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
(ε1 − ξ1 − r − λ1n sign(δ))

+
1

λ1n
ε0 −

1

λ1n
ξ0 +

1

λ1n
u

In the event E1 ∩ E2 ∩ E3 ∩ E4, by the choice of λ1n,

‖λ−11n ε0‖∞ = o(1), ‖λ−11n ξ0‖∞ = o(1), ‖λ−11nu‖∞ = o(1),

By (C6),

1

λ1n

∥∥∥∥E
[
WX0µ

′(X ′1β̃1)X
′
1

]{
E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
(ε1 − ξ1 − r)

∥∥∥∥
∞
<

1

λ1n
‖ε1−ξ1−r‖∞ = o(1).

Finally, by (C6),

1

λ1n

∥∥∥∥E
[
WX0µ

′(X ′1β̃1)X
′
1

]{
E
[
WX1µ

′(X ′1β̃1)X
′
1

]}−1
λ1n sign(β̂1)

∥∥∥∥
∞
< 1.

Therefore, β̂ satisfies (A.4). This completes the proof.

If η(β) in (4) is the fused LASSO penalty as described in Section 2, then Theorem 1 is still

valid, given that λ2n/λ1n = o(1). In fact, in the presence of fused LASSO penalty, the original

KKT conditions (A.3) and (A.4) becomes

1

n
X̃′1[µ(X̃1β̂1) ◦W −W ] + λ1n sign(β̂1) + λ2n∂η(β̂1) = 0,

‖ 1

n
X̃′0[µ(X̃1β̂1) ◦W −W ]‖∞ + λ2n‖∂η(β̂0)‖∞ < λ1n,

where the subgradient of η(β) (Lemma 6.1 of Rinaldo (2009)) is any vector such that

∂η(βj,m) =



−s(βj,2 − βj,1), if m = 1;

s(βj,m − βj,m−1)− s(βj,m+1 − βj,m), if 2 < m < Cj − 2;

s(βj,Cj−1 − βj,Cj−2), if m = Cj − 1;
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where s(β) is defined in (A.2).

Since ‖∂η(β)‖∞ ≤ 2, if we choose λ2n/λ1n = o(1), following the same procedure as the above

proof, we can still show that β̂ processes the weak oracle property as in (a) and (b). The choice

of λ2n indicates that adding penalty on adjacent levels of ordinal variables won’t change the

asymptotic property of β̂ as long as it is dominated by the main L1 penalty.
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Web Appendix B: Additional simulations for time-to-event

outcomes

We studied our method for time-to-event outcomes, where the survival time Y and censoring

time C were generated using the following five models. The survival and censoring times were

conditionally independent given covariates. Each model was examined through three different

sample sizes: n = 500, 1000 and 2000 and repeated for 200 simulations. The results are shown in

Table A.1.
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(A) Accelerated failure time (AFT) model with normal error

log(Y ) = 2XA1 − 2XB1 + (5Xa2 + 5Xa3 −XCa) ∗ T + 0.5ε1,

log(C) = 3XA1 − 3XB1 + (4Xa2 + 4Xa3 − 4Xb3) ∗ T + 0.5ε2, where ε1, ε2 ∼ N(0, 1);

(B) AFT model with logistic error

log(Y ) = 2XA1 − 2XB1 + (5Xa2 + 5Xa3 −XCa) ∗ T + 0.5ε1

log(C) = 3XA1 − 3XB1 + (4Xa2 + 4Xa3 − 4Xb3) ∗ T + 0.5ε2, where ε1, ε2 ∼ logistic(0, 1);

(C) Cox Weibull model

λY (Y |X) = λY0(Y ) exp(2XA1 − 2XB1 + (5Xa2 + 5Xa3 −XCa) ∗ T ), where λY0(y) = 2y,

λC(C|X) = λC0(C) exp(3XA1 − 3XB1 + (4Xa2 + 4Xa3 − 4Xb3) ∗ T ), where λC0(c) = 2c

(D) Cox Gompertz model

λY (Y |X) = λY0(Y ) exp(2XA1 − 2XB1 + (5Xa2 + 5Xa3 −XCa) ∗ T ), where λY0(y) = ey

λY (C|X) = λC0(C) exp(3XA1 − 3XB1 + (4Xa2 + 4Xa3 − 4Xb3) ∗ T ), where λC0(c) = ec

(E) Cox Exponential model

λY (Y |X) = λY0(Y ) exp(2XA1 − 2XB1 + (5Xa2 + 5Xa3 −XCa) ∗ T ), where λY0(y) = 1

λC(C|X) = λC0(C) exp(3XA1 − 3XB1 + (4Xa2 + 4Xa3 − 4Xb3) ∗ T ), where λC0(c) = 1
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Model (A) Sensitivity Specificity Misclassification rate

n = 500 1.00 0.90 0.16

n = 1000 1.00 0.90 0.13

n = 2000 1.00 0.90 0.14

Model (B) Sensitivity Specificity Misclassification rate

n = 500 1.00 0.90 0.15

n = 1000 1.00 0.90 0.14

n = 2000 1.00 0.90 0.14

Model (C) Sensitivity Specificity Misclassification rate

n = 500 0.99 0.91 0.12

n = 1000 1.00 0.91 0.12

n = 2000 1.00 0.90 0.12

Model (D) Sensitivity Specificity Misclassification rate

n = 500 0.99 0.90 0.13

n = 1000 1.00 0.90 0.13

n = 2000 0.99 0.90 0.13

Model (E) Sensitivity Specificity Misclassification rate

n = 500 1.00 0.90 0.13

n = 1000 1.00 0.90 0.12

n = 2000 1.00 0.90 0.12

Table A.1: Results of the five time-to-event models
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Web Appendix C: Values of the target function from sim-

ulation

Figure A.1 plots values of the target function

E

[
I(T 6= D(X))

Tπ + (1− T )/2
Y

]

in (1) under various methods. Smaller values indicate better performance. The target function is

directly related to the value function

ED(Y ) =

∫
Y
dPD

dP
dP = E

[
I(T = D(X))

Tπ + (1− T )/2
Y

]
= E

[
Y

Tπ + (1− T )/2

]
− E

[
I(T 6= D(X))

Tπ + (1− T )/2
Y

]
.

We can see that our method reaches the smallest value among all methods in most cases.
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Figure A.1: Comparison of values of target function (number of simulations = 200).
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Web Appendix D: Sensitivity analysis on the choice of α in

the m-out-of-n bootstrap

To investigate the effects of different choices for α on the m-out-of-n bootstrap, we applied our

method to Model (A) in Section 4 with α = 0.7, 0.8, and 0.9. Results are shown in Table A.2.

It’s seen that the coverage of the confidence intervals was not satisfactory when α = 0.9, but was

quite good for the other two choices.

Table A.2: Confidence intervals of enhanced comparative treatment effects in Models (A) for

different choice of α. For notational simplicity, we denote d+ ≡ EX{d(X, 1, β̂)} and d− ≡

EX{d(X,−1, β̂)}

n = 500 n = 1000 n = 2000

d+ d− d+ d− d+ d−

α = 0.7

CI length MEAN 0.67 0.66 0.52 0.50 0.35 0.36

coverage 0.93 1.00 0.99 1.00 0.98 0.98

α = 0.8

CI length MEAN 0.55 0.57 0.41 0.34 0.24 0.24

coverage 0.93 0.98 0.97 0.99 0.95 0.96

α = 0.9

CI length MEAN 0.39 0.31 0.19 0.20 0.17 0.17

coverage 0.90 0.97 0.81 0.84 0.88 0.90
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Web Appendix E: Further data analysis results

Table A.3: Rules for the National Supported Work Study

Method Rules

ROWSi D̂ = sign(0.1093 + 0.1888I{married}+ 0.1152I{no high school degree & low earning}

−0.2234I{Hispanics} − 0.2976I{employed} − 0.1600age ∗ log(real earning in 1975))

FindIt D̂ = sign(0.0213 + 0.1022I{black}+ 0.0634I{no high school degree}

−0.2018I{Hispanics} ∗ log(real earning in 1975))

VT Figure A.2 (a)

IT Figure A.2 (b)

Table A.4: Rules for the Mammography Screening Study

Method Rules

ROWSi D̂ = sign(0.2350 + 0.6403I{yearmamsum = 3 or 4}+ 0.3060I{se1tot > 40}

−0.6011I{inclt15k} − 0.2025I{bar1tot > 30})

VT Figure A.3 (a)

IT Figure A.3 (b)

Remark yearmamsum: number of years had a mammogram in the past 2 to 5 years;

inclt15k: household income less than $15,000;

se1tot: self efficacy score; bar1tot: barriers scale score
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|log.re75< 7.947

log.re75< 7.518

age< 20.5

age< 21.5

log.re75< 8.925
1

1 0
1 0

0

(a) VT

|log.re75< 8.164

black< 0.5

age< 29

log.re75< 9.12

age< 23.5

educ< 9.51 0
1

1
1 0

0

(b) IT

Figure A.2: Results for the National Supported Work Study. The variable log.re75 stands for

log(real earnings in 1975), and educ stands for years of schooling. For each split the left child

represents observations that meet the condition associated with the split. Terminal nodes are

labeled “1” if proportion of subjects in the node with binary outcome=1 exceeded cutoff of 0.5.

The final subgroup is formed as the union of terminal nodes labeled as “1”.
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|yearmamsum=0,1,2

stage=0

married=0

inclt15k=1

stage=0

0

0 1

0 1

1

(a) VT

|yearmamsum=0,1,2

stage=0

inclt15k=1
0

0 1

1

(b) IT

Figure A.3: Results for the Mammography Screening Study. The variable stage stands for baseline

stage of mammography screening behavior, yearmamsum stands for number of years having a

mammogram in past 2 to 5 years, and incle15k stands for household income ≤ $15,000. For

each split the left child represents observations that meet the condition associated with the split.

Terminal nodes are labeled “1” if proportion of subjects in the node with binary outcome=1

exceeded cutoff of 0.5. The final subgroup is formed as the union of terminal nodes labeled as “1”.
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Web Appendix F: Sample codes

The following five R files are available from the Biometrics website on Wiley Online Library.

• generate.R is for data generation.

• our.R is the key function for our method. To keep it easier for the readers to implement,

we have presented codes that use LASSO and grouped LASSO. We are developing an R

package that will incorporate the fussed LASSO penalty.

• output.R provides the outputs including sensitivity, specificity, miss-classification rate, and

target function value.

• ncbCI.R is the non-centered bootstrap for generating confidence intervals for EX{d(X, 1, β̂)}

and EX{d(X,−1, β̂)}.

• main.R generates data with generate.R and applies our method.
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