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Summary: In patients with Plasmodium vivax malaria treated with effective blood-stage therapy, the recurrent

illness may occur due to relapse from latent liver-stage infection or reinfection from a new mosquito bite. Classification

of the recurrent infection as either relapse or reinfection is critical when evaluating the efficacy of an anti-relapse

treatment. Although one can use whether a shared genetic variant exists between baseline and recurrence genotypes

to classify the outcome, little has been suggested to use both sharing and non-sharing variants to improve the

classification accuracy. In this paper, we develop a novel classification criterion that utilizes transition likelihoods

to distinguish relapse from reinfection. When tested in extensive simulation experiments with known outcomes, our

classifier has superior operating characteristics. A real data set from 78 Cambodian Plasmodium vivax malaria patients

was analyzed to demonstrate the practical use of our proposed method.
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1. Introduction

The classification of infections from more than one potential cause is critical in malaria

research. Taking Plasmodium falciparum, for example, the most prevalent malaria species in

Sub-Saharan Africa may recur due to relapse from treatment failure or due to reinfection

from new mosquito bites. The true anti-malarial treatment efficacy cannot be determined

without knowing whether the recurrent infection is due to treatment failure or new infection

in an area of high malaria transmission (Kwiek et al., 2007; Daniels et al., 2008; Juliano et al.,

2010). Plasmodium vivax, the leading cause of malaria outside Africa, may similarly recur

due to treatment failure or reinfection. However, in many endemic areas such as Southeast

Asian and Oceania, it often recurs due to relapse of hypnozoites reactivating from the liver,

since most anti-malarials are not active against these latent liver stages of Plasmodium vivax

(Lin et al., 2015; Beck et al., 2016; Pearson et al., 2016). Indeed, without knowing the cause

of recurrent infection, determining treatment efficacy, relapse rate, and disease epidemiology

is challenging.

Given the high degree of genetic diversity and polyclonal nature of Plasmodium vivax

infections in many parts of the world, where many clones (genetically distinct strains)

exist within a human host, a targeted amplicon deep sequencing approach provides an

opportunity for a higher precision of classification (Lin et al., 2015). As part of a malaria

cohort study conducted from 2010-2011 (Lon et al., 2014), patients in Cambodia found to

have Plasmodium vivax were followed after treatment with a highly efficacious artemisinin-

based combination therapy, with blood samples collected for deep sequencing at baseline.

Of 78 infected patients followed, 23 individuals developed recurrent infections. Their blood

sample was collected at the time of recurrence for another round of sequencing. It was

hypothesized that through genotyping of the initial and recurrent parasite isolates, one may
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be able to distinguish relapse from reinfection based on variant overlap between the two

sequencing results within individuals.

Naively, one may classify the recurrent infection as relapse if any variant in the recurrent

infection is shared with the initial infection (Nyachieo et al., 2005; Kobbe et al., 2006).

However, without considering the prevalence of the variant, false positive misclassification

likely occurs if some variants are frequently observed in the population (Juliano et al.,

2009). Kwiek et al. (2007) treated the recurrent infection as indeterminate if the initial

and recurrent infections shared only one variant with a prevalence of more than 10%.

However, this approach is somewhat ad hoc since the 10% prevalence cutoff may not be

generally applied to other areas, and sharing only one variant may be rare in regions of

high transmission where the parasite population is diverse, and a high number of variants is

routinely detected in an individual (Juliano et al., 2010). Instead, Lin et al. (2015) calculated

the reinfection probability as the product of all reinfection probabilities from all shared

variants and classified the recurrence as reinfection if the probability is more than 10%.

Specifically, they calculated the reinfection probability based on a binomial probability model

(BPM) that equals to
∏

j{1− (1−yj)x}, where yj is the prevalence of a shared variant and x

is the number of variants observed in the recurrent infection. As one can see, the probability

model considers only the possibility of shared variants occurred in the recurrence. A non-

shared variant may also occur at random in the recurrent infection, regardless whether the

recurrence is relapse or reinfection. This is likely due to reactivation of latent parasites

acquired from other, historical infections preceding those captured by genotyping (Imwong

et al., 2007; Chen et al., 2007).

The presence or absence of variants in the initial and recurrence sequencings can naturally

be described by a transition model. However, the estimation of transition probabilities

is complicated by an unknown mixture of two models, one from relapse and one from
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reinfection. Here in this paper, we propose an estimation procedure that can estimate the

transition probabilities under unknown causes of infections. The method is first established

on a statistical model that can describe the probability of relapse in the recurrent infection.

Then, through comparison of two transition likelihoods, our novel classification criterion

utilizing the transition information can significantly improve a classifier that uses only initial

sequencing information.

The rest of the paper is organized as follows. In Section 2, we develop a statistical model

for the probability of observing a recurrent infection in the follow-up period, which sums over

probabilities of relapse and reinfection. A likelihood-based estimation method is utilized, with

a computing solution for high-dimensional data when the number of allelic variants exceeds

the number of subjects. Our novel classification criterion is discussed in Section 3. Simulation

studies in Section 4 for both low- and high-dimensionality scenarios show the consistency

and high accuracy of our classifier. A comparison to the existing BPM method (Lin et al.,

2015) shows the superiority of our approach. We apply our method to the Plasmodium vivax

infection data and present part of the classification results in Section 5. Assumptions and

possible generalizations of our approach are discussed in Section 6.

2. Statistical Model and Estimation

2.1 Notation

For subject i, let X i = (Xi1, . . . , XiJ)′ and Zi = (Zi1, . . . , ZiJ)′ denote a J-dimensional

vector of sequencing outcomes in the initial and recurrent infections, respectively. Let Yi be

the binary indicators with Yi = 1 indicating the recurrence and 0 otherwise. In this study, we

aim to classify the recurrent infection, Yi = 1, into two latent classes, namely, relapse Ri = 1

or reinfection Ni = 1, assuming that two types of infections cannot occur simultaneously. We

also assume that a third possible class, treatment failure, is unlikely in the setting of highly
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efficacious therapy. Note that, the sequencing outcomes Zi in the recurrent infection can only

be observed when Yi = 1, and can be different from X i even when the recurrent infection is

relapse. If a subject does not have a recurrent infection, i.e., Yi = 0, the information on Zi

is not available. Through the paper, the number of subjects from the baseline with initial

sequencing is denoted by n, and the number of subjects who have recurrent infections with

follow-up sequencing is denoted by m =
∑n

i=1 Yi.

2.2 Statistical Model

Suppose that P (Xij = 1) = pj for i = 1, . . . , n, where Xij = 1 indicates the presence of

variant j in the sequencing outcome of subject i, and Xij = 0 otherwise. Given a realization

of the initial sequencing outcome xi = (xi1, . . . , xiJ)′, the indicator for relapse, denoted by

Ri, is assumed to follow a logistic model

log

{
πi(θ)

1− πi(θ)

}
= α + x′iβ, (1)

where πi(θ) = P (Ri = 1|X i = xi), θ = (α,β′)′, and β = (β1, . . . , βJ)′ with βj = 0 indicating

the jth variant is not associated with the relapse.

However, the relapse indicator Ri cannot be observed. What can be observed is the

recurrence indicator Yi, which equals 1 if either relapse or reinfection occurs. Assume that the

probability of acquiring an reinfection is constant and independent of the baseline variants

X i, i.e.,

P (Ni = 1|Ri = 0,X i) = P (Ni = 1|Ri = 0) = µ,

and that both infections cannot occur simultaneously, i.e.,

P (Ni = 1|Ri = 1,X i) = 0.
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One can write

P (Yi = 1|X i) = P (Ni = 1, Ri = 0|X i) + P (Ni = 0, Ri = 1|X i)

= P (Ni = 1|Ri = 0,X i)P (Ri = 0|X i) + P (Ni = 0|Ri = 1,X i)P (Ri = 1|X i)

= µ{1− πi(θ)}+ πi(θ), (2)

where πi(θ) = exp(α + x′iβ)/{1 + exp(α + x′iβ)} as defined in model (1).

Note that, assuming constant infection rate is reasonable since subjects who live in the

same area shall be bite by mosquitoes completely at random. The reinfection rate may

depend on risk factors. If so, we may build a regression model relating the reinfection rate

to those risk factors. Our approach still applies after such adjustment.

2.3 Estimation Method

For the binary outcome Yi, one can estimate the unknown parameters minimizing the

negative log-likelihood function. However, the reinfection probability µ and baseline relapse

rate α may not be estimable simultaneously since both parameters are part of the baseline

recurrences. To avoid such identifiability problem, we assume the reinfection rate is known

or can be estimated via external information. Given µ, the parameter θ can be estimated

via minimizing the negative log-likelihood function

`(θ) = n−1
n∑

i=1

[yi log pi(θ) + (1− yi) log{1− pi(θ)}],

where yi is a realization of Yi and pi(θ) = µ{1− πi(θ)}+ πi(θ). Under regularity conditions

for maximum likelihood estimators, one can show that θ̂ is a consistent estimator of θ and

n1/2(θ̂ − θ) converges in distribution to a normal variable with mean 0 and variance that is

the inverse of Fisher information matrix.

In our data where the number of variants is larger than the number of patients, we penalize

the likelihood function with an L1-penalty (Tibshirani, 1996) to enable variable selection

and avoid ill-posed minimization problem when J > n. In particular, we solve the following
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optimization problem

θ̂ = argmin
θ
−`(θ) + λ

J∑

j=1

|βj|, (3)

where λ is a tuning parameter whose optimal value will be determined by cross-validation.

There are some other choices of penalty functions, such as elastic net penalty (Zou and

Hastie, 2005), adaptive Lasso (Zou, 2006), or folded-concave penalty (Fan and Lv, 2011).

From numerical studies, we found that the performance of our method is not sensitive to the

choice of penalty functions. The main purpose of penalization is to regulate the optimization

problem with high-dimensional covariates and select baseline variants that associate with

recurrence.

2.4 Computation

We develop a coordinate gradient descent algorithm (Friedman et al., 2010) to solve the

optimization problem (3). Let θ̃ = (α̃, β̃
′
)′ be the current value of θ and ϑ̃i = α̃ + x′iβ̃. Let

f(ϑi) = yi log p(ϑi) + (1 − yi) log{1 − p(ϑi)} with ϑi = α + x′iβ, and let f ′(ϑi) and f ′′(ϑi)

denote the first and second derivatives of the function f with respect to ϑi, respectively. A

local quadratic approximation to −`(θ) can be written as

`Q(θ; θ̃) = n−1
n∑

i=1

{
−1

2
f ′′(ϑ̃i)(ϑi − ϑ̃i)

2 − f ′(ϑ̃i)(ϑi − ϑ̃i)

}
+ c1(θ̃)

= (2n)−1
n∑

i=1

−f ′′(ϑ̃i)

{
ϑi − ϑ̃i +

f ′(ϑ̃i)

f ′′(ϑ̃i)

}2

+ c2(θ̃)

= (2n)−1
n∑

i=1

w̃i(ϑ̃
∗
i − α− x′iβ)2 + c2(θ̃),

where ϑ̃∗i = ϑ̃i − f ′(ϑ̃i)/f
′′(ϑ̃i), w̃i = −f ′′(ϑ̃i), and c1(θ̃) and c2(θ̃) are functions depending

only on θ̃. We then minimize `Q(θ; θ̃) + λ
∑J

j=1 |βj|, which becomes a regularized weighted

least squares problem:

θ̃
new

= argmin
θ

(2n)−1
n∑

i=1

w̃i(ϑ̃
∗
i − α− x′iβ)2 + λ

J∑

j=1

|βj|. (4)
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Such a problem can be solved by a standard coordinate gradient descent algorithm (Friedman

et al., 2010), which is implemented by R package glmnet.

The remaining tasks are to derive f ′(ϑi) and f ′′(ϑi). By the definition of p(ϑi), one has

p′(ϑi) = (1 − µ)πi(θ){1 − πi(θ)}, and p′′(ϑi) = (1 − µ)πi(θ){1 − πi(θ)}{1 − 2πi(θ)}. Then,

one can write f ′(ϑi) as

f ′(ϑi) =
yi

p(ϑi)
p′(ϑi)−

1− yi
1− p(ϑi)

p′(ϑi) =
p′(ϑi)

p(ϑi){1− p(ϑi)}
{yi − p(ϑi)}. (5)

Since

log f ′(ϑi) = log p′(ϑi) + log{yi − p(ϑi)} − log p(ϑi)− log{1− p(ϑi)},

taking derivatives on both sides gives

f ′′(ϑi)

f ′(ϑi)
=

∂

∂ϑi

log f ′(ϑi) =
p′′(ϑi)

p′(ϑi)
−
{

1

yi − p(ϑi)
+

1

p(ϑi)
− 1

1− p(ϑi)

}
p′(ϑi). (6)

Straightforwardly, the product of (5) and (6) gives f ′′(ϑi). We summarize the algorithm as

follows:

Step 1: Initialize θ at θ̃ = (α̃, β̃
′
)′.

Step 2: Solve

θ̃
new

= argmin
θ

(2n)−1
∑

i:w̃i>0

w̃i(ϑ̃
∗
i − α− x′iβ)2 + λ

J∑

j=1

|βj|,

where ϑ̃∗i = ϑ̃i − f ′(ϑ̃i)/f
′′(ϑ̃i), ϑ̃i = α̃ + x′iβ̃, and w̃i = −f ′′(ϑ̃i).

Step 3: Update ϑ̃i, ϑ̃
∗
i and w̃i by letting ϑ̃new

i = α̃new+x′iβ̃
new

, ϑ̃∗newi = ϑ̃new
i −f ′(ϑ̃new

i )/f ′′(ϑ̃new
i ),

and w̃new
i = −f ′′(ϑ̃new

i ).

Step 4: Iterate between steps 2 and 3 until convergence, i.e., the L2-norm ||θ̃new − θ̃||2 ≤ ε,

where ε is a user-defined stopping threshold. We choose ε = 0.001.

Remark that, when µ > 0, the function −f(ϑi) is not a convex function. Therefore, solving

our proposed target function (3) is a challenging non-convex optimization problem. To ensure

stable computation of the gradient descent algorithm, we drop negative weight w̃i when

solving the intermediate weighted least squares function (4) in Step 2 above. Similar to
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other non-convex optimization problems, the gradient descent algorithm converges to a local

minimum of the objective function. In the simulation studies, we find that such local minima

admit good variable selection and classification performance; see Section 4.

3. Classification

We aim to classify recurrent infection (Yi = 1) to either relapse (Ri = 1) or reinfection

(Ni = 1). Two classifiers are studied. The first one utilizes the initial sequencing infor-

mation and logistic regression model (1) to calculate the initial probability estimation of

the recurrence being relapse. The second one updates the initial probability estimation

using transition likelihoods under relapse and reinfection. Through comparison between two

transition likelihoods, the second classifier is anticipated to perform better than the first one

since more information is used.

3.1 Based on baseline information

Let ξi denote the probability of being relapse given that a recurrent infection has occurred.

One can show that, based on the recurrence probability in formula (2),

ξ
(0)
i = P (Ri = 1|Yi = 1,X i)

= P (Ni = 0|Ri = 1,X i)
P (Ri = 1|X i)

P (Yi = 1|X i)

=
πi(θ)

µ{1− πi(θ)}+ πi(θ)
,

which can be estimated by

ξ̂
(0)
i =

πi(θ̂)

µ{1− πi(θ̂)}+ πi(θ̂)
.

This estimator gives a possible classification criterion via ranking ξ̂
(0)
i . Acknowledging the

interpretation of probability, one may claim the recurrent case is (100× ξ̂(0)i )-percent likely

to be relapse. However, one may ask for a clear cut to identify the relapse. Barring this in

mind, one can classify a recurrent infection to be relapse if ξ̂
(0)
i > 0.5, which means πi(θ̂) >



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

malaria relapse 9

µ{1− πi(θ̂)} or equivalently, P (Ni = 0, Ri = 1|Yi = 1,X i) > P (Ni = 1, Ri = 0|Yi = 1,X i).

The cutoff could be chosen to optimize the operating characteristics if the true infection

type is available. Without the gold standard in this study, we simply use 0.5 as the cutoff to

choose the winner.

3.2 Updated by transition likelihoods

The variant present or absent in the baseline sequencing may not be present or absent again

in the follow-up sequencing. Recall that Zi = (Zi1, . . . , ZiJ)′ is a random variable for the

recurrence sequencing outcomes. Assuming the recurrent infection is a relapse, one can write

Zij as

Zij = Xijδij + (1−Xij)(1− δ∗ij),

where δij and δ∗ij are two binary indicators that represent repeated presence and absence of

variant j in the recurrence sequencing, with probability qj = P (δij = 1) and q∗j = P (δ∗ij = 1),

respectively. Specifically, we assume that variant j has probability qj = P (Zij = 1|Xij =

1, Ri = 1) to be observed again in the recurrence sequencing if the variant is observed in

the initial sequencing, while the variant has probability q∗j = P (Zij = 0|Xij = 0, Ri = 1)

to remain unobserved in the recurrence sequencing if the variant is absent at the baseline.

This mechanism can be considered as a transition model from the baseline sequencing to the

follow-up sequencing outcomes, where qj and q∗j are transition probabilities in a two-state

transition model. If the recurrence is indeed a new infection, we assume Zi is independent

of X i, and follows the same distribution as X i.

When X i and Zi are observed, parameters pj, qj and q∗j , j = 1, . . . , J , can be esti-

mated as follows. The probability pj can be consistently estimated by the sample mean

p̂j = n−1
∑n

i=1 xij, where xij is a realization of Xij. Different from the baseline variants, the

distribution of Zij is a mixture of two distributions, depending on whether the recurrent case
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is relapse or reinfection. Assuming the variants are mutually independent, we have

P (Zij = 1|Ri = 1, Yi = 1,X i = xi) = xijqj + (1− xij)(1− q∗j ) = η(xij),

P (Zi = zi|Ri = 1, Yi = 1,X i = xi) =
J∏

j=1

η(xij)
zij{1− η(xij)}1−zij ,

and

P (Zi = zi|Ri = 0, Yi = 1,X i = xi) =
J∏

j=1

p
zij
j (1− pj)1−zij .

Let φR
i (q, q∗) = P (Zi = zi|Ri = 1, Yi = 1,X i = xi) , where q = (q1, . . . , qJ)′ and q∗ =

(q∗1, . . . , q
∗
J)′, and let φN

i (p) = P (Zi = zi|Ri = 0, Yi = 1,X i = xi), where p = (p1, . . . , pJ)′.

The mixture distribution of Zi can be written as

P (Zi = zi|Yi = 1,X i = xi) =
1∑

r=0

P (Zi = zi, Ri = r|Yi = 1,X i = xi)

=
1∑

r=0

P (Zi = zi|Ri = r, Yi = 1,X i = xi)P (Ri = r|Yi = 1,X i = xi)

= φN
i (p)(1− ξ(0)i ) + φR

i (q, q∗)ξ(0)i .

To obtain the maximum likelihood estimators for q and q∗, we maximize the profiled log-

likelihood function

`(q, q∗) =
m∑

i=1

log{φN
i (p̂)(1− ξ̂(0)i ) + φR

i (q, q∗)ξ̂(0)i }, (7)

where φN
i (p̂) =

∏J
j=1 p̂

zij
j (1 − p̂j)1−zij , and ξ̂

(0)
i is the estimated probability of relapse based

on the baseline sequencing information.

Based on the transition model for the follow-up sequencing outcomes, one can derive the

probability of relapse given the follow-up sequencing realization Zi = zi. One can show that,

ξ
(1)
i = P (Ri = 1|Yi = 1,X i = xi,Zi = zi)

=
P (Zi = zi|Ri = 1, Yi = 1,X i = xi)P (Ri = 1|Yi = 1,X i = xi)∑1
r=0 P (Zi = zi|Ri = r, Yi = 1,X i = xi)P (Ri = r|Yi = 1,X i = xi)

=
φR
i (q, q∗)ξ(0)i

φN
i (p)(1− ξ(0)i ) + φR

i (q, q∗)ξ(0)i

,
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which can be consistently estimated by

ξ̂
(1)
i =

φR
i (q̂, q̂∗)ξ̂(0)i

φN
i (p̂)(1− ξ̂(0)i ) + φR

i (q̂, q̂∗)ξ̂(0)i

,

where

φR
i (q̂, q̂∗) =

J∏

j=1

η̂(xij)
zij{1− η̂(xij)}1−zij ,

and

η̂(xij) = xij q̂j + (1− xij)(1− q̂∗j ),

where q̂j and q̂∗j are maximum likelihood estimators solving (7).

The estimator provides another classifier as one may claim the recurrent case is (100×ξ̂(1)i )-

percent likely to be relapse and classify the recurrence as relapse if ξ̂
(1)
i > 0.5. In fact, ξ̂

(1)
i

can be considered as the probability that updates ξ̂
(0)
i by a ratio of two transition likelihoods

φN
i (p) and φR

i (q, q∗). More specifically, the estimated odds of relapse given the follow-up

information can be written as

Ôdds
(1)

i =
ξ̂
(1)
i

1− ξ̂(1)i

=
φR
i (q̂, q̂∗)ξ̂(0)i

φN
i (p̂)(1− ξ̂(0)i )

=
φR
i (q̂, q̂∗)

φN
i (p̂)

Ôdds
(0)

i ,

which updates the estimated odds from the baseline information by multiplying the ratio of

two transition likelihoods. If φR
i (q̂, q̂∗) > φN

i (p̂), the realization of Zi more likely came from

relapse. Hence the odds of the recurrent infection being relapse would increase from the one

that uses only baseline information.

Note that, since Zi is only available from m subjects who have recurrent infections, the

parameters q and q∗ cannot be solved by the likelihood function (7) when the combined

dimensions of q and q∗ is larger than the number of subjects m. To avoid this, we assume

the transition probabilities are the same for each variant, i.e., q1 = q2 = · · · = qJ and

q∗1 = q∗2 = · · · = q∗J , such that there are only two scalar parameters q and q∗ in (7). A

possible generalization that relaxes this assumption is discussed in Section 6.
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4. Simulation experiments

In this section, we demonstrate our method via simulation experiments with various com-

binations of reinfection rate µ, sample size n, and number of variants J . First, we explore

a low-dimension setting when there are only 10 variants in both sequencings. The baseline

sequencing outcomes Xij, j = 1, . . . , 10, are assumed to follow a Bernoulli distribution with

success probability pj = 0.5 exp{−(j − 1)/10}, which mimics the distribution of variants in

our real data. Two transition probabilities, qj and q̃j, are set to be 0.95. The probability of

acquiring a new infection is set to be µ = 0.05, 0.12, 0.25, from low to high reinfection rates.

We explore two scenarios under which the association between the presence of the variant

and relapse is different. In the first scenario, we assume that the relapse is associated with

three most prevalent variants Xi1, Xi2, Xi3. In the second scenario, we assume the relapse

is associated with three rarest variants Xi8, Xi9, Xi10. In each scenario, we set the intercept

α = −2 in the relapse model (1) and coefficients βj = 0.405 if the variant j is associated with

the relapse and βj = 0 otherwise. The sample size is set to be n = 100, 200, 400, 800. We

simulate 1,000 repetitions for each combination of µ and n in each scenario. We report the

bias of the coefficient estimates to demonstrate the consistency of our proposed estimator for

the regression coefficients. We also report operating characteristics such as sensitivity (sens),

specificity (spec), and overall accuracy (acc) of the classifiers I(ξ̂(0) > 0.5) and I(ξ̂(1) > 0.5).

We also compare our method to the binomial probability model (BPM) used in Lin et al.

(2015).

Tables 1 and 2 show the simulation results under the scenarios 1 and 2, respectively. One

can see that our estimator is consistent. When the sample size n increases, the bias converges

toward 0. It is worth of noting that our estimator performs equally well in those two scenarios

when either common or rare variants are associated with the relapse. Table 3 shows the

operating characteristics of three classifiers under different reinfection rates. One can see
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that using I(ξ̂(0) > 0.5) as the classifier can be overly aggressive under a low reinfection

rate. Most of the recurrences are claimed as relapse and result in high sensitivity but low

specificity, especially when the sample size is large. On the other hand, using I(ξ̂(1) > 0.5)

as the classifier performs well, reaching a high degree of accuracy in both sensitivity and

specificity. The reinfection rate is a significant factor for the classification accuracy of our

classifiers. Under a high reinfection rate, the overall accuracy of the classifier I(ξ̂(0) > 0.5) is

low. Correctly classifying relapse becomes more difficult for the classifier using ξ̂(0). The same

problem occurs to I(ξ̂(1) > 0.5) when the sample size is small. However, when the sample

size increases, the accuracy of I(ξ̂(1) > 0.5) increases to a satisfactory level, under either

common or rare variants scenario. In comparison to the BPM method (Lin et al., 2015), one

can see that the BPM’s performance remains unchanged under different reinfection rates.

The method generally performs better than our classifier when the sample size is small.

However, when the sample size is large or when the reinfection rate is low, our classifier

performs much better than the BPM method. Note that, the cutoff probability used in the

BPM can be arbitrary and may depend on the prevalence of the shared variant, which is

unknown in practice. It is not clear how to select the best cutoff for their method. We used

10% as suggested in Lin et al. (2015).

In addition, we performed a simulation study when the number of variants exceeds the

sample size. We simulate baseline and follow-up sequencing outcomes from the same dis-

tribution as in the low dimensional case. We consider two combinations of n and J for

(n, J) = (100, 200) and (n, J) = (200, 400) and three reinfection rates for µ = 0.05, 0.12, 0.25.

We also consider two scenarios of how the variants associate with relapse. In scenario 3, the

relapse is associated with five most prevalent variants through model (1), where α = −1 and

β = (0.2, 0.2, 0.2, 0.2, 0.2, 0, . . . , 0)′. In scenario 4, the relapse is associated with five relatively

rare variants, where α = −1 and β = (0, . . . , 0, 0.2, 0.2, 0.2, 0.2, 0.2, 0, . . . , 0)′ with the ten
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most prevalent variants not associated with relapse. Average sensitivity (sens), specificity

(spec), and overall accuracy (acc) of the two classifiers are reported in Table 4 for each

scenario. We also report average bias (Bias), which is defined by (1/J)
∑J

j=1 |β̂j−βj|, number

of true positives (TP), and number of true negatives (TN) to evaluate the variable selection

performance of our method.

Table 4 shows that our method still works well when J is much larger than n. The perfor-

mance of the classifier I(ξ̂
(1)
i > 0.5) is much better than that of the classifier I(ξ̂

(0)
i > 0.5).

When the reinfection rate is relatively high, both classifiers suffer lower accuracy under this

more difficult situation. The performance of the classifier I(ξ̂
(1)
i > 0.5), however, remains

acceptable. Moreover, our method identifies most of the variants that are associated with

the relapse, i.e., its TP proportion is high, regardless whether they are prevalent or rare,

while controlling the selection of true negatives at a satisfactory level.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

5. Real Data Analysis

Given the high degree of genetic diversity and polyclonal nature of Plasmodium vivax (ab-

breviated P. vivax hereafter) infections in Cambodia, many clones or strains exist within a

human host. A targeted amplicon deep sequencing approach was chosen to genotype initial

and recurrent isolates from P. vivax patients enrolled in a malaria cohort and treatment

study conducted in northern Cambodia from 2010-2011 (Lon et al., 2014; Lin et al., 2015).

Subjects found to have P. vivax malaria were treated with dihydroartemisinin-piperaquine

(DP), then followed for recurrence with weekly blood smears for six weeks and with a monthly
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blood smear after that. Of 78 P. vivax -infected subjects followed for a median of 115 days, 23

individuals, or approximately one-third of the cohort, developed a recurrent infection. These

recurrences likely represent relapse or reinfection, since treatment failure with DP is unlikely.

During the follow-up, six subjects suffered second recurrences, and one subject suffered a

third recurrent infection. Hence, a total of 30 recurrent infections were available for the

follow-up genotype analysis. In combination with 78 subjects at the baseline, there are 108

isolates available for the genotype analysis. To avoid the bias due to length of follow-up, we

only use 78 baseline sequencings (n = 78) to estimate the parameters in relapse model (1),

with 23 positive responses (
∑n

i=1 Yi = 23). However, in order to utilize as much information

as possible, we include those 7 second or third recurrences in the estimation of transition

probabilities q and q∗, using their most recent sequencing as the baseline sequencing. This

results in 30 pairs of baseline and recurrence sequencings in the log-likelihood function (7)

with m = 30.

Targeted deep sequencing was performed on DNA extracted from filter paper blood spots

collected by finger prick. A nested polymerase chain reaction (PCR) assay was used to

amplify a 117base pair variable portion of the P. vivax merozoite surface protein 1 (pvmsp1 )

gene based on previous work showing great nucleotide diversity across this region (Parobek

et al., 2014). Samples were amplified in duplicate and individually tagged, then pooled and

sequenced on the Ion Torrent platform from Life Technologies. The Pvmsp1 sequence variants

were determined by SeekDeep, a bioinformatics pipeline that uses a clustering method to

construct the most likely haplotypes within a patient while removing false haplotypes due

to PCR or sequencing error (Hathaway et al., 2018). For each subject, pvmsp1 haplotypes

that were present in 2 independent duplicate PCR samples at ≤0.5% frequency were counted

as unique variants. Consensus haplotypes were each assigned a unique population identifier

based on their prevalence in the cohort, namely, CAM.00 to CAM.66 with CAM.00 being
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the most prevalent pvsmp1 variant encountered. In total, 67 unique pvmsp1 variants were

detected across 108 isolates. Nine common variants appeared in at least 10% of individuals,

while two-thirds of variants appeared in only one isolate. In-host genetic diversity was also

high, as 90% of initial infections contained multiple variants, displaying an average of 3.6

co-circulating variants.

We used the penalized likelihood model with an L1-penalty, as shown in (3), with 5%

reinfection rate. We report variants in the initial and recurrence sequencing, their estimated

coefficients β̂ in model (1), prevalence of the variants, two classification probability estimates,

and classification results based on ξ̂
(1)
i and BPM method. Variants with a non-zero estimated

coefficient are considered to be associated with relapse. Using the profiled likelihood func-

tion (7), the maximum likelihood estimates for the transition probability are q̂ = 0.387 and

q̂∗ = 0.987.

Table 5 shows part of the classification results. A complete list of the classification results

is shown in the supporting information. First, one can see that the recurrence is likely

classified as reinfection if variants in the recurrence are prevalent and not observed in the

initial sequencing. Taking 151→151R pair, for example, the non-sharing variant CAM.00 that

appeared in the recurrence sequencing is the most prevalent variant in the sample, suggesting

that the recurrence is likely reinfection. Secondly, the high transition probability q̂∗ = 0.987

suggests that a unobserved variant in the initial sequencing likely remains unobserved in the

recurrence sequencing if the recurrence is a relapse. This explains why 152→152R pair is

classified as reinfection. The appearance of prevalent variants CAM.05 and CAM.07 in the

recurrence sequencing significantly lowers the classification probability from ξ
(0)
i to ξ

(1)
i .

Some recurrence pairs tend to have more diverse and abundant minority variants. Many

variants tend to be non-sharing due to this abundance. For example, both 80→80R pair and

125→125R pair have multiple variants in the recurrence sequencing that did not appear in the
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initial sequencing, resulting in a low value of ξ
(1)
i and reinfection as the classification result.

It is worth of noting that, non-sharing variants in the initial sequencing have little impact

on ξ
(1)
i . Taking 36→36R, for example, the pair is still classified as relapse even when seven

initial variants were not observed in the recurrence sequencing. The classification probability

ξ
(1)
i only slightly decreases from ξ

(0)
i . This tendency can be explained by a low value of

transition probability estimate q̂ = 0.387. If q̂ is small, it is not unusual to see a variant in

the initial sequencing not observed in the recurrence sequencing if the infection is a relapse

pair like 36→36R. In contrast, even though the 80R→80RR pair has five sharing variants

in the initial sequencing, the classification probability ξ
(1)
i decreases significantly from ξ

(0)
i

because one non-sharing variant in the recurrence sequencing, CAM.04, is prevalent.

When comparing our method to the binomial probability model (BPM), disparity occurs

when prevalent variants appeared only in the recurrence sequencing. As discussed earlier, the

152→152R and 80R→80RR pairs are classified as reinfection by our method because non-

sharing variants appeared in recurrence sequencing are prevalent. The BPM method classifies

them as relapse since more than one prevalent variant overlapped in both sequencings, such

as CAM.00 and CAM.01 in the 152→152R pair, and CAM.00, CAM.02, and CAM.06 in

the 80R→80RR pair. Contrarily, the BPM method likely classifies a recurrent infection to

reinfection if there is only one sharing variant that is prevalent, such as CAM.00 in the

96→96R pair. Our method otherwise classifies the pair as relapse since there are not enough

non-sharing variants appeared in the recurrence sequencing. In summary, the classification

result of 80→80R pair demonstrates the flaw of BPM. When multiple prevalent non-sharing

variants (such as CAM.01, CAM.02 and CAM.03) appears in the recurrence, it is more

likely the recurrence is reinfection, not relapse. A method like BPM considering only shared

variants ignores this possibility and likely misclassifies the case.

Note that, from a statistical point of view, the analysis is sensitive to the selection of



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

18 Biometrics, XXX XXXX

background reinfection rate. If the reinfection rate is misidentified, the maximum likelihood

estimator of the coefficients in model (1) may not be consistent, as well as the classification

probability ξ̂
(0)
i calculated from these estimators. The classification probability ξ̂

(1)
i may not

be consistent as well since it is established upon the initial classification probability ξ̂
(0)
i . In

this data analysis, the classification result based on ξ̂
(1)
i is quite robust when the reinfection

rates is less than 10%. Meanwhile, an in vivo study on the dynamics of P. vivax infection

suggests that up to 96% of the P. vivax infection is due to relapse in individuals living in

the endemic areas in Thailand (Adekunle et al., 2015). Cambodia is in Southeast Asia and

geographically adjacent to Thailand. Assuming 5% reinfection rate in this area is reasonable.

Interestingly, from the complete list of our classification result in the supporting information,

23 individuals had recurrent infections among 78 subjects at the baseline. Among those 23

subjects, 10 subjects are classified as reinfections by our algorithm. The reinfection rate

µ = P (Ni = 1|Ri = 0) may be estimated at 10/(78-13)=15%, which is higher than the

literature suggests.

[Table 5 about here.]

6. Discussion

In this paper, we propose a novel classification method that is model-based and utilizes

transition likelihoods to classify recurrent Plasmodium vivax infections as either relapse or

reinfection. Previous work used only shared variants to calculate the reinfection probability.

Here, we show that non-shared variants are also informative. Both simulation studies and

real data analysis support the feasibility and practical use of our classifier. Some assumptions

and generalizations of our method are worth of discussion.

First, we assume that the reinfection rate µ is known or can be correctly specified. Model

misspecification on µ can be problematic for both regression coefficient estimation and
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classification probability calculation when an incorrect value is used. Through simulation

experiments listed in our supporting information, one can see the impact of the misspecifica-

tion is apparent when the sample size is small. When the sample size is large, however, the

bias in the coefficient estimation diminishes, and the performance of our classifier improves.

Our approach is robust to the misspecification of µ when the sample size is large. As one can

imagine, bias more likely occurs to the estimation of intercept α since both µ and α represent

some sense of baseline occurrence rates. Underestimation of µ shall lead to overestimation of

α, and overestimation of µ shall lead to underestimation of α to balance the overall baseline

occurrence rate. Such tendency in bias can be seen in our simulation results in the supporting

information. Meanwhile, although misspecification on µ leads to biased estimation of ξ
(0)
i ,

the classification performance of ξ̂
(1)
i utilizing transition likelihoods is mildly affected when

the reinfection rate is underestimated. Even when the reinfection rate is overestimated, the

accuracy of the classifier I(ξ̂
(1)
i > 0.5) can still reach a satisfactory level.

Secondly, we assume the occurrence of the variants is independent. This assumption can

be checked in our real data. Using Fisher’s exact tests for presence/absence of any two of

13 most frequent variants, the minimum p-value is 0.0048 and only ten out 78 pairs have

p-value smaller than 0.05. After Benjamini-Hochberg adjustment for multiple comparisons,

none of the p-values is smaller than 0.05. The independence assumption is not significantly

violated in our case.

Lastly, we assume the transition probabilities are equal for all variants, i.e., q1 = · · · = qJ

and q∗1 = · · · = q∗J . This assumption can be relaxed using external information to model the

transition probabilities. Specifically, one can assume the probability follow a logistic model

log{qj/(1 − qj)} = W ′
jγ and log{q∗j/(1 − q∗j )} = W ′

jγ
∗, where Wj is a column vector of

external covariates, and γ and γ∗ are column vectors of regression coefficients. In our case,

reading frequency of the variant may be the covariate that is associated with the transition
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of the variants. It is worth noting that we assume the transition starts from a new infection

to either relapse or reinfection. However, in our real data, there are seven second or third

recurrent infections. While in the real data analysis, we treated the most recent infection as

the initial infection, the recurrent infection may depend on multiple previous events in this

case. The modeling is much more complicated, considering the status of previous infections

is unknown except for the baseline infection. It is not clear whether a relapse infection could

be associated with the transition probability of the variants. One possible approach is to

include the relapse indicator, Ri, in the logistic model for qj and q∗j , as part of covariates

Wj. However, since Ri is not observable, it is not clear how γ and γ∗ can be estimated. We

leave it for future research.

Our current analysis considers only recurrence indicator without time domain involved.

The causes of the recurrent infection can actually be seen as competing risks, for which

one observes the event occurrence of either relapse or reinfection. In our case, the cause of

the event is unknown in all of the events, so the challenge remains as how one can derive

the classification probability using a hazard model and transition likelihoods to classify the

recurrent infections incorporating the time to infection.
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Table 1
Bias of regression coefficient estimation under scenario 1

µ n β1 β2 β3 β4 β5

0.05 100 1.129 1.243 1.181 -0.142 -0.276
200 0.114 0.044 0.093 -0.048 -0.081
400 0.026 0.014 0.041 -0.003 0.012
800 0.012 0.005 0.021 -0.004 0.007

0.12 100 3.899 3.774 3.837 -3.748 -0.519
200 0.742 0.379 0.424 -0.050 -0.341
400 0.028 0.030 0.045 -0.004 -0.010
800 0.008 0.005 0.030 -0.014 0.001

0.25 100 5.816 4.482 4.579 -0.814 -2.132
200 3.066 2.573 2.478 -0.985 -0.544
400 0.271 0.092 0.079 0.120 -0.039
800 0.014 0.028 0.029 0.001 0.007

µ n β6 β7 β8 β9 β10

0.05 100 -0.756 -1.409 -1.295 -0.863 -0.754
200 -0.089 -0.135 -0.197 -0.135 -0.153
400 -0.022 -0.032 -0.028 -0.026 -0.043
800 -0.003 -0.015 -0.012 -0.010 -0.023

0.12 100 -3.657 -1.947 -1.914 -1.718 -5.552
200 -0.860 -0.973 -0.214 -2.913 -0.650
400 -0.049 -0.053 0.004 -0.015 -0.062
800 -0.018 -0.023 0.001 -0.001 -0.013

0.25 100 -4.738 -4.455 -3.278 -5.488 -4.870
200 -1.155 -2.339 -3.635 -2.956 -1.537
400 -0.143 -0.263 -0.225 -0.612 -0.210
800 -0.016 -0.010 -0.072 -0.037 -0.020
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Table 2
Bias of regression coefficient estimation under scenario 2

µ n β1 β2 β3 β4 β5

0.05 100 0.656 0.367 0.177 -0.746 -0.924
200 -0.100 -0.004 0.192 -0.178 -0.108
400 0.010 -0.019 0.004 -0.015 -0.002
800 0.009 -0.011 -0.004 -0.006 -0.006

0.12 100 -0.368 -1.593 -2.398 -1.302 -1.104
200 -0.541 -0.682 -0.138 -1.069 -2.454
400 -0.015 0.006 -0.050 -0.055 -0.002
800 -0.012 -0.007 -0.004 -0.013 0.007

0.25 100 -1.367 -2.823 -1.996 -3.290 -1.771
200 -1.325 -1.096 -1.609 -2.230 -3.028
400 -0.467 -0.876 0.152 -1.062 -0.190
800 0.012 -0.090 -0.002 -0.023 -0.019

µ n β6 β7 β8 β9 β10

0.05 100 -1.965 -1.708 0.768 0.700 1.537
200 -0.257 -0.220 0.072 -0.090 0.080
400 -0.017 -0.033 0.008 -0.017 0.000
800 -0.003 -0.010 0.006 -0.008 -0.001

0.12 100 -3.751 -6.018 1.511 0.675 -0.877
200 -1.751 -1.306 0.509 0.586 0.267
400 -0.074 -0.150 0.041 -0.029 -0.074
800 -0.019 -0.008 0.006 0.001 0.001

0.25 100 -3.384 -3.217 2.677 1.502 1.927
200 -4.561 -3.112 1.756 -0.204 1.783
400 -1.325 -1.724 0.370 -0.042 0.158
800 -0.293 -0.091 0.031 -0.078 -0.050
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Table 3
Operating characteristics of proposed classifiers under low-dimensional scenarios

BPM I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5)

Scenario µ n sens spec acc sens spec acc sens spec acc

1 0.05 100 89.1 83.3 88.2 89.6 12.0 76.5 93.2 82.4 91.2
200 89.2 83.7 88.3 97.0 3.8 81.8 98.4 87.2 96.5
400 89.3 84.2 88.5 99.5 0.7 83.4 98.8 87.8 97.0
800 89.4 84.0 88.5 100.0 0.0 83.7 98.9 88.3 97.2

0.12 100 88.9 84.4 87.5 64.7 38.2 56.1 73.0 79.5 75.0
200 89.1 84.2 87.5 78.4 25.3 60.9 93.2 91.2 92.5
400 89.2 84.2 87.6 87.0 16.8 63.9 97.4 92.0 95.6
800 89.3 84.1 87.6 92.2 11.5 65.7 97.6 92.3 95.9

0.25 100 89.1 84.4 86.7 44.3 58.5 51.6 50.8 72.8 61.9
200 89.4 84.3 86.8 46.1 57.6 52.0 71.1 90.1 80.8
400 89.3 84.4 86.9 50.9 55.1 53.1 92.0 94.4 93.2
800 89.4 84.3 86.8 53.0 55.3 54.2 95.7 94.7 95.2

2 0.05 100 89.2 85.1 88.3 81.4 19.8 68.5 85.8 79.5 84.3
200 89.3 84.9 88.4 92.3 8.3 74.9 96.7 88.4 94.9
400 89.4 84.5 88.4 98.2 2.0 78.5 98.4 88.8 96.4
800 89.5 84.2 88.5 99.8 0.2 79.3 98.5 89.5 96.6

0.12 100 89.1 84.5 87.2 55.3 48.0 52.4 61.9 74.4 66.6
200 89.2 83.9 87.1 63.3 39.3 53.7 83.9 90.0 86.3
400 89.5 83.9 87.3 73.8 29.7 56.4 96.2 93.0 94.9
800 89.6 84.0 87.4 80.2 23.6 57.8 97.0 93.4 95.6

0.25 100 89.3 84.1 86.3 41.1 62.5 53.6 44.6 70.5 59.5
200 89.6 84.1 86.4 35.6 67.5 54.1 54.7 87.3 73.6
400 89.8 84.2 86.5 35.9 67.7 54.3 80.8 94.6 88.7
800 89.7 84.2 86.5 33.7 71.7 55.6 94.0 95.5 94.9
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Table 4
Average bias of coefficient estimation, variable selection, and operating characteristics of our proposed classifier

under high-dimensional scenarios

Scenario 3 I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5)

µ (n, J) Bias TP TN sens spec acc sens spec acc

0.05 (100,200) 0.11 5 146 100 0 92.0 100 80.6 98.3
(200,400) 0.03 4 332 100 0 92.2 99.0 97.0 98.8

0.12 (100,200) 0.07 5 157 99.0 1.3 82.3 100 69.1 94.6
(200,400) 0.02 5 353 99.8 0.1 83.2 99.0 85.1 96.7

0.25 (100,200) 0.09 5 156 89.1 11.9 65.9 100 75.2 92.6
(200,400) 0.04 5 351 82.4 17.5 63.7 89.9 85.8 88.9

Scenario 4 I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5)

µ (n, J) Bias TP TN sens spec acc sens spec acc

0.05 (100,200) 0.01 5 194 100 0 91.9 100 50 95.2
(200,400) 0.01 5 395 100 0 93.6 100 80 98.2

0.12 (100,200) 0.07 5 157 90.9 0 76.9 97.6 57.1 91.1
(200,400) 0.02 5 354 97.4 0 83.5 97.7 88.9 96.7

0.25 (100,200) 0.05 5 174 70.5 27.5 59.2 86.7 74.3 80.9
(200,400) 0.11 5 280 71.8 24 58.8 96.3 83.3 92
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Table 5
Classification results for recurrence pairs using our method and binomial probability model

Initial Recurrence Variant Proposed BPM

Recurrence Pair Variants β̂ ξ̂
(0)
i Variants Prevalence ξ̂

(1)
i Class Class

36→ 36R CAM.00 1.833 0.960 CAM.01 0.269 0.870 Relapse Relapse
CAM.01 0.469 CAM.02 0.410
CAM.02 0.892 CAM.07 0.192
CAM.03 0 CAM.17 0.064
CAM.04 3.519
CAM.05 -1.085
CAM.06 -1.416
CAM.07 1.750
CAM.09 0
CAM.11 0

80 → 80R CAM.00 1.833 0.992 CAM.00 0.590 0.000 Reinfection Relapse
CAM.04 3.519 CAM.01 0.269
CAM.05 -1.085 CAM.02 0.410
CAM.08 0.395 CAM.03 0.295
CAM.09 0 CAM.05 0.231
CAM.24 2.954 CAM.06 0.231
CAM.27 0 CAM.07 0.192

CAM.08 0.154
CAM.12 0.064
CAM.41 0.013

80R→ 80RR CAM.00 1.833 0.673 CAM.00 0.590 0.340 Reinfection Relapse
CAM.01 0.469 CAM.02 0.410
CAM.02 0.892 CAM.04 0.346
CAM.03 0 CAM.06 0.231
CAM.05 -1.085 CAM.08 0.154
CAM.06 -1.416 CAM.12 0.064
CAM.07 1.750 CAM.59 0.013
CAM.08 0.395
CAM.12 0.677
CAM.41 0

96 → 96R CAM.00 1.833 0.979 CAM.00 0.590 0.992 Relapse Reinfection
CAM.02 0.892 CAM.30 0.013
CAM.04 3.519
CAM.08 0.395

125 → 125R CAM.02 0.892 0.130 CAM.00 0.590 0.000 Reinfection Reinfection
CAM.01 0.269
CAM.02 0.410
CAM.04 0.346
CAM.09 0.077
CAM.13 0.013
CAM.14 0.026
CAM.38 0.013
CAM.45 0.013

151 → 151R CAM.03 0 0.030 CAM.00 0.590 0.005 Reinfection Reinfection
CAM.05 -1.085 CAM.08 0.154
CAM.08 0.395 CAM.14 0.026

152 → 152R CAM.00 1.833 0.379 CAM.00 0.590 0.018 Reinfection Relapse
CAM.01 0.469 CAM.01 0.269

CAM.05 0.231
CAM.07 0.192


