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Abstract
Many biomedical studies collect data of mixed types of variables from multiple
groups of subjects. Some of these studies aim to find the group-specific and the
common variation among all these variables. Even though similar problems have
been studied by some previous works, their methods mainly rely on the Pearson
correlation, which cannot handle mixed data. To address this issue, we propose
a latent mixed Gaussian copula (LMGC) model that can quantify the correla-
tions among binary, ordinal, continuous, and truncated variables in a unified
framework. We also provide a tool to decompose the variation into the group-
specific and the common variation over multiple groups via solving a regular-
ized 𝑀-estimation problem. We conduct extensive simulation studies to show
the advantage of our proposed method over the Pearson correlation-basedmeth-
ods. We also demonstrate that by jointly solving the𝑀-estimation problem over
multiple groups, our method is better than decomposing the variation group by
group. We also apply our method to a Chlamydia trachomatis genital tract infec-
tion study to demonstrate how it can be used to discover informative biomarkers
that differentiate patients.

KEYWORDS
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1 INTRODUCTION

With the rapid development of technology, high-
dimensional multi-omics data can be collected from
the same subject, such as genomics (DNA methylation,
copy number variation, and single nucleotide polymor-
phism [SNP]), transcriptomics (mRNA expression and
microRNA expression), proteomics, and metabolomics
data. Much evidence has demonstrated the benefit of
integrating these data in an analysis. However, in practice,
such an integrative analysis can be challenging because
multi-omics data can be of different types and at differ-
ent scales. It is especially challenging when seeking to
identify the common and differential networks between

two or more subject groups. An example is a Chlamydia
trachomatis genital tract infection study. Chlamydia is
the leading bacterial sexually transmitted infection in the
United States and the infection is often asymptomatic. In
up to 50% of women, untreated infection can ascend from
the cervix to the upper genital tract and potentially lead
to severe female reproductive morbidities. Identification
of the commonly and differentially expressed genes and
their underlying regulatory SNPs between women with
and without ascending infection can greatly enhance the
understanding of disease.
In previous studies, people aim to find the correlations

of differentially expressed genes across groups of subjects
with different phenotypes. A lot of methods have been
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developed for such a differential gene coexpression anal-
ysis (van Dam et al., 2018), which aims to reveal regu-
latory genes corresponding to different phenotypes. Wat-
son (2006) proposed a hierarchical clustering method to
identify groups of genes that are differentially expressed
under different phenotypes. Choi and Kendziorski (2009)
introduced a testing method to test whether some given
gene sets are differentially expressed between different
groups. Other related works include Tesson et al. (2010),
Amar et al. (2013), and Rahmatallah et al. (2014). All these
methods focus on finding the group-specific structure of
different phenotypes but do not consider the shared infor-
mation across groups. To account for the shared informa-
tion, Alter et al. (2003) proposed to use the generalized
singular value decomposition to decompose the gene
expression data as a sum of the effects that are shared for
both data sets and the effects that are unique for each data
set. However, their method only applies to two data sets.
Ponnapalli et al. (2011) further extended it to deal with
three or more data sets. However, all of these methods
only apply to continuous gene expression data and are hard
to be extended to multi-omics data with mixed types of
variables.
To study the correlations among mixed types of vari-

ables, many new methods have been developed. Fan et al.
(2017) proposed a latentGaussian copulamodel tomeasure
the correlations between binary and continuous variables.
They assumed that the observed binary and continuous
variables are driven by some latent variables that follow the
nonparanormal distribution (Liu et al., 2009). Under such
an assumption, Fan et al. (2017) proposed to use Kendall’s
𝜏, a semiparametric rank-based correlation coefficient esti-
mator, to measure the latent correlations between binary
and continuous variables. Quan et al. (2018) and Feng and
Ning (2019) extended the method to measure correlations
among ordinal, binary, and continuous variables. Yoon
et al. (2020) further extended it to incorporate truncated
variables. However, all these works only considered one
population. They did not consider decomposing the vari-
ation into common and group-specific components.
There are several works tackling the problem of varia-

tion decomposition. The problem can be approached from
several different perspectives, including principal compo-
nent analysis (PCA) (Lock et al., 2013; Zhou et al., 2015;
Feng et al., 2018), canonical correlation analysis (CCA)
(Shu et al., 2020), and partial least squares (PLS) (Löfst-
edt and Trygg, 2011). Lock et al. (2013) introduced the joint
and individual variation explained (JIVE) method that
can capture the joint variation across different data types
and the individual variation of each data type. Feng et al.
(2018) developed angle-based joint and individual varia-
tion explained (AJIVE) method, where score subspaces
were used to ensure an identifiable decomposition. Zhou
et al. (2015) proposed common orthogonal basis extrac-

tion (COBE) for efficient extraction of common and indi-
vidual features, where they used a low-rank approxima-
tion to decompose the data into a shared common sub-
space and many individual subspaces. Shu et al. (2020)
proposed D-CCA, a decomposition-based CCA method.
Instead of using the Euclidean space, D-CCA defines the
common and unique parts using a more general Hilbert
space. Löfstedt and Trygg (2011) derived OnPLS to separate
the shared and specific variations. However, these meth-
ods are designed only for continuous variable, and cannot
be directly applied to other variables, such as binary, ordi-
nal, or truncated variables. To carry out integrative anal-
ysis for data of different types and decompose the data
into shared and individual structures, Li and Gaynanova
(2018) developed the generalized association study (GAS),
which uses the log-likelihood function to integrate differ-
ent variables that follow exponential family distributions.
Zhu et al. (2020) generalized the idea of GAS and proposed
a generalized integrative PCA method, which can be used
to analyze more than two data sets. It also allows data to
have blockwisemissing values.However, all thesemethods
focused on finding the similarities and differences among
variables collected from one population and thus cannot
be used to decompose the variation of two subpopulations.
To find the common and group-specific variation of

mixed variables for multiple groups, we propose a two-
stepmethod. First, using the latentmixed Gaussian copula
(LMGC) model, we measure correlations among binary,
ordinal, continuous, and truncated variables under a uni-
fied framework. Compared with the existing works (Fan
et al., 2017; Quan et al., 2018; Feng and Ning, 2019; Yoon
et al., 2020), we derive the bridge function for ordinal
and truncated variables and prove that it is invertible. As
pointed out by one reviewer, we acknowledge that such
a bridge function was concurrently found by an indepen-
dent work (Huang et al., 2021). Using the LMGC model,
we obtain estimators of the correlation matrices for each
group. Next, we propose to decompose such correlation
matrices as a sum of a low-rank matrix that captures the
group-specific variation for each group and a sparsematrix
that captures the common variation across all groups.
Such a decomposition is done by solving a penalized 𝑀-
estimation problem. We view the decomposition step as a
denoising process that after removing the shared variation,
the low-rank group-specific components can give a clearer
view of the differences between groups.
The rest of this paper is organized as follows. In Sec-

tion 2, we describe the formulation and solution of our pro-
posed method in details. In Section 3, we carry out exten-
sive simulation studies to compare our method with some
competitive methods. In Section 4, we apply our method
to a C. trachomatis genital tract infection study to demon-
strate how it can be used to find useful biomarkers that dif-
ferentiate subtypes of patients.
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2 METHODOLOGY

We consider two groups of subjects. For the 𝑔th group,
assume that we observe a 𝑝-dimensional vector 𝑿𝑔 =
(𝑋𝑔,1, … , 𝑋𝑔,𝑝)

𝑇 containing variables of mixed types, such
as continuous, binary, ordinal, or truncated variables. We
assume that 𝑿𝑔 is derived from a vector of latent continu-
ous variables 𝒀𝑔 = (𝑌𝑔,1, … , 𝑌𝑔,𝑝)

𝑇 by the transformation
function 𝒉𝑔 = (ℎ𝑔,1, … , ℎ𝑔,𝑝)

𝑇 that

𝑋𝑔,𝑗 = ℎ𝑔,𝑗(𝑌𝑔,𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑌𝑔,𝑗, if 𝑗 ∈ ℂ;

𝐼(𝑌𝑔,𝑗 > 𝐶𝑔,𝑗), if 𝑗 ∈ 𝔹;

𝐼(𝑌𝑔,𝑗 > 𝐷𝑔,𝑗)𝑌𝑔,𝑗, if 𝑗 ∈ 𝕋;∑𝐿𝑗−1

𝑙=1
𝐼(𝑌𝑔,𝑗 > 𝐶𝑔,𝑗,𝑙), if 𝑗 ∈ 𝕆;

(1)

where ℂ, 𝔹, 𝕋, and 𝕆 are the index sets for continuous,
binary, truncated, and ordinal variables, respectively, and
{𝐶𝑔,𝑗}𝑗∈𝔹, {𝐷𝑔,𝑗}𝑗∈𝕋, and {𝐶𝑔,𝑗,𝑙}𝑗∈𝕆,1≤𝑙≤𝐿𝑗−1 are the corre-
sponding cutoffs. We assume that the latent 𝒀𝑔 follows
a Gaussian copula model proposed by Liu et al. (2009).
More specifically, we assume that there exists somemono-
tonically increasing functions 𝒇𝑔 = (𝑓𝑔,1, … , 𝑓𝑔,𝑝)

𝑇 such
that (𝑓𝑔,1(𝑌𝑔,1), … , 𝑓𝑔,𝑝(𝑌𝑔,𝑝))𝑇 ∼ 𝑁(𝟎, 𝑹𝑔), where 𝑹𝑔 is a
correlation matrix. We call (1) as the LMGC model for
mixed data. In the existing literature, Fan et al. (2017) stud-
ied the LMGC model for continuous and binary variables
only. Yoon et al. (2020) further extended it to incorpo-
rate truncated variables. In all these works, the authors
developed consistent estimators of the latent correlation
matrix, and further applied these estimators in some unsu-
pervised problems, such as the CCA. However, we would
like to point out that these works only deal with a single
set of samples.
Different from theseworks,we propose to use the LMGC

model to decompose the latent correlation matrix into a
low-rank and a sparse matrices that capture the group-
specific and common variation among mixed variables,
respectively. The LMGC model transforms the observed
mixed variables into latent multivariate normal variables.
Then, we perform the decomposition based on the correla-
tionmatrix of the latent variables. We emphasize that even
though the latent variables themselves are not observable,
it is still feasible to decompose their correlation matrix.
Indeed, such a decomposition is motivated by factor anal-
ysis. We assume that the latent variables 𝒇𝑔(𝒀𝑔) follow a
factor decomposition that

𝒇𝑔(𝒀𝑔) = 𝚲𝑔𝑭𝑔 + 𝑼, (2)

where 𝑭𝑔 ∈ ℝ𝑟𝑔 is the group-specific latent factors from
group 𝑔, 𝚲𝑔 ∈ ℝ𝑝×𝑟𝑔 is the loading matrix, 𝑟𝑔 is the num-
ber of latent factors in group 𝑔, and 𝑼 ∈ ℝ𝑝 is the shared
component, which is assumed to be uncorrelated with
𝑭𝑔. To avoid the identifiability issue, we adopt the stan-
dard conditions in the factor analysis literature by assum-
ing that cov(𝑭𝑔) = 𝑰𝑟𝑔 and 𝚲

′
𝑔𝚲𝑔 is a diagonal matrix for

𝑔 ∈ {1, 2}. In (2), we assume that the group-specific vari-
ation is induced by the latent factor 𝑭𝑔 and the common
variation is induced by the idiosyncratic component 𝑼
that is shared in the two groups. Then, it follows from (2)
that

𝑹𝑔 = 𝚺𝑔 + 𝚺𝑈 = 𝚲𝑔𝚲
′
𝑔 + 𝚺𝑈. (3)

Motivated by the factormodel in (2), we assume the group-
specific variation𝚺𝑔 is low rank, that is, 𝑟𝑔 is small. In addi-
tion, we assume that the common variation 𝚺𝑈 is sparse.
In that way, we treat 𝚺𝑈 as the background noise and (3)
as a denosing process. That is, after removing the com-
mon 𝚺𝑈 , the group-specific variation are reflected by 𝚺𝑔 =
𝚲𝑔𝚲

′
𝑔. Since the signal in the background noise is usually

small, we assume that 𝚺𝑈 is sparse, meaning that vari-
ables are mostly not highly correlated in the background
noise.
Next, we show in Proposition 1 that Equation (3) is a

well-defined problem, in the sense that even if 𝒇𝑔(𝒀𝑔)
has different decomposition in Equation (2), the decom-
position of 𝑹𝑔 in Equation (3) is still unique. Further-
more, we demonstrate in Section 2.2 that the decom-
position in Equation (3) does not require 𝒇𝑔(𝒀𝑔) to be
observable.

Proposition 1. For 𝑔 ∈ {1, 2}, suppose 𝑟𝑔 is fixed, and
𝒇𝑔(𝒀𝑔) = 𝚲𝑔𝑭𝑔 + 𝑼 = 𝚲̃𝑔𝑭𝑔 + 𝑼̃, where (𝑭1, 𝑭2,𝑼) and
(𝑭1, 𝑭2, 𝑼̃) are both mutually uncorrelated. Then, 𝚲𝑔𝚲′𝑔 =
𝚲̃𝑔𝚲̃

′
𝑔 and 𝚺𝑈 = 𝚺̃𝑈 .

Finally, we remark that using factor models for varia-
tion decomposition has also been considered in some other
works. De Vito et al. (2019) proposed a multistudy fac-
tor model that decomposes observed variables as common
factors shared across multiple studies and study-specific
factors. Ha et al. (2015) proposed a Gaussian Graphical
Model based method to decompose the variation among
multiple variables as a shared global component and a
group-specific component, where they assume the group-
specific component is driven by latent factors. However,
theseworks only apply to continuous variables and require
all variables to be observable. On the contrary, our method
applies to mixed types of variables and allows 𝒇𝑔(𝒀𝑔) to
be latent.
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2.1 Rank-based latent correlation
matrix estimator

In this section, we propose a rank-based estimator of
𝑹𝑔 for mixed data. Since such an estimator is sepa-
rately calculated for each group, for the sake of simplic-
ity, we omit the notation 𝑔 in the subscript. We denote
Φ𝑝(𝝁, 𝚺) as the cumulative distribution function (c.d.f.) of
the 𝑝-dimensional multivariate normal distribution with
mean 𝝁 and covariance matrix 𝚺. In particular, we write
Φ2(𝜇1, 𝜇2; 𝜎12) as the c.d.f. of a two-dimensional normal
distribution with mean (𝜇1, 𝜇2)𝑇 and 𝜎12 being the covari-
ance between the two variables.
Estimating the latent correlation matrix has been stud-

ied by Liu et al. (2009), Fan et al. (2017), Quan et al. (2018),
and Yoon et al. (2020). They proposed to calculate the
Kendall’s 𝜏 correlations of observed variables and relate
them to the correlations of latent variables via some bridge
functions. In particular, let {(𝑋𝑖𝑗, 𝑋𝑖𝑘)}𝑛𝑖=1 be the realiza-
tions of the observed variables 𝑋𝑗 and 𝑋𝑘, the Kendall’s 𝜏
between 𝑋𝑗 and 𝑋𝑘 is defined as

𝜏̂𝑗𝑘 =
2

𝑛(𝑛 − 1)

∑
1≤𝑖<𝑖′≤𝑛

sign(𝑋𝑖𝑗 − 𝑋𝑖′𝑗) sign(𝑋𝑖𝑘 − 𝑋𝑖′𝑘).

(4)

Let 𝜏𝑗𝑘 = 𝔼(𝜏̂𝑗𝑘) be the population Kendall’s 𝜏. Then, the
latent correlation between 𝑓𝑗(𝑌𝑗) and 𝑓𝑘(𝑌𝑘) is 𝑅𝑗𝑘 =
𝐹−1
𝑗𝑘
(𝜏𝑗𝑘), where 𝐹𝑗𝑘(⋅) is a bridge function. We summarize

the bridge functions for the pairwise correlations among
continuous, binary, and truncated variables. These formu-
las were derived in Liu et al. (2009), Fan et al. (2017), and
Yoon et al. (2020).

Theorem 1. ((Liu et al., 2009; Fan et al., 2017; Yoon et al.,
2020))

(a) For 𝑗 ∈ ℂ and 𝑘 ∈ ℂ, 𝐹𝑗𝑘(𝑅𝑗𝑘) = 2 sin
−1
(𝑅𝑗𝑘)∕𝜋.

(b) For 𝑗 ∈ 𝔹 and 𝑘 ∈ 𝔹, 𝐹𝑗𝑘(𝑅𝑗𝑘) = 2Φ2(Δ𝑗, Δ𝑘; 𝑅𝑗𝑘) −

2Φ1(Δ𝑗)Φ1(Δ𝑘), where Δ𝑗 = 𝑓𝑗(𝐶𝑗) and Δ𝑘 = 𝑓𝑘(𝐶𝑘).
(c) For 𝑗 ∈ 𝔹 and 𝑘 ∈ ℂ, 𝐹𝑗𝑘(𝑅𝑗𝑘) = 4Φ2(Δ𝑗, 0; 𝑅𝑗𝑘∕√

2) − 2Φ1(Δ𝑗), where Δ𝑗 = 𝑓𝑗(𝐶𝑗).
(d) For 𝑗 ∈ 𝕋 and 𝑘 ∈ 𝔹, 𝐹𝑗𝑘(𝑅𝑗𝑘) = 2{1 − Φ1(Δ𝑗)}Φ1

(Δ𝑘) − 2Φ3(−Δ𝑗, Δ𝑘, 0; 𝑹3𝑎) − 2Φ3(−Δ𝑗, Δ𝑘, 0; 𝑹3𝑏),
where Δ𝑗 = 𝑓𝑗(𝐶𝑗), Δ𝑘 = 𝑓𝑘(𝐶𝑘),

𝑹3𝑎 =

⎛⎜⎜⎜⎜⎜⎝

1 −𝑅𝑗𝑘
1√
2

−𝑅𝑗𝑘 1 −
𝑅𝑗𝑘√
2

1√
2

−
𝑅𝑗𝑘√
2

1

⎞⎟⎟⎟⎟⎟⎠
and

𝑹3𝑏 =

⎛⎜⎜⎜⎜⎜⎝

1 0 −
1√
2

0 1 −
𝑅𝑗𝑘√
2

−
1√
2

−
𝑅𝑗𝑘√
2

1

⎞⎟⎟⎟⎟⎟⎠
. (5)

(e) For 𝑗 ∈ 𝕋 and 𝑘 ∈ ℂ, 𝐹𝑗𝑘(𝑅𝑗𝑘) = −2Φ2(−Δ𝑗, 0; 1∕√
2) + 4Φ3(−Δ𝑗, 0, 0; 𝑹3𝑐), where Δ𝑗 = 𝑓𝑗(𝐶𝑗) and

𝑹3𝑐 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1√
2

𝑅𝑗𝑘√
2

1√
2

1 𝑅𝑗𝑘

𝑅𝑗𝑘√
2

𝑅𝑗𝑘 1

⎞⎟⎟⎟⎟⎟⎟⎠
. (6)

(f) For 𝑗 ∈ 𝕋 and 𝑘 ∈ 𝕋, 𝐹𝑗𝑘(𝑅𝑗𝑘) = −2Φ4(−Δ𝑗, −Δ𝑘, 0, 0;

𝑹4𝑎) + 2Φ4(−Δ𝑗, −Δ𝑘, 0, 0; 𝑹4𝑏), where Δ𝑗 = 𝑓𝑗(𝐶𝑗),

Δ𝑘 = 𝑓𝑘(𝐶𝑘),

𝑹4𝑎 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1√
2

−
𝑅𝑗𝑘√
2

0 1 −
𝑅𝑗𝑘√
2

1√
2

1√
2

−
𝑅𝑗𝑘√
2

1 −𝑅𝑗𝑘

−
𝑅𝑗𝑘√
2

1√
2

−𝑅𝑗𝑘 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

𝑹4𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑅𝑗𝑘
1√
2

𝑅𝑗𝑘√
2

𝑅𝑗𝑘 1
𝑅𝑗𝑘√
2

1√
2

1√
2

𝑅𝑗𝑘√
2

1 𝑅𝑗𝑘

𝑅𝑗𝑘√
2

1√
2

𝑅𝑗𝑘 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Liu et al. (2009), Fan et al. (2017), and Yoon et al. (2020)
proved that all these bridge functions are strictly increasing
for any 𝑅𝑗𝑘 ∈ (−1, 1). Thus, they are invertible. In practice,
we can estimate 𝑅𝑗𝑘 by 𝑅𝑗𝑘 = 𝐹−1

𝑗𝑘
(𝜏̂𝑗𝑘), where 𝐹−1𝑗𝑘 is the

inverse of the bridge function. The inversion can be done
by solving 𝐹𝑗𝑘(𝑥) = 𝜏̂𝑗𝑘 using the Newton–Raphson algo-
rithm. For a binary or truncated variable, Δ𝑘 = 𝑓𝑘(𝐶𝑘) is
unknown. We follow Fan et al. (2017) and use the plug-
in estimator Δ̂𝑘 = Φ−1{

∑𝑛

𝑖=1
𝐼(𝑋𝑖𝑘 ≠ 0)∕𝑛} to estimate

it.
Next, we derive the formulas of bridge functions for the

latent correlations between three-level ordinal variables
and continuous/binary/truncated/three-level ordinal vari-
ables. We also prove that all these bridge functions are
monotone so that they are invertible.
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Theorem 2. The following results hold.

(a) For 𝑗 ∈ 𝕆 and 𝑘 ∈ ℂ, 𝐹𝑗𝑘(𝑅𝑗𝑘; Δ𝑗1, Δ𝑗2) = 2Φ2(Δ𝑗2, 0;
𝑅𝑗𝑘√
2
) − 2Φ2(Δ𝑗2, 0; −

𝑅𝑗𝑘√
2
) − 2Φ3(Δ𝑗1, Δ𝑗2, 0; 𝑹3𝑑) + 2Φ3

(Δ𝑗2, Δ𝑗1, 0; 𝑹3𝑑), where Δ𝑗1 = 𝑓𝑗(𝐶𝑗1), Δ𝑗2 = 𝑓𝑗(𝐶𝑗2),
and

𝑹3𝑑 =

⎛⎜⎜⎜⎜⎝
1 0 −

𝑅𝑗𝑘√
2

0 1
𝑅𝑗𝑘√
2

−
𝑅𝑗𝑘√
2

𝑅𝑗𝑘√
2

1

⎞⎟⎟⎟⎟⎠
. (8)

(b) For 𝑗 ∈ 𝕆 and 𝑘 ∈ 𝔹, 𝐹𝑗𝑘(𝑅𝑗𝑘) = 2Φ2(Δ𝑗2, Δ𝑘; 𝑅𝑗𝑘) −

2Φ1(Δ𝑗2)Φ1(Δ𝑘) − 2Φ1(Δ𝑗1)Φ2(Δ𝑗2, Δ𝑘; 𝑅𝑗𝑘) + 2Φ1
(Δ𝑗2)Φ2(Δ𝑗1, Δ𝑘; 𝑅𝑗𝑘), where Δ𝑗1 = 𝑓𝑗(𝐶𝑗1), Δ𝑗2 =

𝑓𝑗(𝐶𝑗2), and Δ𝑘 = 𝑓𝑘(𝐶𝑘).
(c) For 𝑗 ∈ 𝕆 and 𝑘 ∈ 𝕋, 𝐹𝑗𝑘(𝑅𝑗𝑘; Δ𝑗1, Δ𝑗2, Δ𝑘) =

2{−2Φ1(Δ𝑘)Φ1(Δ𝑗2) − Φ1(Δ𝑗2) + 2Φ2(Δ𝑗2, Δ𝑘; 𝑅𝑗𝑘) −

Φ1(Δ𝑗1)Φ1(Δ𝑗2) + Φ2(0, Δ𝑗2; −
𝑅𝑗𝑘√
2
) − 2Φ1(Δ𝑗1)Φ2(Δ𝑗2,

Δ𝑘; 𝑅𝑗𝑘) − Φ1(Δ𝑘)Φ2(Δ𝑗2, Δ𝑘; 𝑅𝑗𝑘) + 2Φ3(0, Δ𝑗2, Δ𝑘;

𝑹3𝑒) − 2Φ3(0, Δ𝑗2, Δ𝑘; 𝑹3𝑓) + 2Φ3(Δ𝑗2, Δ𝑗1, 0; 𝑹3𝑑) +

2Φ4(0, Δ𝑗2, Δ𝑘, Δ𝑘; 𝑹4𝑐) + 2Φ4(0, Δ𝑗2, Δ𝑗1, Δ𝑘; 𝑹4𝑑) +

2Φ4(0, Δ𝑗2, Δ𝑗1, Δ𝑘; 𝑹4𝑒) + 2Φ4(0, Δ𝑗1, Δ𝑗1, Δ𝑘; 𝑹4𝑒) −

2Φ2(Δ𝑗1, Δ𝑘; 𝑅𝑗𝑘)Φ2(Δ𝑗2, Δ𝑘; 𝑅𝑗𝑘) − 2Φ5(0, Δ𝑗1, Δ𝑗1,

Δ𝑘, Δ𝑘; 𝑹5) + 2Φ5(0, Δ𝑗2, Δ𝑗1, Δ𝑘, Δ𝑘; 𝑹5)}, where
Δ𝑗1 = 𝑓𝑗(𝐶𝑗1), Δ𝑗2 = 𝑓𝑗(𝐶𝑗2), Δ𝑘 = 𝑓𝑘(𝐶𝑘),

𝑹3𝑒 =⎛⎜⎜⎜⎜⎜⎜⎝

1
𝑅𝑗𝑘√
2

−
1√
2

𝑅𝑗𝑘√
2

1 0

−
1√
2

0 1

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑹3𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −
𝑅𝑗𝑘√
2

−
1√
2

−
𝑅𝑗𝑘√
2

1 𝑅𝑗𝑘

−
1√
2

𝑅𝑗𝑘 1

⎞⎟⎟⎟⎟⎟⎟⎠
,

(9)

𝑹4𝑐 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
𝑅𝑗𝑘√
2

−
1√
2

1√
2

−
𝑅𝑗𝑘√
2

1 𝑅𝑗𝑘 0

−
1√
2

𝑅𝑗𝑘 1 0

1√
2

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝑹4𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑅𝑗𝑘√
2

−
𝑅𝑗𝑘√
2

−
1√
2

𝑅𝑗𝑘√
2

1 0 0

−
𝑅𝑗𝑘√
2

0 1 𝑅𝑗𝑘

−
1√
2

0 𝑅𝑗𝑘 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

𝑹4𝑒 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
𝑅𝑗𝑘√
2

−
𝑅𝑗𝑘√
2

1√
2

𝑅𝑗𝑘√
2

1 0 𝑅𝑗𝑘

−
𝑅𝑗𝑘√
2

0 1 0

1√
2

𝑅𝑗𝑘 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
and

𝑹5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
𝑅𝑗𝑘√
2

𝑅𝑗𝑘√
2

−
1√
2

1√
2

−
𝑅𝑗𝑘√
2

1 0 𝑅𝑗𝑘 0

𝑅𝑗𝑘√
2

0 1 0 𝑅𝑗𝑘

−
1√
2

𝑅𝑗𝑘 0 1 0

1√
2

0 𝑅𝑗𝑘 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

(d) For 𝑗 ∈ 𝕆 and 𝑘 ∈ 𝕆, 𝐹(𝑅𝑗𝑘) = 2Φ2(Δ𝑗2, Δ𝑘2; 𝑅𝑗𝑘) −

2Φ1(Δ𝑗2)Φ1(Δ𝑘2) − 4Φ2(Δ𝑘2, Δ𝑗2; 𝑅𝑗𝑘)Φ1(Δ𝑗1) + 4Φ2
(Δ𝑗1,Δ𝑘2;𝑅𝑗𝑘)Φ1(Δ𝑗2) + 2Φ2(Δ𝑗2,Δ𝑘2;𝑅𝑗𝑘)Φ2(Δ𝑗1,Δ𝑘1;

𝑅𝑗𝑘) − 2Φ2(Δ𝑗2, Δ𝑘1; 𝑅𝑗𝑘)Φ2(Δ𝑗1, Δ𝑘2; 𝑅𝑗𝑘), where
Δ𝑗1 = 𝑓𝑗(𝐶𝑗1), Δ𝑗2 = 𝑓𝑗(𝐶𝑗2), Δ𝑘1 = 𝑓𝑘(𝐶𝑘1),
Δ𝑘2 = 𝑓𝑘(𝐶𝑘2).

Proposition 2. All bridge functions in Theorem 2 are
strictly increasing functions of 𝑅𝑗𝑘 ∈ (−1, 1) for any given
constants Δ𝑗, Δ𝑘, Δ𝑗1, Δ𝑗2, Δ𝑘1, and Δ𝑘2.

For a three-level ordinal variable, Δ𝑗1 = 𝑓𝑗(𝐶𝑗1) and
Δ𝑗2 = 𝑓𝑗(𝐶𝑗2) are unknown in practice. We observe that

𝔼{𝐼(𝑋𝑖𝑗 = 2)} = ℙ(𝑋𝑖𝑗 = 2) = ℙ(𝑓𝑗(𝐶𝑗2) > Δ𝑗2)

= 1 − Φ1(Δ𝑗2),

𝔼{𝐼(𝑋𝑖𝑗 = 0)} = ℙ(𝑋𝑖𝑗 = 0) = ℙ(𝑓𝑗(𝐶𝑗1) < Δ𝑗1)

= Φ1(Δ𝑗1). (12)

Then, we can estimate Δ𝑗1 and Δ𝑗2 by the moment esti-
mators Δ̂𝑗1 = Φ−1(𝑛0∕𝑛) and Δ̂𝑗2 = Φ−1(1 − 𝑛2∕𝑛),
where 𝑛0 =

∑𝑛

𝑖=1
𝐼(𝑋𝑖𝑗 = 0), 𝑛1 =

∑𝑛

𝑖=1
𝐼(𝑋𝑖𝑗 = 1),

𝑛2 =
∑𝑛

𝑖=1
𝐼(𝑋𝑖𝑗 = 2), and 𝑛0 + 𝑛1 + 𝑛2 = 𝑛.

Given the bridge functions derived in Theorem 2, we
can use the same procedure described below Theorem 1 to
obtain the latent correlations between ordinal and other
variables. In this way, we can estimate each element of 𝑹.
However, the resulting estimator 𝑹 is not guaranteed to be
positive semidefinite. In that case, we project it to the near-
est positive semidefinitematrix by solving argmin𝑨≥0 ‖𝑹 −
𝑨‖𝐹 , where 𝑨 ≥ 0 means 𝑨 is positive semidefinite. Such
a problem can be solved by Zhao et al. (2014). With a slight
abuse of notation, we still denote the solution as 𝑹. In the
Supporting Information, we provide the R code to obtain𝑹
for the four types of variables. In our code,weused the code



6 LIU et al.

in the “mixedCCA” package (Yoon and Gaynanova, 2021)
to compute correlations of variables other than ordinal
variables and used our own code to compute correlations
of ordinal variables with other variables. As mentioned by
one reviewer, a recent “latentcor” package (Huang et al.,
2021) can compute 𝑹 more efficiently for these four types
of variables.

2.2 Decomposition of the latent
correlation matrices

In this section, we describe how to solve the decom-
position problem (3) and obtain estimators for low-rank
𝚺𝑔 and sparse 𝚺𝑈 after we obtain an estimator of 𝑹𝑔
using the LMGC model. Given an estimator 𝑹𝑔 of 𝑹𝑔, we
let 𝓁(𝚺1, 𝚺2, 𝚺𝑈) = (1∕2)‖𝑹1 + 𝑹2 − 𝚺1 − 𝚺2 − 2𝚺𝑈‖2𝐹 and
propose to solve a regularized𝑀-estimation problem that(
𝚺̂1, 𝚺̂2, 𝚺̂𝑈

)
= argmin

𝚺1≥0,𝚺2≥0,𝚺𝑈≥0
{𝓁(𝚺1, 𝚺2, 𝚺𝑈) + 𝜈1‖𝚺1‖∗

+ 𝜈2‖𝚺2‖∗ + 𝜈3‖𝚺𝑈‖1} , (13)

where 𝜈1, 𝜈2, and 𝜈3 are all nonnegative tuning parameters,
whose optimal values can be chosen by cross-validation.‖𝑴‖𝐹 , ‖𝑴‖1, and ‖𝑴‖∗ represents the Frobenius, 𝐿1-,
and nuclear norms of a matrix𝑴 = (𝑀𝑖𝑗) ∈ ℝ𝑛×𝑝, which

are defined as ‖𝑴‖𝐹 =√∑
𝑖

∑
𝑗
𝑀2
𝑖𝑗
, ‖𝑴‖1 = ∑

𝑖,𝑗
|𝑀𝑖,𝑗|,

and ‖𝑴‖∗ = ∑
𝑘
𝜆𝑘(𝑴), where 𝜆𝑘(𝑴) is the 𝑘th largest

eigenvalue of𝑴. In Equation (13), we use the nuclear norm
penalty to regularize the ranks of 𝚺1 and 𝚺2, and use the
𝐿1-penalty to induce a sparse estimator of 𝚺𝑈 . The nuclear
norm penalty has been shown to be useful to recover the
low-rank structure (Candès and Recht, 2009; Candès and
Tao, 2010; Mazumder et al., 2010). The 𝐿1-penalty is a well-
known penalty function to render a sparse solution (Tib-
shirani, 1996). In Equation (13), we choose optimal tuning
parameters by performing a grid search via fivefold cross-
validation. For each combination of these tuning parame-
ters, we reserve one-fifth samples from each group for test-
ing and use the rest for training. For the 𝑘th fold, we use
the test set to calculate the latent correlation matrix 𝑹(𝑘)𝑔 ,
solve (13) using the training set, and denote the solutions
as 𝚺̂(−𝑘)𝑔 and 𝚺̂(−𝑘)𝑈 . We choose the optimal (𝜈1, 𝜈2, 𝜈3) that
minimizes

∑5

𝑘=1
‖𝚺̂(−𝑘)1 + 𝚺̂

(−𝑘)
2 + 2𝚺̂

(−𝑘)
𝑈 − 𝑹

(𝑘)
1 − 𝑹

(𝑘)
2 ‖2𝐹 .

Next, we discuss how to solve (13). First, we obtain an
initial estimator of 𝑟𝑔 by letting 𝑟̂𝑔 = argmax𝑗≤min{(𝑛𝑔,𝑝)}
𝜆𝑗−1(𝑹𝑔)∕𝜆𝑗(𝑹𝑔), where 𝜆𝑗(𝑹𝑔) is the 𝑗th largest eigen-
value of𝑹𝑔. Such a rank estimator is commonly used in fac-
tor analysis literature (Lam and Yao, 2012; Ahn andHoren-
stein, 2013). We remark that 𝑟̂𝑔 is allowed to be larger than

ALGORITHM 1 The Proximal Gradient Descent Algorithm
for solving (13)

Input: 𝑿1 ∈ ℝ𝑛1×𝑝, 𝑿2 ∈ ℝ𝑛2×𝑝 .
Output: 𝚺̂1, 𝚺̂2 and 𝚺̂𝑈 .
Initialization: Compute 𝑹1, 𝑹2 and let 𝑹 = 𝑹1 + 𝑹2.
For 𝑔 = 1, 2, let 𝑟̂𝑔 = argmax𝑗≤min{(𝑛𝑔,𝑝)}𝜆𝑗−1(𝑹𝑔)∕𝜆𝑗(𝑹𝑔) and
𝚺̂
(0)
𝑔 = 𝑽̂𝑔𝑫̂𝑔𝑽̂

𝑇
𝑔 , where 𝑫̂𝑔 = diag{𝜆1(𝑹𝑔), … , 𝜆𝑟̂𝑔 (𝑹𝑔)}, 𝜆𝑗(𝑹𝑔) is

the 𝑗th eigenvalue of 𝑹𝑔, 𝒗
𝑗
𝑔 is the corresponding eigenvector

and 𝑽̂𝑔 = (𝒗1𝑔, … , 𝒗
𝑟̂𝑔
𝑔 ).

Let 𝚺̂(0)𝑈 = (𝑹 − 𝚺̂
(0)
1 − 𝚺̂

(0)
2 )∕2. Set the step size 𝑑 at

𝑑 = 𝑑(0) ∈ ℝ+.
At the (ℎ + 1)th iteration, let 𝑑 = 𝑑(ℎ) and repeat the following
steps.
Let 𝚺̂(ℎ+1)1 = 𝑼

(ℎ)

𝑟̂1
𝑺𝜈1 (𝑫

(ℎ)

𝑟̂1
)𝑽

(ℎ)𝑇

𝑟̂1
, where

𝑹 − 𝚺̂
(ℎ)
2 − 2𝚺̂

(ℎ)
𝑈 = 𝑼

(ℎ)

𝑟̂1
𝑫
(ℎ)

𝑟̂1
𝑽
(ℎ)𝑇

𝑟̂1
and

𝑺𝜈1 (𝑫
(ℎ)

𝑟̂1
) = diag{(𝜆1(𝑫

(ℎ)

𝑟̂1
) − 𝜈1)+, … , (𝜆𝑟̂1 (𝑫

(ℎ)

𝑟̂1
) − 𝜈1)+}.

If 𝜆min(𝚺̂
(ℎ+1)
1 ) ≥ 0 then go to the next step, else let 𝚺(ℎ+1)1 = 𝑨,

where 𝑨 = argmin𝜆min(𝑨)≥0 ‖𝚺̂(ℎ+1)1 − 𝑨‖𝐹 .
Let 𝚺̂(ℎ+1)2 = 𝑼

(ℎ)

𝑟̂2
𝑺𝜈2 (𝑫

(ℎ)

𝑟̂2
)𝑽

(ℎ)𝑇

𝑟̂2
, where

𝑹 − 𝚺̂
(ℎ+1)
1 − 2𝚺̂

(ℎ)
𝑈 = 𝑼

(ℎ)

𝑟̂2
𝑫
(ℎ)

𝑟̂2
𝑽
(ℎ)𝑇

𝑟̂2
and

𝑺𝜈2 (𝑫
(ℎ)

𝑟̂2
) = diag{(𝜆1(𝑫

(ℎ)

𝑟̂2
) − 𝜈2)+, … , (𝜆𝑟̂2 (𝑫

(ℎ)

𝑟̂2
) − 𝜈2)+}.

If 𝜆min(𝚺̂
(ℎ+1)
2 ) ≥ 0 then go to the next step, else let 𝚺(ℎ+1)2 = 𝑨,

where 𝑨 = argmin𝜆min(𝑨)≥0 ‖𝚺̂(ℎ+1)2 − 𝑨‖𝐹 .
Let 𝚺̂(ℎ+1)𝑈 = 𝑠(𝚺̂

(ℎ)
𝑈 − 𝑑∇𝚺𝑈

𝓁(𝚺̂
(ℎ+1)
1 , 𝚺̂

(ℎ+1)
2 , 𝚺

(ℎ)
𝑈 ), 𝜈3𝑑), where

𝑠(𝒙, 𝜋)𝑖,𝑗 = sign(𝑥𝑖,𝑗)(|𝑥𝑖,𝑗| − 𝜋)+ and
If 𝓁(𝚯̂(ℎ+1)) ≤ 𝑄𝑑{𝚯̂

(ℎ+1); 𝚯̂(ℎ)}, proceed to the next iteration,
else let 𝑑 = 0.8𝑑 and reevaluate
𝚺̂
(ℎ+1)
𝑈 = 𝑠(𝚺̂

(ℎ)
𝑈 − 𝑑∇𝚺𝑈

𝓁(𝚺̂
(ℎ+1)
1 , 𝚺

(ℎ+1)
2 , 𝚺̂

(ℎ)
𝑈 ), 𝜈3𝑑).

If 𝜆min(𝚺̂
(ℎ+1)
𝑈 ) ≥ 0 then go to the next step, else let

𝚺̂
(ℎ+1)
𝑈 = 𝚺̂

(ℎ+1)
𝑈 − 𝜆min(𝚺̂

(ℎ+1)
𝑈 )𝑰.

Iterate untilmax{ ‖𝚺(ℎ+1)1 −𝚺̂
(ℎ)
1 ‖𝐹‖𝚺(ℎ)1 ‖𝐹 ,

‖𝚺̂(ℎ+1)2 −𝚺̂
(ℎ)
2 ‖𝐹‖𝚺̂(ℎ)2 ‖𝐹 ,

‖𝚺̂(ℎ+1)𝑈 −𝚺̂
(ℎ)
𝑈 ‖𝐹‖𝚺(ℎ)𝑈 ‖𝐹 } ≤ 𝜁, where

𝜁 is a user-defined stopping threshold.

𝑟𝑔 as the nuclear norm penalty in Equation (13) can fur-
ther shrink the rank estimator (see Algorithm 1). Let 𝚯 =

(𝚺1, 𝚺2, 𝚺𝑈). We propose to iteratively fix two components
in𝚯 and solve for the other. Belowweprovide an algorithm
for solving Equation (13).More details about the derivation
and numerical convergence of the algorithm, and the rank
estimation are provided in Web Appendices B, C, and D of
the Supporting Information. The corresponding R code is
also included in the Supporting Information.

3 SIMULATION EXPERIMENTS

To the best of our knowledge, there is no existing method
that can directly solve our decomposition problem. Thus,
we created three ad hoc competitors to compare with our
method: (i) separate decomposition of the sample Pearson
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correlation matrix of observed variables, which solves(
𝚺̆†𝑔, 𝚺̆

†
𝑈𝑔

)
= argmin

𝚺𝑔≥0,𝚺𝑈𝑔≥0
‖𝑹̆𝑔 − 𝚺𝑔 − 𝚺𝑈𝑔‖2𝐹 + 𝜈𝑔‖𝚺𝑔‖∗

+ 𝜈3‖𝚺𝑈𝑔‖1, for 𝑔 ∈ {1, 2}, (14)

where 𝑹̆𝑔 is the sample Pearson correlation matrix of
observed variables for group 𝑔; (ii) joint decomposition of
sample Pearson correlation matrix of observed variables,
which solves(
𝚺̆1, 𝚺̆2, 𝚺̆𝑈

)
= argmin

𝚺𝑔≥0,𝚺𝑈≥0

1

2
‖𝑹̆1 + 𝑹̆2 − 𝚺1 − 𝚺2 − 2𝚺𝑈‖2𝐹

+ 𝜈1‖𝚺1‖∗ + 𝜈2‖𝚺2‖∗ + 𝜈3‖𝚺𝑈‖1; (15)

(iii) separate decomposition of rank-based correlation
matrix of latent variables, which solves(

𝚺̂
†
𝑔, 𝚺̂

†
𝑈𝑔

)
= argmin

𝚺𝑔≥0,𝚺𝑈𝑔≥0
‖𝑹𝑔 − 𝚺𝑔 − 𝚺𝑈𝑔‖2𝐹 + 𝜈𝑔‖𝚺𝑔‖∗

+ 𝜈3‖𝚺𝑈𝑔‖1, for 𝑔 ∈ {1, 2}. (16)

We carry out simulation studies under both low- and
high-dimensional settings and consider three scenarios
of 𝚺𝑔 and 𝚺𝑈 for each setting. Scenarios 1–3 are low-
dimensional and Scenarios 4–6 are high-dimensional.
More details of how we generate 𝚺𝑔 and 𝚺𝑈 are given in
Web Appendix F of the Supporting Information. In partic-
ular, we choose 𝚺𝑈 to be a banded matrix in Scenarios 1,
2, 4, and 5, and a blockwise sparse matrix in Scenarios 3
and 6. We let the ratio of ‖𝚺𝑈‖𝐹∕‖𝑹𝑔‖𝐹 be larger in Sce-
narios 2 and 5 than in other scenarios to inspect how the
proportion of common variation affects the decomposition
performance. Table 1 tabulates the structures of the six dif-
ferent scenarios.
Under each scenario, we first generate 𝑛𝑔 i.i.d samples

of 𝒁𝑔 from𝑁(𝟎, 𝑹𝑔) for 𝑔 ∈ {1, 2}, and consider three mod-
els. In all thesemodels, we setℂ = {1, … , 𝑝∕3},𝔹 = {𝑝∕3 +

1,… , 2𝑝∕3}, and 𝕆 = {2𝑝∕3 + 1,… , 𝑝}.

∙ Model 1: For 𝑔 ∈ {1, 2}, 𝒀𝑔 = 𝒁𝑔, 𝑿𝑔 = 𝒉𝑔(𝒀𝑔), where
𝒉𝑔 is defined in (1) with 𝐶1,𝑗 = 0.3, 𝐶2,𝑗 = 0.1 for 𝑗 ∈ 𝔹,
and 𝐶1,𝑗,1 = −0.7, 𝐶1,𝑗,2 = 0.3, 𝐶2,𝑗,1 = −0.5, 𝐶2,𝑗,2 = 0.5

for 𝑗 ∈ 𝕆.
∙ Model 2: 𝒀1 = exp(𝒁1), 𝒀2 = 𝒁2, 𝑿𝑔 = 𝒉𝑔(𝒀𝑔), where
𝒉𝑔 is defined in (1) with 𝐶1,𝑗 = 1.5, 𝐶2,𝑗 = 0.1 for 𝑗 ∈ 𝔹,
and 𝐶1,𝑗,1 = 0.6, 𝐶1,𝑗,2 = 1.4, 𝐶2,𝑗,1 = −0.5, 𝐶2,𝑗,2 = 0.5

for 𝑗 ∈ 𝕆.
∙ Model 3: 𝒀1 = exp(𝒁1), 𝒀2 = 𝒁32 ; 𝑿𝑔 = 𝒉𝑔(𝒀𝑔), where
𝒉𝑔 is defined in (1) with 𝐶1,𝑗 = 1.5, 𝐶2,𝑗 = 0.1 for 𝑗 ∈ 𝔹,
and 𝐶1,𝑗,1 = 0.6, 𝐶1,𝑗,2 = 1.4, 𝐶2,𝑗,1 = −0.5, 𝐶2,𝑗,2 = 0.5

for 𝑗 ∈ 𝕆.

First, we investigate how the rank-based correlation
matrix estimator compares with the Pearson correlation
estimator. We denote 𝑹̆𝑔 as the sample Pearson correlation
coefficient for group 𝑔, where its (𝑗, 𝑘)th element is defined
as

𝑅̆𝑔;(𝑗,𝑘) =

𝑛𝑔∑
𝑖=1

(𝑋𝑔;𝑖,𝑗 − 𝑋̄𝑔;𝑗)(𝑋𝑔;𝑖,𝑘 − 𝑋̄𝑔;𝑘)

/

×

[{ 𝑛𝑔∑
𝑖=1

(𝑋𝑔;𝑖,𝑗 − 𝑋̄𝑔;𝑗)
2

}
{ 𝑛𝑔∑

𝑖=1

(𝑋𝑔;𝑖,𝑘 − 𝑋̄𝑔;𝑘)
2

}]
1∕2, (17)

𝑋𝑔;𝑖,𝑗 is the (𝑖, 𝑗)th element of 𝑿𝑔 and 𝑋̄𝑔;𝑗 =

(1∕𝑛𝑔)
∑𝑛𝑔
𝑖=1

𝑋𝑔;𝑖,𝑗 for 𝑗 = 1,… , 𝑝. Panel (a) of Figure 1
gives the boxplots of ‖𝑹𝑔 − 𝑹𝑔‖𝐹 and ‖𝑹̆𝑔 − 𝑹𝑔‖𝐹 .
Figure 1 appears in color in the electronic version of this
article, and anymention of color refers to that version. It is
seen that 𝑹𝑔 (red) outperforms 𝑹̆𝑔 (blue) in all scenarios.
Next, we compare the estimation errors of the low-rank

components by the four methods, which is measured by‖𝑨1 + 𝑨2 − 𝚺1 − 𝚺2‖𝐹 , where𝑨𝑔 denotes one of 𝚺̆†𝑔, 𝚺̆𝑔, 𝚺̂†𝑔,
and 𝚺̂𝑔 for 𝑔 ∈ {1, 2}. It is seen from Panel (b) of Figure 1
that our method performs the best in all scenarios.
Moreover, we compare the sensitivity and specificity of

the four methods on recovering the nonzero elements of
𝚺𝑈 . We define sensitivity as the proportion of nonzero
entries in 𝚺𝑈 being estimated as nonzeros and speci-
ficity as the proportion of zero entries in 𝚺𝑈 being esti-
mated as zeros. Figure 2 demonstrates the sensitivity and
specificity of four competitors over 100 simulations. This
figure appears in color in the electronic version of this arti-
cle, and any mention of color refers to that version. In Sce-
narios 1 and 4, 𝚺̆†𝑈𝑔 , 𝚺̆𝑈 , and 𝚺̂𝑈 have high and comparable

sensitivities, but 𝚺̂𝑈 ’s specificity is higher than the other
two. The sensitivity of 𝚺̂†𝑈𝑔 is low in these two scenarios,
suggesting that separately decompose the latent correla-
tion matrices in two groups may not be capable of recov-
ering the shared variation. For Scenarios 2 and 5, the sen-
sitivity of all four methods reduces a lot. This is because
their 𝚺𝑈 ’s have more complicated structures than the 𝚺𝑈 ’s
in Scenarios 1 and 4. However, our estimator still hasmuch
higher sensitivity compared with the other methods. For
Scenarios 3 and 6, the 𝚺𝑈 ’s have blocks of small nonzero
elements. Under these challenging settings, our method
still outperforms the other three competitors. All these
simulation studies suggest that our method can have good
recovery of the group-specific low rank and the shared
sparse matrices for a variety of copula models.
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TABLE 1 Simulation scenarios

Low dimension
(𝒏𝟏, 𝒏𝟐, 𝒑) = (𝟏𝟎𝟎, 𝟏𝟎𝟎, 𝟔𝟎)

Scenario 1 Scenario 2 Scenario 3
𝚺1 𝚺1 = 𝑸1𝑫1𝑸

𝑇
1 , 𝚺1 = 𝑸1𝑫1𝑸

𝑇
1 ,

𝑫1 is a diagonal matrix 𝑫1 is a diagonal matrix Same as in Scenario 1
𝑸1 is an orthonormal matrix Same 𝑸1 as in Scenario 1

𝚺2 𝚺2 = 𝐰2𝐰
𝑇
2 𝚺2 = 𝐰2𝐰

𝑇
2 𝚺2 = 𝐰2𝐰

𝑇
2

𝐰2 = (𝐰21,𝐰22) 𝐰2 = (𝐰21,𝐰22) 𝐰2 = (𝐰21,𝐰22)

𝑤22;𝑗 =
√
1 − 𝜎𝑢,𝑗 − 𝑤

2
21;𝑗

𝑤22;𝑗 =
√
1 − 𝜎𝑢,𝑗 − 𝑤

2
21;𝑗

𝑤22;𝑗 =
√
1 − 𝜎𝑢,𝑗 − 𝑤

2
21;𝑗

𝚺𝑈 diag(𝚺𝑈) = 1 − diag(𝚺1) diag(𝚺𝑈) = 1 − diag(𝚺1) diag(𝚺𝑈) = 1 − diag(𝚺1)

𝜎𝑢,𝑖𝑗 =

{
𝜎𝑢,𝑖𝜎𝑢,𝑗𝜌

|𝑖−𝑗| if |𝑖 − 𝑗| = 1

𝜎𝑢,𝑖𝑗 = 0 otherwise
𝜎𝑢,𝑖𝑗 =

{
𝜎𝑢,𝑖𝜎𝑢,𝑗𝜌

|𝑖−𝑗| if |𝑖 − 𝑗| ≤ 2

𝜎𝑢,𝑖𝑗 = 0 otherwise
blockwise sparse

‖𝚺𝑈‖𝐹∕‖𝑹1‖𝐹 44.89% 68.41% 42.09%‖𝚺𝑈‖𝐹∕‖𝑹2‖𝐹 36.82% 62.72% 33.31%

High dimension
(𝒏𝟏, 𝒏𝟐, 𝒑) = (𝟓𝟎, 𝟓𝟎, 𝟗𝟎)

Scenario 4 Scenario 5 Scenario 6
𝚺1 𝚺1 = 𝑸1𝑫1𝑸

𝑇
1 , 𝚺1 = 𝑸1𝑫1𝑸

𝑇
1 ,

𝑫1 is a diagonal matrix 𝑫1 is a diagonal matrix Same as in Scenario 4
𝑸1 is an orthonormal matrix Same 𝑸1 as in Scenario 4

𝚺2 𝚺2 = 𝐰2𝐰
𝑇
2 𝚺2 = 𝐰2𝐰

𝑇
2 𝚺2 = 𝐰2𝐰

𝑇
2

𝐰2 = (𝐰21,𝐰22) 𝐰2 = (𝐰21,𝐰22) 𝐰2 = (𝐰21,𝐰22)

𝑤22;𝑗 =
√
1 − 𝜎𝑢,𝑗 − 𝑤

2
21;𝑗

𝑤22;𝑗 =
√
1 − 𝜎𝑢,𝑗 − 𝑤

2
21;𝑗

𝑤22;𝑗 =
√
1 − 𝜎𝑢,𝑗 − 𝑤

2
21;𝑗

𝚺𝑈 diag(𝚺𝑈) = 1 − diag(𝚺1) diag(𝚺𝑈) = 1 − diag(𝚺1) diag(𝚺𝑈) = 1 − diag(𝚺1)

𝜎𝑢,𝑖𝑗 =

{
𝜎𝑢,𝑖𝜎𝑢,𝑗𝜌

|𝑖−𝑗| if |𝑖 − 𝑗| = 1

𝜎𝑢,𝑖𝑗 = 0 otherwise
𝜎𝑢,𝑖𝑗 =

{
𝜎𝑢,𝑖𝜎𝑢,𝑗𝜌

|𝑖−𝑗| if |𝑖 − 𝑗| ≤ 2

𝜎𝑢,𝑖𝑗 = 0 otherwise
blockwise sparse

‖𝚺𝑈‖𝐹∕‖𝑹1‖𝐹 36.37% 69.39% 33.2%‖𝚺𝑈‖𝐹∕‖𝑹2‖𝐹 28.83% 62.82% 25.47%

4 AN ANALYSIS OF A C.
TRACHOMATIS GENITAL TRACT
INFECTION STUDY

We applied our method to the multimodal data from the
T cell response against Chlamydia (TRAC) cohort (Rus-
sell et al., 2016), which is designed for studying chlamydial
genital tract infection. C. trachomatis can ascend from the
cervix to the uterus and fallopian tubes in some women,
and potentially result in pelvic inflammatory disease and
infertility. Leveraging the TRACcohort, we previously ana-
lyzed the association of 48 cytokines examined in cervi-
cal secretions with endometrial infection (Poston et al.,
2019) and identified the cytokine regulatory network asso-
ciated with chlamydial ascending infection by a graphical
modeling approach (Zhong et al., 2020), but the genetic
factors that drive the dysregulated cytokine network are
still unclear.

To reveal the underlying genetic factors, we jointly ana-
lyzed cervical cytokine expression data and genotype data
from 128 women in TRAC, who either had both cervi-
cal and endometrial infection (Endo+ group, 𝑛 = 60) or
had only limited cervical infection (Endo- group, 𝑛 = 68).
Descriptions of the TRAC cohort, processing and qual-
ity control of cervical cytokines data and genotype data
have been published in detail previously (Poston et al.,
2019). There are 48 cytokines in the cervical cytokines data.
Cytokine levels were determined usingMilliplex Magnetic
Bead Assay. The cytokine values were log2 transformed,
and treated as normally distributed continuous variables.
Directly genotyped SNPs were used in this study, while
imputed genotypes were excluded. We treated the geno-
types as ordinal variables with three levels.
Expression quantitative trait loci (eQTLs) are the SNPs

that influence expression levels of mRNA transcripts,
which provide functional interpretation of the correlation
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Low-dimensional settings High-dimensional settings

Low-dimensional settings High-dimensional settings

F IGURE 1 Estimation errors. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version

between SNPs and cytokines. We thus primarily focused
on SNPs that were cis-eQTLs of the cytokines, defined as
SNPs within 1 MB region flanking the gene that encodes
the tested cytokine. eQTLs outside this regionwere defined
as trans-eQTLs. We identified 300 SNP-cytokine cis-eQTL

pairs, including 277 unique SNPs and 42 unique cytokines
by Matrix eQTL (Shabalin, 2012) at significance level of
0.02. Next, we pruned the SNPs in high linkage disequilib-
rium with other SNPs in the list (squared correlation coef-
ficient> 0.6) by PriorityPruner, and preferentially kept the
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Low-dimensional settings High-dimensional settings

Low-dimensional settings High-dimensional settings

F IGURE 2 Variable selection accuracy of 𝚺𝑈 given by the four methods. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

most significant SNPs in the cis-eQTL detection. A total
of 218 SNPs remained for further analysis. In each group,
we further filtered SNPs whose correlation with another
SNP is greater than the upper 0.1% quantile of the abso-
lute values in the latent correlation matrix, while keeping

the more significant SNPs in the cis-eQTL detection. Final
data set for each group had a total of 227 variables, includ-
ing 42 cytokines and 185 SNPs.
We applied our proposed method to this data set to

obtain 𝑹𝑔, 𝚺̂𝑔 and 𝚺̂𝑈 . Figures 3 and 4 represent their
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(a) (b)

(e)

A

A

(c) (d)

F IGURE 3 Heatmaps of 𝑹𝑔, 𝚺𝑔, and 𝚺̂𝑈 for Endo- (𝑔 = 1) and Endo+ (𝑔 = 2) groups. Rows and columns of all heatmaps were ordered
by applying clustering to the absolute value of 𝚺̂1. The cluster that is most distinct from all other clusters in 𝚺1 is highlighted in the green
square. The same group of variables in 𝚺̂2 is also highlighted in the green square. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

heatmaps. Rows and columns of the heatmaps in Figure 3
were ordered by applying hierarchical clustering to the
absolute value of 𝚺̂1, and those in Figure 4 were ordered
by applying clustering to the absolute value of 𝚺̂2.
We highlighted the cluster of variables most distinct

from the rest variables in𝚺1 for theEndo- group (Figure 3b)
and the same group of variables in 𝚺̂2 for Endo+ group
(Figure 3d) with green squares, namely, Block 𝑨, which
consists seven cytokines (CXCL13, EGF, IL17A, IL23A,
CXCL10, CCL7, and CCL23) and 40 SNPs. Figure 3 appears
in color in the electronic version of this article, and any
mention of color refers to that version.Among the 40 SNPs,
28 (70%) are cis-eQTLs of these 7 cytokines, and 12 are
trans-eQTLs of these cytokines.
These seven cytokines formed two subnetworks, one

includes IL17A, IL23A, CXCL10, CXCL13, and their eQTLs.
These four cytokines are associatedwith the aggregation of
plasma cells and induction of Th17 cells, which are impor-
tant immune cells involved in the host response to chlamy-
dial genital tract infection (Andrew et al., 2013; Darville
et al., 2019). IL17A is the signature cytokine of Th17 cells;
IL-23 induces the differentiation of naive CD4+ T cells

into Th17 cells (Iwakura and Ishigame, 2006); CXCL10 is
a chemoattractant for CXCR3-positive Th17 cells and has
also previously been correlated with detection of plasma
cells in patients with inflammation and fibrosis (Nastase
et al., 2018). CXCL13 levels are associated with plasma cell
aggregates in tissues obtained from chlamydial induced
endometrial inflammation (Kiviat et al., 1990). In addition,
the connectivity of CXCL13 and IL-17A has been evidenced
experimentally (Rangel-Moreno et al., 2011).
The other subnetwork in block𝑨 includesCCL7, CCL23,

and EGF and their eQTLs. These their cytokines are pre-
dominately associated with the recruitment of monocytes
to sites of inflammation and regulation of host inflam-
matory responses. CCL23 and CCL7 are ligands for the
chemokine receptor CCR1, which is critical for recruit-
ment of monocytes. CCR1 is a target of the EGF signal-
ing axis, which can induce and enhance CCR1 expression
(Shin et al., 2017). In addition, CCL23 can mediate EGF
receptor activation (Keates et al., 2007).
Next, we highlighted the cluster most distinct from all

other clusters in the unique low-rank part 𝚺̂2 for Endo+
group (Figure 4d) and the same group of variables in the
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(a) (b)

(e)

(c) (d)

B

B

F IGURE 4 Heatmaps of 𝑹𝑔, 𝚺̂𝑔, and 𝚺̂𝑈 for Endo- (𝑔 = 1) and Endo+ (𝑔 = 2) groups. Rows and columns of all heatmaps were ordered
by applying clustering to the absolute value of 𝚺̂2. The cluster that is most distinct from all other clusters in 𝚺2 is highlighted in the green
square. The same group of variables in 𝚺̂1 is also highlighted in the green square. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

unique low-rank part 𝚺̂1 for Endo- (Figure 4b) with green
squares, namely, Block 𝑩. Figure 4 appears in color in the
electronic version of this article, and any mention of color
refers to that version. Block 𝑩 consists of five cytokines
(CSF3, FLT3LG, TNFSF10, CCL5, andCCL23) and 56 SNPs.
All these five cytokines are involved in host immune

and inflammatory responses to an infection. CSF3 and
FLT3LG play synergistic roles in the physiological steady
state for maintenance of neutrophil and dendritic cell
populations. TNFSF10 is critical in promoting infection-
induced inflammation, and experiments showed that G-
CSF treatment increased the amount of TNFSF10 and the
infiltration of neutrophils and mononuclear cells (Marino
et al., 2009). CCL5 plays an important role in sustain-
ing CD8 cytotoxic T cell responses and CCL23 is highly
chemotactic for monocytes. It has been reported that neu-
trophils, monocytes, and CD8 cytotoxic T cells contribute
to chlamydial-induced upper genital tract inflammation
(Lijek et al., 2018).
Finally, we demonstrated the shared cytokine and eQTL

networks between Endo- and Endo+ groups, where the
details are given in Tables S1 and S2. The cytokine net-
works among CXCL14, IL15, IL-16, PDGF-A, and PDGF-B

have been consistently identified by our previous graphic
modeling algorithm and evidenced by biological func-
tion (Zhong et al., 2020). The preserved eQTL networks
revealed important constitutional eQTLs despite different
disease groups, such as rs11176892 for IFNG, which is a crit-
ical cytokine for controlling chlamydial infection.

5 DISCUSSION

We propose a novel method to decompose the correlations
of mixed variables from multigroup subjects into a shared
component and a group-specific component. Our main
contributions are two folds. First, we derive the bridge
functions for measuring correlations between three-level
ordinal and other variables and prove their monotonic-
ity. These results together with the existing works (Liu
et al., 2009; Fan et al., 2017; Feng and Ning, 2019; Yoon
et al., 2020) on measuring correlations among continu-
ous, binary, and truncated variables, provide a unified
framework to quantify correlations among the four types
of variables. Second, we provide a decomposition method
to dissect the group-specific variation from the common
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variation in the background. Our method applies to mixed
variables from multiple groups. Our numerical studies
demonstrate its advantage over the group-by-group analy-
sis and its usefulness in gene network analysis. Some other
technical details, such as rank selection, alternative loss
function, and numerical convergence of our algorithm are
discussed in Web Appendices C, D, and E.
Our method can be extended to handle more than two

groups. In general, if there are 𝐺 groups of subjects, we
can first obtain the rank-based correlation estimator𝑹𝑔 for
each group. Then, we can solve a problem of

(
𝚺̂𝑔, 𝚺̂𝑈

)
= argmin

𝚺𝑔≥0,𝚺𝑈≥0

{
𝐺−1|| 𝐺∑

𝑔=1

(𝑹𝑔 − 𝚺𝑔 − 𝚺𝑈)||2𝐹
+

𝐺∑
𝑔=1

𝜈𝑔‖𝚺𝑔‖∗ + 𝜈𝐺+1‖𝚺𝑈‖1} , (18)

which is an extension of (13). Such a problem can also be
solved by a similar proximal gradient descent algorithm as
described in Algorithm 1. But, our R code only deals with
two groups.
We point out that our rank-based correlation estimator

only applies to three-level ordinal variables. Quan et al.
(2018) derived the bridge function for measuring the cor-
relation between continuous and ordinary variables with
arbitrarily many levels. However, it is hard to derive the
counterpart for the correlation between ordinary variables
with arbitrarily many levels, as the breakdowns of these
variables are complicated (Quan et al., 2018). This can be a
future research topic. Another extension is that if we have
prior information on the structure of 𝚺𝑔, we can add more
regularization terms in (18) to ensure the resulting estima-
tors reflect such a structure.
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