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1. Web Appendix: Supplementary glmmPen FA procedure details

This section of the Web Appendix provides additional details about several aspects of the
glmmPen FA procedure, including details about the M-step and MCECM algorithms, model
selection, tuning parameter selection, and initialization and convergence.

1.1 Method algorithms

Algorithms 1 and 2 provide additional details about the M-step and overall MCECM procedure
within glmmPen FA.
Let s represent the iteration of the MCECM algorithm, and let h represent the iteration

within a particular M-step of the MCECM algorithm.

Algorithm 1 M-step of the MCECM algorithm

1. Coefficient parameter estimates from the previous M-step, θ(s−1), are used to initialize
the coefficient parameters of the current M-step at M-step iteration h = 0, denoted θ(s,0).
2. Conditional on b(s,h−1) and τ (s−1), each β

(s,h)
j for j = 1, ..., p is given a single update using

the Majorization-Minimization algorithm specified by Breheny and Huang (2015).

3. For each group k in k = 1, ..., K, the augmented matrix z̃ki = (α̃
(s)
k ⊗ zki)J is created

for i = 1, ..., nk where α̃
(s)
k = ((α

(s,1)
k )T , ..., (α

(s,M)
k )T )T . This augmented matrix is used

in the random effect portion of the linear predictor specified in Equation 4 of the main
manuscript. This augmented matrix is used to calculate the terms needed to update random
effect coefficients b

(s,h)
t for t = 1, ..., q, see Equation 2.9 in Breheny and Huang (2015).

4. Conditional on the τ (s−1) and the recently updated β(s,h+1), each b
(s,h)
t for t = 1, ..., q is

updated using the Majorization-Minimzation coordinate descent grouped variable selection
algorithm specified by Breheny and Huang (2015).
5. Steps 2 through 4 are repeated until the M-step convergence criteria are reached or until
the M-step reaches its maximum number of iterations.
6. Conditioning on the newly updated β(s) and b(s), τ (s) is updated (generically, using the
Newton-Raphson algorithm; for the Gaussian family, using a quantity derived from the
Q-function approximation in Equation 9).

Algorithm 2 Full MCECM algorithm for single (λ0, λ1) penalty combination

1. Fixed and random effects β(0) and b(0) are initialized as discussed in Web Appendix
Section 1.4.
2. E-step: In each E-step for EM iteration s, a burn-in sample from the posterior distribution
of the random effects is run and discarded. A sample of size M (s) from the posterior is then
drawn and retained for the M-step. (See Web Appendix Section 1.4 for details).
3. M-step: Parameter estimates of β(s), b(s), and τ (s) are then updated as described in the
M-step procedure given above.
4. Steps 2 and 3 are repeated until the the average Euclidean distance between the current
coefficient vector (β(s)T , b(s)T )T and the coefficient vector from t = 2 EM iterations back
is less than a pre-specified threshold of 0.0015 for two consecutive EM iterations or until
the maximum number of EM iterations (25) is reached. (See Web Appendix Section 1.4 for
further convergence details).
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1.2 Model selection

This section provides details on how the glmmPen FA algorithm selects the optimal tuning
parameter combination. In all simulations and analyses discussed in this paper, we set the
candidate random effects predictors equal to the candidate fixed effects predictors (i.e. q = p)
and aim to have the algorithm select the true fixed and random effect predictors.
The algorithm runs a computationally efficient two-stage approach to pick the optimal set of

tuning parameters. In the first stage of this approach, the algorithm fits a sequence of models
where the fixed effect penalty is kept constant at the minimum value of the fixed effects penalty
sequence, labeled here as λ0,min, and the random effects penalty proceeds from the minimum
random effect penalty, labeled λ1,min, to the maximum value λ1,max. The best model from this
first stage is then identified using the BIC-ICQ criterion (Ibrahim et al., 2011). This first stage
identifies the optimal random effect penalty value, λ1,opt. In the second stage, the algorithm
fits a sequence of models where the random effects penalty is kept fixed at λ1,opt and the fixed
effects penalty proceeds from its minimum value λ0,min to its maximum value λ0,max. The
overall best model is chosen from the models in the second stage.
We have found this two-stage model selection approach to work very well in practice (see

Section 3 of the main manuscript and Web Appendix Section 2 for performance results).
The glmmPen method uses the same two-stage model selection approach within its model
selection procedure.
Before we run the above described two-stage model selection procedure, we run a pre-

screening step. This pre-screening step is used in both the glmmPen FA and glmmPen

methods. This step was designed to filter out a few random effects before running the main al-
gorithm. The pre-screening step fits a minimum penalty model using relatively lax convergence
criteria in comparison to the glmmPen package’s default convergence criteria; if a random
effect has been penalized out of the model at the end of the pre-screening step or if the variance
estimate for a predictor is below a threshold level value 0.01, that random effect is removed
from consideration for the rest of the model selection procedure. The goal of this pre-screening
step is to help reduce the time needed to run the remainder of the model selection procedure
by reducing the number of random effects considered in the algorithm.
In addition to helping to speed up the algorithm by reducing the number of random effects

considered in the algorithm, this pre-screening step also helps to improve the convergence of
the minimum penalty model used to calculate the MCMC posterior draws used within the
BIC-ICQ calculation. The coefficient estimates from the end of the pre-screening procedure
are used to initialize the coefficients for this minimum penalty model. In essence, this increases
the number of EM iterations for the minimum penalty model, thereby hopefully improving
the model fit of the minimum penalty model and the resulting effectiveness of the MCMC
posterior draws taken from this model and used in the BIC-ICQ calculations.
Note: The convergence criteria used in the pre-screening step matches the convergence

criteria used in the remainder of the model selection algorithm, see Web Appendix Section 1.4
and 1.5 for details.

1.3 Tuning parameter selection

The default maximum penalty, labeled here as λmax, was calculated as the penalty that would
penalize all of the fixed effects to 0 when no random effects are in the model. We used code
from the ncvreg R package (Breheny and Huang, 2011) to calculate this value.
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For all Binomial outcome variable selection simulations where the total number of predictors
was 100 and for all case study analyses, we used the following sequence of penalties for both
the fixed effects and the rows of theB matrix (or rows of the Γ matrix when using glmmPen):
a sequence of 10 penalties from 0.05λmax to λmax, with penalty values equidistant from each
other on the log scale.
For all Binomial outcome variable selection simulations where the total number of predictors

was 500, we used the following sequence of penalties: a sequence of 10 penalties from 0.15λmax

to λmax for the fixed effects, and a sequence of 10 penalties from 0.10λmax to λmax for the rows of
the B matrix, with penalty values equidistant from each other on the log scale. In simulations
not shown here, using a consistent sequence of 10 penalties from 0.10λmax to λmax for both
sets of parameters resulted in very similar final results, but the variable selection procedure
took more time to complete; using a consistent sequence of 10 penalties from 0.15λmax to λmax

for both sets of parameters decreased the random effect true positive results.
For all Binomial outcome variable selection simulations where the total number of predictors

was 25, we used the following sequence of penalties for both the fixed effects and the rows of
the B matrix (glmmPen FA procedure) or the rows of the Γ matrix (glmmPen procedure):
a sequence of 10 penalties from 0.01λmax to λmax, with penalty values equidistant from each
other on the log scale.
For the Poisson outcome variable selection simulations, a penalty sequence with larger values

was needed for both the fixed effects and rows of the B matrix due to the nature of how the
data was simulated and fit. In these simulations, the covariate values xki,j were simulated from
a N(0, σ = 0.10) distribution for j = 1, ..., p and left unstandardized in the algorithm, whereas
in the binomial simulations, the covariate values were simulated from the standard normal
distribution N(0, 1) and then standardized so that

∑K

k=1

∑

i∈nk
xki,j = 0 and xT

j xj/N = 1 for
each j. The fixed effects penalty sequence included 0.30λmax and (δ0,1, ..., δ0,12) ∗ λmax, where
δ0,i = 2+(i−1). The random effect penalty sequence applied to rows of the B matrix included
0.30λmax and (δ1,1, ..., δ1,11) ∗ λmax, where δ1,i = 0.5 + (i− 1).

1.4 Initialization and convergence - glmmPen FA

The fixed effects β(0) and random effects covariance terms b(0) are initialized at iteration
s = 0 in one of two ways. We discuss first the initialization procedure used when the package
glmmPen FA is used to fit the first model in the sequence of models fit for variable selection.
In this scenario, the fixed effects β(0) are initialized by fitting a ‘naive’ model, where we
assume no random effects, i.e. all observations are assumed to be independent and identically
distributed. This naive model is fit using the coordinate descent techniques of Breheny and
Huang (2011).
Based on the initialized fixed effects β(0), the predictors initialized with non-zero fixed effects

are also initialized to have non-zero random effects (i.e. the corresponding rows of the B

matrix are set to non-zero values), and predictors with zero-valued initialized fixed effects are
initialized to have zero-valued random effects (i.e. the corresponding rows of the B matrix
are set to zero). By default, the starting B matrix elements are initialized as

√

0.10/r, where
r is the estimated number of latent factors. The corresponding initialized covariance matrix
Σ = BBT will have all non-zero elements equal to 0.10.
The E-step MCMC chain of the sample of the posterior density φ(αk|dk,o;θ

(s)) for groups
k = {1, ..., K} is initialized in iteration s = 0 with random draws from the standard normal
distribution. For all following iterations s > 1, the MCMC chain is initialized with the last draw
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from the previous iteration s − 1. At iteration s = 0, we sample M = 100 posterior samples
from each group, and M increases to a max of 500 as the iteration number s increases. At
each iteration s, a burn-in sample of size 100 is drawn and discarded before the M (s) samples
are drawn and kept for use in the next M-step.
When the algorithm performs variable selection, we initialize models with previous model

results. After the first model is fit in the variable selection procedure, the fixed effects, random
effects covariance matrix, and random effects MCMC chain are initialized using results from
a previous model fit.
The EM algorithm is considered to have converged when the following condition is met at

least 2 consecutive times or until the maximum number of EM iterations (25) is reached:

||(β(s)T , b(s)T )T − (β(s−t)T , b(s−t)T )T ||22/d
s−t
n < ǫEM (1)

where the superscript (s− t) indicates t = 2 EM iterations back, ||.||22 represents the L2 norm,
and ds−t

n equals the total number of non-zero (βT , bT )T coefficients in iteration (s− t). In other
words, the algorithm computes the average Euclidean distance between the current coefficient
vector (βT , bT )T and the coefficient vector from t = 2 EM iterations back and compares it
with ǫEM = 0.0015.
The M-step algorithm is considered to have converged when the following condition is met

or until the maximum number of iterations (50) is reached:

maxj|β
(s,f+1)
j − β

(s,f)
j | ∩maxt,h|b

(s,f+1)
th − b

(s,f)
th | < ǫm, (2)

where bth for h = 1, ..., r is an individual element of bt, which is the t-th row of the B matrix.
The value of ǫm was set to 0.001.

1.5 Initialization and convergence - glmmPen

The initialization and convergence of glmmPen in these simulations and analyses were very
similar to the initialization and convergence of glmmPen FA, except we replace the notation
for the B matrix with the notation for the Γ matrix and we have a different initialization
procedure for the random effect covariance matrix. This starting variance is initialized in an
automated fashion. First, a GLMM composed of only a fixed and random intercept is fit using
the lme4 package. The random intercept variance from this model is then multiplied by 2, and
this value is set as the starting values of the diagonal of the random effects covariance matrix.
Similar to the glmmPen FA random effect intialization, the predictors are initialized to have
non-zero random effects if they are also initialized to have nonzero fixed effects; otherwise,
predictors are initialized to have no random effects.

1.6 Further clarification of p, q, and r

We provide here some additional clarifications and discussion about the notation of p, q, and
r used in the main paper and this supplementary material. We let the values of p and q
represent the full set of candidate predictors for the fixed and random effects, respectively. In
other words, these values of p and q refer to the input predictors of the glmmPen FA variable
selection procedure. We specify here alternative notations of the true number of non-zero fixed
and random effect predictors in the model, p∗ 6 p and q∗ 6 q, respectively.
Our assumption in the manuscript is that r ≪ q (i.e. r is much less than q), meaning the

number of latent factors used in the model is much smaller than the total number of candidate
random effect predictors considered in the model. In contrast, we do not necessarily assume
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that the number of latent factors r is much less than the true number of random effects q∗. In
other words, we do not assume r ≪ q∗, although we do assume r < q∗.

2. Web Appendix: Supplementary simulation details and results

This section of the Web Appendix describes additional details about the B matrices used
within the simulations run in Section 3 of the main manuscript as well as additional simulation
results not presented in the main manuscript due to space considerations. All simulation
conditions used 100 replicates.
These additional simulations include:

• Comparison between glmmPen FA and glmmPen

• Variable selection in Binomial data with p = 500 predictors
• Variable selection using the Elastic Net penalty applied to correlated predictors
• Variable selection with alternative β and B matrix sizes
• Variable selection with alternative sample size and number of groups
• Variable selection with alternative number of true random effects
• Variable selection in Poisson data with p = 100 predictors

For readers who are interested in other measures from the simulations not reported within
the main paper or this Web Appendix, such as the range or standard deviations of the time to
complete the simulation replicates, we note here that important output from each simulation
replicate is stored in the GitHub repository https://github.com/hheiling/paper_glmmPen_
FA as well as in supplemental material provided with this paper at the Biometrics website
on Oxford Academic. See the “Replication/Paper Results Revision” folder with RData files
corresponding to each simulation discussed in the main paper and this Web Appendix. The
simulation output stored in these RData objects could be used to calculate other measures of
interest.

2.1 B matrices used in simulations

The transpose of the first 11 rows of the deterministic ‘large’ B matrices used in the Binomial
simulations in Section 3 of the main manuscript are given in the Web Appendix equations (3)
and (4), corresponding to r = {3, 5}, respectively. The deterministic ‘moderate’ B matrices
are these large B matrices multiplied by the constants 0.75 and 0.80 for r equal to 3 and 5,
respectively. The ‘small’ B matrix used in the simulations of Web Appendix Section 2.5 was
calculated by multiplying the r = 3 large B by the constant 0.5. All other p−10 rows of these
B matrices were set to 0, where p is the total number of predictors used in the simulations.
The B matrix used in Web Appendix Section 2.7 used the first 6 rows of the r = 3 ‘moderate’
B matrix, with all other p− 5 rows set to 0.

BT
large,r=3 =





1 1 1 1 1 1 1 1 1 1 1
0 −1 −1 −1 −1 −1 1 1 1 1 1
−2 2 −1 0 1 −1 0 1 −1 0 1



 (3)
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BT
large,r=5 =













1 1 1 1 1 1 1 1 1 1 1
0 −1 −1 −1 −1 −1 1 1 1 1 1
−2 2 −1 0 1 −1 0 1 −1 0 1
−1 1 1 −1 −1 1 1 −1 −1 1 −1
−1 −1 0 1 1 −1 −1 0 1 1 −2













(4)

The transpose of the first 6 rows of the deterministic ‘moderate’B matrix used in the Poisson
simulations in Web Appendix Section 2.8 are given in Web Appendix equation (5). All other
p− 5 rows of the B matrices were set to 0, where p = 100 in the Poisson simulations.

BT
poisson,r=3 = 0.75×





1 1 1 1 1 1
−1 −1 −1 1 1 1
−1 0 1 −1 0 1



 (5)

2.2 Comparison of glmmPen vs glmmPen FA methods

As far as we are aware, the glmmPen method developed by Rashid et al. (2020) and imple-
mented in the glmmPen R package available on CRAN is the only other method that performs
simultaneous fixed and random effects variable selection in high dimensional GLMMs.
We next compare the performance of this glmmPen method and our novel glmmPen FA

method developed in this paper. We first compared the performance of these methods in
moderate dimensions. We simulated binary responses from a logistic mixed effects model much
like the procedure described in Section 3 of the main manuscript, except the total number of
predictors used in the analyses was p = 25 and we restricted our consideration to r = 3 common
factors for all simulation scenarios. For the glmmPen FA method, all values of r used in the
algorithm were from the Growth Ratio estimates of r. In these moderate dimensions of p = 25
with our given sample size of N = 2500, it is reasonable to use glmmPen to perform variable
selection in logistic mixed effects models assuming an unstructured random effects covariance
matrix, allowing us to use as directly comparable model assumptions as possible for these
method comparisons.
Table 1 gives the average true and false positives for both the fixed and random effects, the

median time in hours to complete the variable selection procedure, and the average of the
mean absolute deviation between the coefficient estimates and the true coefficients across all
simulation replicates. Table 2 gives the Growth Ratio r estimation procedure results for the
glmmPen FA method.
When comparing the glmmPen FA and glmmPen results in these p = 25 simulations, we

see that the median time for glmmPen to complete the variable selection procedures ranged
from 2.53 to 3.28 hours for all four simulation scenarios considered. On the other hand, the
glmmPen FA method was able to fit these variable selection procedures about 5-6 times
faster, where the median running time ranged from 0.47 to 0.59 hours.
Table 1 also shows that there is little difference in the true positives for both the fixed

and random effects between the two methods. However, glmmPen tends to have more false
positives in the fixed effects.
We also performed variable selection using glmmPen on the r = 3, p = 100 simulations

described in Section 3 of the main manuscript. In these larger dimensions, we simplified the
glmmPen estimation procedure by assuming an independent covariance matrix to reduce
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β B Method TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.

(Mean)

1 Mod. glmmPen FA 99.50 3.47 99.80 0.53 0.59 0.26
glmmPen 100.00 37.40 100.00 0.00 2.62 0.27

Large glmmPen FA 97.20 3.80 99.90 0.80 0.49 0.33
glmmPen 99.00 60.60 100.00 0.00 3.18 0.34

2 Mod. glmmPen FA 100.00 2.27 98.40 0.47 0.47 0.27
glmmPen 100.00 13.67 99.20 0.00 2.84 0.43

Large glmmPen FA 99.80 3.53 99.80 0.73 0.48 0.35
glmmPen 100.00 30.93 100.00 0.00 2.53 0.50

Web Table 1: Results of the variable selection procedure for the p = 25 logistic mixed
effects simulations comparing glmmPen with glmmPen FA, including true positive (TP)
percentages for fixed and random effects, false positive (FP) percentages for fixed and random
effects, the median time in hours for the algorithm to complete (Tmed), and the average of the
mean absolute deviation (Abs. Dev. (Mean)) between the fixed effect coefficient estimates β̂
and the true β values across all simulation replicates. Column B describes the general size
of both the variances and eigenvalues of the resulting Σ = BBT random effects covariance
matrix (moderate vs large). All values of r used in the glmmPen FA method were from the
Growth Ratio estimates of r.

True r β B Avg. r r Underestimated % r Correct % r Overestimated %

3 1 Mod. 3.00 0 100 0
Large 3.00 0 100 0

2 Mod. 2.76 24 76 0
Large 2.92 8 92 0

Web Table 2: Results of the Growth Ratio r estimation procedure for glmmPen FA p =
25 logistic mixed effects simulations, including the average estimate of r across simulations
and percent of times that the estimation procedure underestimated r, gave the true r, or
overestimated r. Column B describes the general size of both the variances and eigenvalues
of the resulting Σ = BBT random effects covariance matrix (moderate vs large).

the number of random effects covariance parameters. We let the glmmPen variable selection
procedure run for 100 hours. In that time, glmmPen was able to complete the following
number of replicates out of the 100 total replicates: 83 for (β = 1,B = Moderate), 71 for
(β = 1,B = Large), 100 for (β = 2,B = Moderate), and 96 for for (β = 2,B = Large).
The minimum times needed to complete the glmmPen variable selection procedures were
39.91, 57.60, 23.63, and 42.79 hours, respectively; in summary, it took a day or more for the
fastest simulation replicates to complete when using the glmmPen method. In cases where
we desire to select true random effects from a large number of total predictors, it is clear that
the glmmPen FA estimation procedure significantly reduces the required time to perform
variable selection.
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2.3 Variable selection in Binomial data with 500 predictors

In order to further illustrate the scalability of our method, we applied our method to binary
outcome simulations with p = 500 covariates. We simulated the binary responses from a logistic
mixed effects model much like the procedure described in Section 3 of the main manuscript,
except the total number of predictors used in the analyses was p = 500 instead of p = 100. All
simulations assumed the true number of latent factors r was 3 and the Growth Ratio method
was used to estimate r. Just as in the p = 100 binary outcome simulations, we specified a full
model for the algorithm such the candidate random effect predictors equalled the candidate
fixed effect predictors (e.g. q = p), and our aim was to select the set of true predictors and
random effects. The variable selection results to these simulations are given in Table 3. The
median times needed to complete these simulations took between 10.37 and 17.57 hours.

True
r

β B Avg.
r

TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.
(Mean)

||D||F

3 1 Mod. 2.67 97.40 0.97 93.90 0.05 10.37 0.27 1.15
Large 2.85 88.50 1.73 94.30 0.33 17.57 0.37 2.52

2 Mod. 2.37 100.00 0.06 77.40 0.00 11.44 0.48 0.69
Large 2.41 99.60 0.19 88.10 0.03 13.22 0.55 1.35

Web Table 3: Results of the variable selection procedure for p = 500 logistic mixed effects
simulations, including true positive (TP) percentages for fixed and random effects, false positive
(FP) percentages for fixed and random effects, the median time in hours for the algorithm to
complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between
the fixed effect coefficient estimates β̂ and the true β values across all simulation replicates.
Column ‘r Avg.’ gives the average Growth Ratio r estimate used within the algorithm. Column
B describes the general size of both the variances and eigenvalues of the resulting Σ = BBT

random effects covariance matrix (moderate vs large). Column ||D||F represents the average
across simulation replicates of the Frobenius norm of the difference (D) between the estimated
random effects covariance matrix Σ̂ and the true random effects covariance matrix Σ; the
Frobenius norm was standardized by the number of true random effects selected in the model.

2.4 Variable selection simulations using the Elastic Net penalty applied to correlated

predictors

We extended our simulations on variable selection in Binomial data by adding correlations
between the simulated covariates and adjusting for this correlation using the Elastic Net
penalization approach. Elastic Net penalization balances the MCP, SCAD, or LASSO penalties
with ridge regression. This balance between ridge regression and the other penalty is dictated
by a value we label as π, where π = 1.0 represents the MCP penalty and π = 0 represents
ridge regression.
In these simulations, we set the sample size to N = 2500 and number of groups to K = 25,

with an equal number of subjects per group. There were p = 100 total predictors and 10 true
predictors with non-zero fixed and random effects. We considered four types of correlations
between the predictors. In three of the four correlation types, the correlation between all
p = 100 covariates was set to a common value of 0.2, 0.4, or 0.6, and the variance of the
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covariates was set to 1.0. In the fourth correlation type, we randomly selected 100 of the 117
covariates used in the case study (see Web Appendix Section 3.1 for details) and calculated
the Spearman correlation of these 100 covariates. In all four correlation cases, we simulated
the covariates from a multivariate normal distribution with mean 0 and covariance matrix set
to the correlation matrices described above.
We simulated the random effects covariance matrix using r = 3 and the corresponding

moderate B matrix described in the Web Appendix Section 2.1. The 10 true fixed effects β

coefficients were set to 1. The generation of the binary responses from a logistic mixed effects
model proceeded as described in Section 3 of the main manuscript.
We performed variable selection on these simulated data using Elastic Net π values of 0.1,

0.3, 0.5, 0.8, and 1.0, and we estimated the number of common factors r using the default
Growth Ratio procedure described in Section 2.4 of the main manuscript.
A summary of the variable selection results—true positive percentages, false positive percent-

ages, median time in hours to complete the procedure, average absolute deviation between the
estimated fixed effects coefficients and the true coefficients, and the average of the Frobenius
norm of the difference between the estimated random effect covariance matrix Σ̂ = B̂B̂T and
the true covariance matrix Σ = BBT (the Frobenius norm was standardized by the number
of random effects selected in the best model)—is given in Web Appendix Table 4. A summary
of the performance of the Growth Ratio estimation procedure is given in Web Appendix Table
5.
In general, increasing the correlation among the predictors decreases the average true positive

percentage. Within a particular correlation set-up, decreasing the value of the Elastic Net π
tends to increase both the true positives and the false positives.
The Growth Ratio procedure tends to underestimate the number of common factors r as

the correlation between the covariates increases. However, when the correlation between the
covariates is high at a value of 0.6 and there is no adjustment for ridge regression (i.e. π = 1.0,
equivalent to the MCP penalty), there are more instances of the Growth Ratio procedure
overestimating r.
For low values of π and/or high correlation, some simulation replicates had model fit issues.

Specifically, in certain situations, the random effect variances diverged to excessively large
values. As a result, the BIC-ICQ model selection criteria could not be calculated for the model,
and the model selection procedure was suspended. When π = 0.1 and the correlation among
the predictors was 0.4 or 0.6, this phenomena happened 25% or 26% of the time, respectively.
When π = 0.1 and the correlation was 0.2, this happened 2% of the time; when π = 0.3 and
the correlation was 0.4 or 0.6, this happened 1% or 3% of the time, respectively; when π = 1.0
and the correlation was 0.6, this happened 1% of the time. The simulations summarized in
Web Appendix Table 4 do not include results from these problematic simulation replicates.

2.5 Variable selection simulations with alternative β and B matrix sizes

We ran additional p = 100 logistic mixed effects variable selection simulations with alterna-
tive combinations of predictor effects (β = 0.5, 1.0, 2.0) and B matrix size (small, see Web
Appendix Section 2.1). We simulated the binary responses from a logistic mixed effects model
much like the procedure described in Section 3 of the main paper, except we modified the β

and B combinations considered. All simulations assumed the true number of latent factors r
was 3 and the Growth Ratio method was used to estimate r.
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Corr π TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.

(Mean)

||D||F

0.2 0.1 97.55 27.39 85.10 12.40 23.34 0.50 0.98
0.3 91.70 13.32 61.90 4.46 22.06 0.54 1.29
0.5 93.30 7.79 65.80 2.64 8.63 0.51 1.26
0.8 94.10 1.08 90.00 0.63 2.58 0.40 1.71
1.0 94.70 4.28 94.40 0.53 1.46 0.31 1.31

0.4 0.1 86.53 22.79 74.53 14.33 14.37 0.56 2.69
0.3 87.98 11.93 59.49 1.99 15.10 0.58 1.21
0.5 85.70 4.64 72.70 1.07 4.71 0.53 1.08
0.8 80.30 1.61 83.30 0.37 2.54 0.44 0.74
1.0 80.40 1.98 82.60 0.21 1.17 0.39 0.90

0.6 0.1 80.14 17.16 53.24 7.03 13.08 0.63 2.76
0.3 76.39 10.63 55.26 3.13 10.31 0.61 1.22
0.5 75.00 4.20 58.50 0.86 4.10 0.55 1.12
0.8 76.70 1.28 64.20 0.61 2.47 0.45 0.79
1.0 71.31 0.85 56.26 0.24 1.40 0.41 0.74

CS 0.1 93.10 45.41 92.00 29.90 28.90 0.49 1.01
0.3 93.80 28.63 74.30 16.32 24.74 0.46 1.16
0.5 87.90 19.19 66.60 11.71 12.78 0.44 1.33
0.8 91.70 3.99 75.00 2.94 3.12 0.40 1.32
1.0 95.90 2.04 86.20 1.38 1.36 0.30 2.72

Web Table 4: Variable selection results for the Elastic Net p = 100 logistic mixed effects
simulations, including true positive (TP) percentages for fixed and random effects, false positive
(FP) percentages for fixed and random effects, the median time in hours for the algorithm to
complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between
the fixed effect coefficient estimates β̂ and the true β values across all simulation replicates.
Column “Corr” describes the correlation between the covariates (equal correlation of values
0.2, 0.4, or 0.6, or correlation based on data from the case study data, labeled as ‘CS’). Column
π represents the Elastic Net balance between ridge regression (π = 0) and the MCP penalty
(π = 1). Column ||D||F represents the average across simulation replicates of the Frobenius
norm of the difference (D) between the estimated random effects covariance matrix Σ̂ and the
true random effects covariance matrix Σ; the Frobenius norm was standardized by the number
of true random effects selected in the model.

We ran these simulations to demonstrate how our method performed under the following
scenarios:

(1) Fixed effects coefficients remained the same, but size of the random effect variation decreased
(2) Random effect variation decreased AND the fixed effects coefficients decreased

The variable selection results for these simulations are given in Web Appendix Table 6.
From the results presented in Web Appendix Table 6, we see that decreasing the value of the
fixed effects coefficients β while keeping the size of the B matrix consistently ‘small’ resulted
in decreased fixed effect true positive rates and increased random effect true positive rates.
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Corr π Avg. r r Underestimated % r Correct % r Overestimated %

0.2 0.1 2.67 35 63 2
0.3 2.65 35 65 0
0.5 2.63 37 63 0
0.8 2.54 46 54 0
1.0 2.62 39 60 1

0.4 0.1 2.24 76 24 0
0.3 2.35 67 32 1
0.5 2.38 68 28 4
0.8 2.47 69 26 5
1.0 2.35 73 24 3

0.6 0.1 2.05 95 5 0
0.3 2.30 82 12 5
0.5 2.30 81 12 7
0.8 2.38 84 8 8
1.0 2.99 72 13 15

CS 0.1 2.47 53 47 0
0.3 2.45 55 45 0
0.5 2.42 58 42 0
0.8 2.44 56 44 0
1.0 2.43 57 43 0

Web Table 5: Results of the Growth Ratio r estimation procedure for the Elastic Net p = 100
logistic mixed effects simulations, including the average estimate of r across simulations
and percent of times that the estimation procedure underestimated r, gave the true r,
or overestimated r. Column “Corr” describes the correlation between the covariates (equal
correlation of values 0.2, 0.4, or 0.6, or correlation based on data from the case study data).
Column π represents the Elastic Net balance between ridge regression (π = 0) and the MCP
penalty (π = 1).

This increase in the true positive rate for the random effects was likely a consequence of the
increased accuracy of the estimation of r. This pattern is consistent with findings from Tables
1 and 2 of the main paper, which also show that decreasing the predictor effect β decreases the
fixed effect true positive rates, increases the random effect true positive rates, and improves
the accuracy in the estimation of r using the Growth Ratio procedure.
If we compare the results in Web Appendix Table 2.5 with Table 1 from the main paper, we

see that decreasing the size of the B matrix decreased the true positive rates of the random
effects, but otherwise had minimal impact on the fixed effect true positive rates.

2.6 Variable selection simulations with alternative sample size and number of groups

We ran additional p = 100 logistic mixed effects variable selection simulations with a smaller
overall sample size of N = 1000 (compared with the N = 2500 for simulations in the main
paper) and K = 10, 25 groups. We simulated the binary responses from a logistic mixed effects
model much like the procedure described in Section 3 of the main paper, except we modified
the overall sample size and the number of groups considered. All simulations assumed the true
number of latent factors r was 3 and the Growth Ratio method was used to estimate r.
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True
r

β B Avg.
r

TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.
(Mean)

||D||F

3 0.5 Small 2.78 91.20 3.10 95.90 0.36 1.57 0.15 0.31
1.0 2.42 100.00 1.11 90.50 0.37 1.52 0.19 0.34
2.0 2.13 100.00 0.94 74.60 0.24 1.07 0.24 0.44

Web Table 6: Results of the variable selection procedure for p = 100 logistic mixed effects
simulations using alternative β and B magnitudes. Results include true positive (TP)
percentages for fixed and random effects, false positive (FP) percentages for fixed and random
effects, the median time in hours for the algorithm to complete (Tmed), and the average of
the mean absolute deviation (Abs. Dev. (Mean)) between the fixed effect coefficient estimates
β̂ and the true β values across all simulation replicates. Column ‘r Avg.’ gives the average
Growth Ratio r estimate used within the algorithm. Column B describes the general size of
both the variances and eigenvalues of the resultingΣ = BBT random effects covariance matrix
(small). Column ||D||F represents the average across simulation replicates of the Frobenius
norm of the difference (D) between the estimated random effects covariance matrix Σ̂ and the
true random effects covariance matrix Σ; the Frobenius norm was standardized by the number
of true random effects selected in the model.

We ran these simulations to demonstrate how our method performed under the following
scenarios:

(1) Overall sample size decreases and the group sample sizes decrease (i.e. the number of groups
remains the same)

(2) Overall sample size decreases and the group sample sizes remain the same (i.e. the number
of groups decrease)

The variable selection results to these simulations are given in Web Appendix Table 7. When
we compare the results presented in Web Appendix Table 7 with the results presented in Table
1 of the main paper, we see that decreasing the overall sample size from N = 2500 to N = 1000
while keeping K = 25 generally increased the false positive rates for both the fixed and random
effects; generally decreased the true positive rate of the random effects; and generally increased
the error in the random effect covariance matrix calculation (i.e. the Frobenius norm of the
difference between the estimated and true random effects covariance matrix increased). When
K was reduced to 10, the false positive rates for both the fixed and random effects increased
further, as did the error in the random effect covariance matrix calculation. Overall, we can
conclude that having a greater number of groups within the data and increasing the sample
size per group both help improve the selection results.

2.7 Variable selection simulations with alternative number of true random effects

We ran additional p = 100 logistic mixed effects variable selection simulations with a smaller
number of true random effects. Instead of setting all 10 true predictors to have both non-zero
fixed and non-zero random effects, we set all 10 true predictors to have non-zero fixed effects
but only 5 of the 10 true predictors to have non-zero random effects. We simulated the binary
responses from a logistic mixed effects model much like the procedure described in Section 3
of the main paper, except we modified which random effect predictors were included in the
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True
r

β B K Avg.
r

TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.
(Mean)

||D||F

3 1 Mod. 10 2.47 91.30 15.22 73.00 9.72 1.48 1.33 11.47
25 2.58 95.50 8.57 66.90 2.89 1.09 0.80 5.69

Large 10 2.60 84.90 22.16 81.50 15.84 3.14 2.02 22.88
25 2.50 89.80 18.84 81.00 9.72 1.98 1.43 17.44

2 Mod. 10 2.24 99.80 12.12 69.30 5.36 1.83 1.87 7.15
25 3.78 99.90 7.98 44.20 3.56 3.67 1.91 6.13

Large 10 2.28 98.90 16.54 76.20 6.84 2.79 2.08 15.14
25 2.92 99.90 15.21 70.40 6.77 2.74 1.85 10.04

Web Table 7: Results of the variable selection procedure for p = 100 logistic mixed effects
simulations using alternative combinations of sample size N = 1000 and number of groups
K. Results include true positive (TP) percentages for fixed and random effects, false positive
(FP) percentages for fixed and random effects, the median time in hours for the algorithm to
complete (Tmed), and the average of the mean absolute deviation (Abs. Dev. (Mean)) between
the fixed effect coefficient estimates β̂ and the true β values across all simulation replicates.
Column ‘r Avg.’ gives the average Growth Ratio r estimate used within the algorithm. Column
B describes the general size of both the variances and eigenvalues of the resulting Σ = BBT

random effects covariance matrix (moderate vs large). Column ||D||F represents the average
across simulation replicates of the Frobenius norm of the difference (D) between the estimated
random effects covariance matrix Σ̂ and the true random effects covariance matrix Σ; the
Frobenius norm was standardized by the number of true random effects selected in the model.

simulation of the outcome and we modified the B matrix used (see Web Appendix Section
2.1). All simulations assumed the true number of latent factors r was 3; the Growth Ratio
method was used to estimate r; and the predictor effects were moderate (β = 1).
We ran this simulation to demonstrate how our method performed when the true number

of random effects were smaller than the true number of fixed effects.
The variable selection results for this simulation are given in Web Appendix Table 8. When

we compare these results presented in Web Appendix Table 8 with the comparable results
presented in Table 1 of the main paper, we see that decreasing the number of true random
effects in the model resulted in decreased true positive rates for the random effects; this was
likely a consequence of the decreased accuracy of the estimation of r when the true number
of random effects in the model decreased. The true and false positive rates of the fixed effects
remained consistent with the main paper Table 1 results.

2.8 Variable selection in Poisson data with 100 predictors

While we have previously focused on binary outcome data in our simulations, our proposed
method also applies to other members of the generalized linear model family, including the
Poisson model for count outcome data. To illustrate this, we simulated a Poisson mixed effects
model with p = 100 predictors, 5 of which had truly non-zero fixed and random effects,
and the other p − 5 predictors had zero-valued fixed and random effects. As in the previous
Binomial simulations, we set the sample size to N = 2500 and the number of groups to
K = 25, with equal numbers of subjects per group. We set r to 3, assigned moderate predictor
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True
r

β B Avg.
r

TP %
Fixef

FP %
Fixef

TP %
Ranef

FP %
Ranef

Tmed Abs.
Dev.
(Mean)

||D||F

3 1 Mod. 2.00 99.60 1.93 78.80 1.28 1.17 0.17 0.77

Web Table 8: Results of the variable selection procedure for p = 100 logistic mixed effects
simulations using an alternative numbers of true random effects (5 true random effects
predictors, which were a subset of the 10 true fixed effects predictors). Results include true
positive (TP) percentages for fixed and random effects, false positive (FP) percentages for
fixed and random effects, the median time in hours for the algorithm to complete (Tmed),
and the average of the mean absolute deviation (Abs. Dev. (Mean)) between the fixed effect
coefficient estimates β̂ and the true β values across all simulation replicates. Column ‘r Avg.’
gives the average Growth Ratio r estimate used within the algorithm. Column B describes
the general size of both the variances and eigenvalues of the resulting Σ = BBT random
effects covariance matrix (moderate). Column ||D||F represents the average across simulation
replicates of the Frobenius norm of the difference (D) between the estimated random effects
covariance matrix Σ̂ and the true random effects covariance matrix Σ; the Frobenius norm
was standardized by the number of true random effects selected in the model.

effects (β = 1), and specified a B matrix with 6 non-zero rows (for the 5 predictors plus an
intercept) that produced a ‘moderate’ covariance matrix (see Web Appendix Section 2.1 for
details). Unlike in the previous Binomial simulations, we simulated xki,j ∼ N(0, σ = 0.10) for
j = 1, ..., p to reduce the overall spread of the simulated yki ∼ Poisson(µki) outcome values,
where µki = exp(xT

kiβ + zT
kiγk). See Web Appendix Section 1.3 for details on the penalty

sequences used.
Using the Growth Ratio estimation procedure to estimate r, the average true positive

percentages were 83.40% for the fixed effects and for 77.20% the random effects, and the
average false positives were 5.92% for the fixed effects and 3.23% for the random effects. The
average estimate of r across the simulation replicates was 2.35.

3. Web Appendix: Supplementary case study details and materials

This section of the Web Appendix provides additional details about the case study data
preparation procedure and the case study sensitivity analyses.

3.1 Case Study: Study information and data processing

In this section, we provide more information about the individual studies contained within
the dataset and describe how we set up the data for the case study analyses in Section 4 of
the main paper. More complete coding details are provided in the GitHub repository https:

//github.com/hheiling/paper_glmmPen_FA.
The studies used in these analyses are summarized in Web Appendix Table 9, which contains

the gene expression platform information (all RNA-seq), the sample sizes, and the percent of
the samples that were classified into the basal subgroup.
Web Appendix Table 9 provides the dataset abbreviations, their respective citations, their

sample sizes, and the percent of the subjects within each study that were classified into
the basal subtype. The sample sizes listed in the table—and used in the analyses—were
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Dataset Platform Sample Size % Basal Citation

Aguirre RNA-seq 28 29 Aguirre et al. (2018)
CPTAC RNA-seq 99 22 Cao et al. (2021)
Dijk RNA-seq 61 39 Dijk et al. (2020)

Hayashi RNA-seq 75 53 Hayashi et al. (2020)
TCGA RNA-seq 97 20 Raphael et al. (2017)

Web Table 9: Summaries of the five pancreatic ductal adenocarcinoma (PDAC) gene expression
datasets used in the case study analyses described in Section 4 of the main paper.

smaller than the studies’ total sample size as we removed subjects with missing tumor grade
information, normal tissue samples, and those who did not have primary tumor samples of
sufficient quality. All five datasets had RNA-seq data for 60,230 total gene symbols for each
subject. Of those, 432 were also part of the 500 member gene list that Moffitt et al. (2015)
identified as likely to be expressed solely in PDAC tumor cells (this gene list is also provided
within the aforementioned GitHub repository).
There were some significant correlations between some of these 432 genes, as evaluated by

Spearman correlations applied to the subjects’ rank transformed gene expression. In order to
avoid having very highly correlated covariates in the analyses, we decided to combine highly
correlated genes together into meta-genes. We accomplished this by applying a hierarchical
clustering algorithm—the pheatmap::pheatmap() R function (Kolde, 2019)—to the Spearman
correlation matrix of the rank-transformed gene expression. We then cut the tree using the
stats::cutree() R function (R Core Team, 2021) at a height of 3. This produced a total
of 117 clusters, or meta-genes. For meta-genes that represented two or more genes, we added
the raw RNA-seq gene expression of all participating genes, which were then rank-transformed
on the subject level; these rank-transformed meta-gene covariates were used in the case study
analyses.
The cancer subtype outcome—basal or classical—was calculated using the clustering algo-

rithm specified in Moffitt et al. (2015). For each study individually, this clustering algorithm
was applied to the RNA-seq gene expression for the 432 genes described above, where the
distance matrix was the Euclidean distance and the assumed number of clusters was set to
two.

3.2 Case study: Sensitivity analyses

Using both glmmPen FA and glmmPen, we performed sensitivity analyses on our case study
by running the Elastic Net variable selection procedure with alternative values of π—the value
that represents the balance between ridge regression and the MCP penalty (π = 0 represents
ridge regression, π = 1 represents the MCP penalty)—and alternative values for the number
of latent common factors r (for the glmmPen FA procedure). Based on the results in Web
Appendix Table 4, π values between 0.5 and 1.0 were likely to have good selection results for
the correlation structure of the covariates in the dataset. We fit the variable selection procedure
using π = {0.6, 0.7, 0.8, 0.9, 1.0}. The glmmPen procedure assumed an independent random
effects covariance matrix.
We first discuss the glmmPen FA sensitivity results. In addition to estimating the number

of latent common factors using the Growth Ratio procedure, which estimated a value of r = 2
for all values of π, we also fit the model assuming r = 3 because the simulations given in
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Web Appendix Section 2.4 indicated that the Growth Ratio method may underestimate r.
Regardless of whether r was estimated as 2 using the Growth Ratio procedure or set to 3
manually, the coefficient values and selection results were very consistent for each value of
π. The single exception was when the π = 0.7 selection procedure included two additional
meta-gene covariate in the best model for r = 2 but not r = 3 (meta-gene 36, gene KLF5,
positive log odds ratio; meta-gene 111, genes DMKN, RHOV, VGLL1, positive log odds ratio).
Because of these similarities, we restricted our consideration to models where r was set to the
Growth Ratio estimate of 2.
In terms of fixed effects, the values π between 0.6 and 1.0 gave very consistent results within

the glmmPen FA procedure (r = 2). The 8 covariate meta-genes described in the main paper
Table 3 (which describe the glmmPen FA results using π = 0.8 and r = 2 estimated from
the Growth Ratio procedure) were consistently chosen across the different values of π, with
the exception of meta-gene 7, which was excluded from the best model when π = {1.0}. The
meta-genes 36 and 111 (described above) were also selected when π = 0.7; meta-gene 36 was
also selected when π = 0.6; and meta-gene 111 was also selected when π = 1.0.
For random effects, all values of π (and all values of r) consistently selected 0 random effect

slopes (random intercept only for random effects) within the glmmPen FA procedure. The
random intercept variances ranged between 0.27 and 0.84 when r = 2, with variances increasing
as the value of π increased.
We chose to report the glmmPen FA results of π = 0.8 in the main manuscript for several

reasons. Based on the fact that we had a range of correlations among the covariates in the
dataset, including some pairwise correlations greater than 0.5, we felt it was appropriate to fit
the variable selection procedure with π < 1.0. When choosing between the other values of π,
the π = 0.8 results contained the consistently selected 8 meta-gene covariates.
The times to complete the glmmPen FA variable selection procedure was between 0.4 and

1.8 hours for π = {0.6, 0.7, 0.8, 0.9, 1.0} (this range includes r values equal to 2 or 3).
The glmmPen procedure also consistently selected the 8 covariate meta-genes described

in the main paper Table 3 across all values of π = {0.6, 0.7, 0.8, 0.9}; the π = 1.0 fit did not
complete within 4 days (96 hours) and is therefore not included in these sensitivity analyses.
When π = {0.6, 0.7, 0.8}, glmmPen consistently selected the additional meta-genes 59 (genes
PKIB, DNAJC15, negative log odds ratio) and 71 (genes AKR1C3, CA2, MGST2; positive log
odds ratio). The glmmPen method consistently selected meta-gene 117 to have a non-zero
random effect (variance ranged between 0.46 and 1.11, with variances increasing as the value
of π increased). For π = 0.9, glmmPen also selected meta-gene 7 to have a non-zero random
effect (variance 0.69).
The times in hours to complete the glmmPen variable selection procedure was 53.5, 57.7,

49.2, and 60.2 for π equal to 0.6, 0.7, 0.8, and 0.9, respectively.
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