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Summary. Markers that predict treatment effect have the potential to improve patient outcomes. For example, the
Oncotype DX� RecurrenceScore� has some ability to predict the benefit of adjuvant chemotherapy over and above hormone
therapy for the treatment of estrogen-receptor-positive breast cancer, facilitating the provision of chemotherapy to women
most likely to benefit from it. Given that the score was originally developed for predicting outcome given hormone therapy
alone, it is of interest to develop alternative combinations of the genes comprising the score that are optimized for treatment
selection. However, most methodology for combining markers is useful when predicting outcome under a single treatment. We
propose a method for combining markers for treatment selection which requires modeling the treatment effect as a function of
markers. Multiple models of treatment effect are fit iteratively by upweighting or “boosting” subjects potentially misclassified
according to treatment benefit at the previous stage. The boosting approach is compared to existing methods in a simulation
study based on the change in expected outcome under marker-based treatment. The approach improves upon methods in
some settings and has comparable performance in others. Our simulation study also provides insights as to the relative merits
of the existing methods. Application of the boosting approach to the breast cancer data, using scaled versions of the original
markers, produces marker combinations that may have improved performance for treatment selection.
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1. Introduction
Discovering and describing heterogeneity in treatment effects
across patient subgroups has emerged as a key objective in
clinical trials and drug development. If the treatment effect
can be predicted given marker values such as biological mea-
surements and clinical characteristics, providing patients and
clinicians with these marker values can help them make more
informed treatment decisions. For example, the Oncotype DX
Recurrence Score is a leading marker for predicting the benefit
of adjuvant chemotherapy over and above tamoxifen among
breast cancer patients with estrogen receptor-positive (ER-
positive) tumors (Albain et al., 2010a). The Recurrence Score
is a proprietary combination of expression levels of 21 genes
(16 cancer-related and 5 reference) measured in breast cancer
tumor tissue, and is used to identify a subgroup of patients for
whom the likelihood of benefitting from adjuvant chemother-
apy is small. These patients can therefore avoid unnecessary
and potentially toxic treatment.

There is a large literature on statistical methods for com-
bining markers, but the vast majority of them have focused
on combining markers for predicting outcome under a single
treatment (e.g., Etzioni et al., 2003; Pepe, Cai, and Longton,
2005; Zhao et al., 2011). However, combinations of markers
for risk prediction or classification under a single treatment
are not optimized for treatment selection. Being at high risk
for the outcome does not necessarily imply a larger benefit
from a particular treatment (Henry and Hayes, 2006; Janes
et al., 2011; Janes, Pepe, and Huang, in press). In particular,

the Recurrence Score was originally developed for predicting
the risk of disease recurrence or death given treatment with
tamoxifen alone (Paik et al., 2004), and was later shown to
have value for predicting chemotherapy benefit (Paik et al.,
2004; Albain et al. 2010a, 2010b). Therefore, it is of interest to
explore alternative combinations of gene expression measures
that are optimized for treatment selection.

Statistical methods for combining markers for treatment
selection are being developed (see Gunter, Zhu, and Murphy,
2007; Brinkley, Tsiatis, and Anstrom, 2010; Cai et al., 2011;
Claggett et al., 2011; Foster, Taylor, and Ruberg, 2011;
Gunter, Zhu, and Murphy, 2011a; Zhang et al., 2012;
Zhao et al., 2012; Lu, Zhang, and Zeng, 2013). A simple
approach uses generalized linear regression to model the
expected disease outcome as a function of treatment and
markers, including an interaction between each marker and
treatment (Gunter et al., 2007; Cai et al., 2011; Lu et al.,
2013; Janes et al., in press). This model is difficult to specify,
particulary with multiple markers as in the breast cancer
example, and hence an approach that is robust to model
mis-specification is warranted. This is a key motivation for
our approach to combining markers for treatment selection.
We call our approach “boosting” since it is a natural general-
ization of the Adaboost (Adaptive boosting) method used to
predict disease outcome under a single treatment Freund and
Schapire (1997) and Friedman, Hastie, and Tibshirani (2000).

Candidate approaches for combining markers should be
compared with respect to a clinically relevant performance

© 2014, The International Biometric Society 695



696 Biometrics, September 2014

measure, and yet a few of the existing studies have performed
such comparisons. In a simulation study and in our analysis
of the breast cancer data, we evaluate methods for combining
markers using the cardinal measure of model performance: the
improvement in expected outcome under marker-based treat-
ment (Song and Pepe, 2004; Brinkley et al., 2010; Gunter,
Zhu, and Murphy, 2011b; Zhang et al., 2012; Janes et al.,
2014). To the best of our knowledge, only two other articles
(Qian and Murphy, 2011; Zhang et al., 2012) have used this
approach for evaluating new methodology.

The structure of the article is as follows. In Section 2, we
introduce our approach to evaluating marker combinations
for treatment selection and describe the boosting method.
A simulation study used to evaluate the boosting approach
in comparison to other candidate approaches is described in
Section 3. Section 4 describes our application of the boosting
approach to the breast cancer data. We conclude with a dis-
cussion of our findings and further research topics to pursue.

2. Methods

2.1. Context and Notation

Let D be a binary indicator of an adverse outcome following
treatment which we refer to as “disease.” In the breast can-
cer example, D indicates death or cancer recurrence within
5 years of study enrollment. We assume that D captures all
the consequences of treatment, such as subsequent toxicity,
morbidity, and mortality; more general settings are addressed
in Section 5. Suppose that the task is to decide, for each indi-
vidual patient, between two treatment options denoted by T ,
where we call T = 1 “treatment” and T = 0 “no treatment.”
We assume that the default treatment strategy is to treat all
patients. The marker, Y ∈ Rp, may be useful for identifying
a subgroup of patients who can avoid treatment. This setup
is motivated by the breast cancer context, wherein adjuvant
chemotherapy in addition to hormone therapy (T = 1) is the
standard of care and markers are used to identify women who
can forego adjuvant chemotherapy (T = 0). The setting where
T = 0 is the default and Y is used to identify a subgroup to
treat can be handled by simply switching treatment labels
(T = 0 for treatment and 1 for no treatment). We assume that
the data {Di, Ti, Yi}n

i=1 come from the ideal setting for evaluat-
ing treatment efficacy, a randomized clinical trial comparing
T = 0 to T = 1 where Y is measured at baseline and D is a
clinical outcome observed for all subjects.

2.2. Measures for Evaluating Marker Performance

Let �(Y) ≡ P(D = 1|T = 0, Y) − P(D = 1|T = 1, Y) denote
the marker-specific treatment effect. Given marker values
Y for all subjects, the treatment policy that minimizes the
population disease rate is to recommend no treatment if
φ(Y) = 1{�(Y) ≤ 0} = 1, where 1(·) is the indicator func-
tion (Vickers, Kattan, and Sargent, 2007; Brinkley et al.,
2010; Zhang et al., 2012; Lu et al., 2013). In the breast can-
cer example, this policy would recommend hormone therapy
alone to patients with negative treatment effects and adjuvant
chemotherapy to patients with positive treatment effects. The
function �(Y) is therefore the combination of markers that we
seek, and φ(Y) is the associated treatment rule. Given data
{Di, Ti, Yi} for i = 1, . . . , n subjects, we estimate the marker-

specific treatment effect by fitting a model for P(D = 1|T, Y),

termed the “risk model,” and calculate �̂(Y) = P̂(D = 1|T =
0, Y) − P̂(D = 1|T = 1, Y) and φ̂(Y) = 1{�̂(Y) ≤ 0}.

We characterize the performance of an arbitrary estimated
treatment rule φ̂(Y) by evaluating the benefit of marker-based
treatment (Song and Pepe, 2004; Brinkley et al., 2010; Gunter
et al., 2011b; Zhang et al., 2012; Janes et al., 2014). This is
measured by the difference in the disease rate under marker-
based treatment assignment versus the default strategy of pro-
viding treatment to all patients:

θ{φ̂(Y)} ≡ P(D = 1|T = 1) − [P{D = 1|T = 0, φ̂(Y) = 1}
× P{φ̂(Y)=1}+P{D=1|T =1, φ̂(Y)=0}P{φ̂(Y)=0}]

= [P{D = 1|T = 1, φ̂(Y) = 1}
−P{D = 1|T = 0, φ̂(Y) = 1}] × P{φ̂(Y) = 1}.

In the breast cancer example, θ denotes the reduction in the 5-
year death or recurrence rate under marker-based treatment;
in general, a higher value of θ indicates greater marker value.
Using the standard empirical measure Pn(δ) ≡ ∑n

i=1
n−1δi, θ

is estimated empirically as follows:

θ̂{φ̂(Y)} =
[
Pn1{D = 1, T = 1, φ̂(Y) = 1}
Pn1{T = 1, φ̂(Y) = 1}

− Pn1{D = 1, T = 0, φ̂(Y) = 1}
Pn1{T = 0, φ̂(Y) = 1}

]
× Pn1{φ̂(Y) = 1}.

Another important measure of the population performance
of the marker is the rate of incorrect treatment recommen-
dations, which we call the misclassification rate of treat-
ment benefit, MCRTB{φ̂(Y)} ≡ P{φ(Y) �= φ̂(Y)}, and estimate

by M̂CRTB{φ̂(Y)} = Pn1{φ(Y) �= φ̂(Y)}. Similar measures have
been used by Foster et al. (2011) and Lu et al. (2013). Al-
though this measure cannot be evaluated in practice since
�(Y) is unknown, it can be evaluated in simulated data where
�(Y) is known.

2.3. The Boosting Method of Combining Markers for
Treatment Selection

A simple approach for estimating �(Y) is to use a generalized
linear model for the outcome, D, as a function of markers, Y,

and treatment, T, including interactions between each marker
and treatment. That is, to stipulate that

h{P(D = 1|T, Y)} = η(T, Y), (1)

where the linear predictor η(T, Y) = Ỹβ1 + T Ỹβ2, Ỹ =
(1T , YT )T , β1 and β2 are (p + 1)-dimensional vectors of
regression coefficients for the markers’ main effects and
interactions with treatment, respectively, and h is a link
function. The logit link is the most common choice for
a binary outcome. This risk model, if correctly specified,
produces the combination of markers, �(Y), with optimal
performance, that is, θ{φ(Y)}. However if the risk model is
mis-specified, it will produce a biased estimate of treatment
effect, resulting in a suboptimal combination of markers and
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rule for assigning treatment. With multiple markers, the
likelihood of risk model mis-specification is increased. Our
method seeks to improve upon logistic regression by provid-
ing an estimate of treatment effect, and a combination of
markers, that is more robust to risk model mis-specification.

To achieve this goal, we adopt the idea of Adaboost,
which iteratively fits classifiers, at each stage assigning higher
weights to subjects whose outcomes are misclassified at the
previous stage in order to minimize classification error. Analo-
gously, we repeatedly fit a “working model” for P(D = 1|T, Y),
and at each stage give more weight to subjects who lie close to
the decision boundary, �(Y) = 0, who have greater potential
to be recommended the incorrect treatment. In other words,
we extend Adaboost from the classification setting, where the
outcome to be predicted is D, to the treatment selection set-
ting, where the outcome is 1{�(Y) ≤ 0}. The added complex-
ity is that 1{�(Y) ≤ 0} is not directly observable. Details of
the boosting algorithm are given below.

Boosting algorithm

(1) With initial weight w
(0)
i = w(0)(Yi) for subject i, i =

1, . . . , n, fit the working risk model and calculate
P̃(0)(D = 1|T = t, Y), t = 0, 1, and �̃(0)(Y) = P̃(0)(D =
1|T = 0, Y) − P̃(0)(D = 1|T = 1, Y).

(2) Update weights according to w
(1)
i = w

∗(1)
i /

∑n

i=1
w

∗(1)
i ,

where w
∗(1)
i = min[w̃{�̃(0)(Yi)}, CM], for w̃(u) decreas-

ing in |u| and a specified maximum weight CM. In
our simulations, we use w̃{�̃(0)(Yi)} = |�̃(0)(Yi)|− 1

3 and

CM = 500. This upweights subjects with small |�̃(0)(Y)|
and limits the maximum size of the weights.

(3) Re-fit the working model with updated weights w
(1)
i

to obtain P̃(1)(D = 1|T = t, Y), t = 0, 1 and �̃(1)(Yi) =
P̃(1)(D = 1|T = 0, Yi) − P̃(1)(D = 1|T = 1, Yi) for all
subjects.

(4) Repeat steps (2)–(3) until either a pre-specified con-
vergence criterion is satisfied or a specified maximum
number of iterations (Mmax) is reached. In our simu-
lations, we set Mmax = 500 as an upper limit on the
number of iterations that would be necessary.

(5) After the last iteration, denoted by M ≤ Mmax, we

have {P̃(1)(D = 1|T = t, Yi), . . . , P̃
(M)(D = 1|T = t, Yi)},

t = 0, 1, and {�̃(1)(Yi), . . . , �̃
(M)(Yi)} for i = 1, . . . , n.

The estimated disease rate and treatment ef-
fect for subject i are P̂(Di = 1|Ti = t, Yi) = M−1∑M

m=1
P̃(m)(Di = 1|Ti = t, Yi) for t = 0, 1, and �̂(Yi) =

M−1
∑M

m=1
�̃(m)(Yi), and the estimated treatment rule

is φ̂(Yi) = 1{�̂(Yi) ≤ 0}.
(6) Given a new subject with covariate Y0, say in an in-

dependent test data set, we apply the set of work-
ing risk models in (5) and calculate �̃(m)(Y0) for m =
1, . . . , M. The estimated treatment effect is �̂(Y0) =
M−1

∑M

m=1
�̃(m)(Y0) and φ̂(Y0) = 1{�̂(Y0) ≤ 0}.

We explore use of the linear logistic regression model (1) and
a binary classification tree (Breiman et al., 1984) as work-
ing models. However, the boosting method applies to any ar-
bitrary model for P(D = 1|T, Y). Choice of the weight func-

tion, w̃(u), maximum weight, CM, and algorithm stopping
rule are discussed in Web appendix A. With the logistic work-
ing model, we stop the iterations when ‖β̃(k) − β̃(k−1)‖ ≤ 10−7,
where β̃(k) is the vector of estimated regression coefficients
at the kth iteration, or when M = Mmax; and with the clas-
sification tree working model, we stop the iterations when
M = Mmax.

3. Simulation Study

A simulation study was performed to compare the boosting
method to existing approaches for combining markers for
treatment selection. The boosting method is compared to
four comparator approaches: (1) using Adaboost (Friedman
et al., 2000) to combine classification trees for predicting
disease outcome under each treatment separately; (2) fitting
a classification tree to both treatment groups including all
marker-by-treatment interactions as predictors; (3) the classic
logistic regression approach which fits model (1) using maxi-
mum likelihood; and (4) the approaches of Zhang et al. (2012)
that maximize the Inverse Probability Weighted (IPW) or
Augmented Inverse Probability (AIPW) estimators of θ.

3.1. Comparator Methods for Combining Markers

3.1.1. Applying Adaboost separately to each treatment
group. A natural approach is to use a risk model to com-
bine markers to predict outcome under each treatment sep-
arately. We consider the Adaboost algorithm (Freund and
Schapire, 1997; Friedman et al., 2000) which combines pre-
dictions across multiple binary classification trees (Breiman
et al., 1984) (“base trees” (Hastie, Tibshirani, and Friedman,
2001)). Hereafter, this is referred to as the “Adaboost trees”
method. Each base tree is built by assigning higher weights
to subjects that are misclassified at the previous stage. The
associated risk model for each treatment group is a function
of individual markers and, potentially, interactions between
markers. We use Friedman et al.’s method (Friedman et al.,
2000) for estimating P(D = 1|T, Y). Adaboost trees is imple-
mented by the R function ada (R package ada (Culp, John-
son, and Michailidis, 2012)) using the following default set-
tings: exponential loss function, discrete boosting algorithm,
and 500 base trees. Since Adaboost trees is a non-parametric
approach, the obtained combination of markers is expected
to be more robust than logistic regression. However, fitting a
separate classifier to each treatment group may not yield the
optimal marker combination for treatment selection.

3.1.2. A single classification tree with marker-by-treatment
interactions. An alternative nonparametric approach is to
fit a single classification tree to both treatment groups in-
cluding {T, TY1, . . . , TYp, (1 − T )Y1, . . . , (1 − T )Yp} as predic-
tors. Using this classification tree, P(D = 1|T, Y) can be es-
timated using the empirical proportion of D = 1 observations
in each terminal node. We use the R function rpart (R pack-
age rpart (Therneau, Atkinson, and Ripley, 2012)) with de-
fault settings: the minimal number of observations required
to split is 20, the minimum number of observations in any
terminal node is 7, and the maximal number of nodes prior
to terminal node is 30. We do not prune the tree to stabilize
the probability estimates (Provost and Domingos, 2003; Chu
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et al., 2011), but these estimates are improved by averaging
across multiple tree classifiers (Chu et al., 2011).

3.1.3. Maximizing the IPW or AIPW estimators of θ.
Recently, Zhang et al. (2012) proposed an approach that finds
a combination of markers by directly maximizing the mean
outcome (in our context, minimizing the disease rate) under

marker-based treatment. This is equivalent to maximizing θ̂,
the estimated decrease in disease rate under marker-based
treatment. Zhang et al. (2012) consider maximizing both IPW
and AIPW estimators.

Briefly, let D(t) denote the potential disease out-
come under treatment t. For arbitrary treatment rule g :
Y �→ {0, 1} (in our context, assigning no treatment), the
goal is to estimate the optimal treatment rule defined
by gopt(Y) = arg min

g∈G
E{D(g)} = 1{�(Y) ≤ 0}, where D(g) ≡

D(1){1 − g(Y)} + D(0)g(Y). Given a parametric working risk
model P(D = 1|T, Y ;β) parameterized by finite-dimensional
parameter β, let η = η(β) denote a scaled version of β sat-
isfying ‖η‖ = 1 with ‖ · ‖ denoting the �2-norm. Treatment
rules in this class of risk models are written g(Y, η). The scal-
ing is used to ensure that the solution ηopt ≡ arg min

η

Q(η),

where Q(η) ≡ E[D{g(Y, η)}], is unique. Specifically, ηopt is es-
timated by minimizing the IPW or AIPW estimators of Q(η)
as follows:

IPWE(η) = Pn

{
CηD

πc(Y ; η, γ̂)

}
, (2)

AIPWE(η) = Pn

{
CηD

πc(Y ; η, γ̂)
− Cη − πc(Y ; η, γ̂)

πc(Y ; η, γ̂)
m(Y ; η, β̂)

}
,

(3)

where Ỹ = (1, Y), π(Y ; γ) = P(T = 1|Y ; γ) = ẽYγ

1+ẽYγ
is a known

or estimated probability of treatment (the “propensity
score”), πc(Y ; η, γ̂) = π(Y ; γ̂)T + {1 − π(Y ; γ̂)}1−T , Cη = T {1 −
g(Y, η)} + (1 − T )g(Y, η) is the treatment recommend

by the rule g(Y, η), and m(Y ; η, β̂) = P(D = 1|T = 1, Y ;

β̂){1 − g(Y, η)} + P(D = 1|T = 0, Y ; β̂)g(Y, η) is the model-
estimated disease rate under g(Y, η). In our randomized trial
setting, the propensity score model is known by design. The
IPW estimator (2) thus reduces to the empirical disease
rate under marker-based treatment. The AIPW estimator
(3) is more efficient in large samples. Maximizing (2) or (3)
therefore yields the marker combination with the highest
IPW or AIPW θ̂{φ̂(Y)} in the training data within the class
of the working risk model. However, when the working model
is mis-specified, this combination may perform poorly, and it
is in this setting where the boosting approach may generate
marker combinations with closer-to-optimal performance.

To implement the approach, we find η̂opt that min-
imizes IPWE(η) or AIPWE(η) under the linear logistic
working model (1) where η = β/‖β‖. Under this model,

1{�(Y) ≤ 0} is equivalent to 1{Ỹη ≤ 0}, and so the class

of treatment rules is Gη = {g(Ỹ ; η) = 1{Ỹη ≤ 0}, ‖η‖ = 1, Ỹ =
(1, Y1, . . . , Yp)}. Following Zhang et al. (2012), the R function

genoud (R package rgenoud (Mebane and Sekhon, 2011)) is
utilized to minimize IPWE(η) (2) or AIPWE(η) (3) using the
genetic algorithm (Sekhon and Mebane, 1998).

3.2. Simulation Set-Up

We generate simulated data sets with 500 or 5000 ob-
servations in the following fashion. Binary treatment
indicators T ∼ Bernoulli (0.5). In most scenarios we gen-
erate three independent continuous markers Y1, Y2, and Y3

(Y = (Y1, Y2, Y3)) each following a standard normal distri-
bution; exceptions are noted below. The binary outcome
D ∼ Bernoulli {P(D = 1|T, Y)}. The risk model P(D = 1|T, Y)
varies among the seven scenarios as shown in Table 1 and
described below. Figure 1 displays the distribution of �(Y)
for each scenario. The linear logistic regression model (1) and
the classification tree including {T, TY, (1 − T )Y} as predictors
are used as working models for the boosting method.

Simulation scenarios

Scenario 1. The true risk model is linear logistic where
Y1, Y2, and Y3 have strong, intermediate, and
weak interactions with treatment: logitP(D =
1|T, Y) = 0.3 + 0.2Y1 − 0.2Y2 − 0.2Y3+T (−0.1−
2Y1 − 0.7Y2 − 0.1Y3). The marker combination
obtained by fitting the linear logistic working
model with maximum likelihood estimation
(MLE) is expected to achieve the best perfor-
mance. However, it is of interest to determine
the extent to which other methods produce
comparable results.

Scenario 2. The true risk model is the same as in Scenario
1, but now Y1 has high leverage points. Specif-
ically, a random 2% of Y1 values are replaced
with draws from a Uniform (8, 9) distribution.
This scenario is used to compare the perfor-
mance of the approaches that use the correct
linear logistic working model in the context of
high leverage observations.

Scenario 3. The true risk model is log{−logP(D =
1|T, Y)} = −0.7 − 0.2Y1 − 0.2Y2+0.1Y3+T (0.1+
2Y1 − Y2 − 0.3Y3), where Y1, Y2, and Y3 have
strong, intermediate, and weak interactions
with treatment. The linear predictor of the
linear logistic working model is correct but the
link function is incorrect. This scenario is used
to compare the robustness of the boosting
approach to other approaches in the context
of minor working model mis-specification.

Scenario 4. The true risk model is log{−logP(D =
1|T, Y)} = 2 − 1.5Y2

1 − 1.5Y2
2 + 3Y1Y2 +

T (−0.1 − Y1 + Y2). Y1 and Y2 follow a Uniform
(−1.5, 1.5) distribution. The link function
and main effects of the linear logistic working
model are incorrectly specified, the latter
due to omission of quadratic and marker-by-
marker interaction terms, but the interaction
terms are correct. This scenario is chosen for
its similarity to the first scenario in Zhang
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Table 1
True risk models and marker distributions for the seven simulation scenarios. The linear logistic regression model

logitP(D = 1|T, Y) = Ỹβ1 + T Ỹβ2, with Ỹ = (1, Y), and the classification tree including {T, TY, (1 − T )Y} as predictors are
evaluated as working models in all scenarios.

Scenario True risk model Marker distribution

The linear logistic working 1 logitP(D = 1|T, Y) = 0.3 + 0.2Y1 − 0.2Y2 − 0.2Y3 Y1, Y2, and Y3 are
model is correctly specified +T (−0.1 − 2Y1 − 0.7Y2 − 0.1Y3) independent N(0, 1)

2 logitP(D = 1|T, Y) = 0.3 + 0.2Y1 − 0.2Y2 − 0.2Y3 Same as Scenario 1 except
+T (−0.1 − 2Y1 − 0.7Y2 − 0.1Y3) for 2% of high leverage

observations where Y1 ∼
Uniform (8, 9)

Link function in the linear 3 log{−logP(D = 1|T, Y)} = −0.7 − 0.2Y1 − 0.2Y2 + 0.1Y3 Same as Scenario 1
logistic working model is +T (0.1 + 2Y1 − Y2 − 0.3Y3)
incorrectly specified

Link function and main effects 4 log{−logP(D = 1|T, Y)} = 2 − 1.5Y2
1 − 1.5Y2

2 + 3Y1Y2 Y1, and Y2 are independent
in the linear logistic working +T (−0.1 − Y1 + Y2) Uniform (−1.5, 1.5)
model are incorrectly
specified

Main effects and interactions 5 logitP(D = 1|T, Y) = −0.1 − 0.2Y1 + 0.2Y2 − 0.1Y3 + Y2
1 Same as Scenario 1

are incorrectly specified in +T (−0.5 − 2Y1 − Y2 − 0.1Y3 + 2Y2
1 )

the linear logistic working
model

6 logitP(D = 1|T, Y) = 0.1 − 0.2Y1 + 0.2Y2 − Y1Y2

+T (−0.5 − Y1 + Y2 + 3Y1Y2)

Linear logistic working model 7 P(D = 1|T, Y) = 1{Y1 < 8} 1

1 + e−η
+ 1{Y1 ≥ 8}

(
1 − 1

1 + e−η

)
, Same as Scenario 2

is mis-specified for outlying
where η = 0.3 + 0.2Y1 − 0.2Y2 − 0.2Y3observations +T (−0.1 − 2Y1 − 0.7Y2 − 0.1Y2)

et al. (2012) who found that, in a continuous
outcome setting, maximizing the IPW or
AIPW estimators of θ yielded substantial
improvement over standard linear regression.

Scenario 5. The true risk model is logitP(D = 1|T, Y) =
−0.1 − 0.2Y1 + 0.2Y2 − 0.1Y3 + Y2

1 + T (−0.5 −
2Y1 − Y2 − 0.1Y3 + 2Y2

1 ) including a non-
linear main effect and interaction of Y1 with
treatment. The linear logistic working model
mis-specifies these Y1 effects, but the classifi-
cation tree working model should be able to
detect them.

Scenario 6. The true risk model is a logistic regression
model including an interaction between Y1 and
Y2 where Y1, Y2 and Y1Y2 have intermediate,
intermediate, and strong interactions with
treatment: logitP(D = 1|T, Y) = 0.1 − 0.2Y1 +
0.2Y2 − Y1Y2 + T (−0.5 − Y1 + Y2 + 3Y1Y2).
The linear logistic working model does not
include Y1Y2 and TY1Y2 interaction terms
whereas a classification tree working model
does allow for them.

Scenario 7. The true risk model is the same linear logistic
model as in Scenario 1 except for the presence
of 2% outlying observations. Specifically, for a
random 2% sample, Y1 is replaced with a draw

from a Uniform (8, 9) distribution and D is re-
placed with 1 − D.

For each scenario, 1000 data sets are generated and used
as training data to build a prediction model and treatment
assignment rule, φ̂(Y) = 1{�̂(Y) ≤ 0}. To avoid overoptimism
associated with fitting and evaluating the risk model using
the same data, a single large independent test data set with
n = 105 observations is generated and used to evaluate the
performance of the fitted treatment rule, θ{φ̂(Y)}. Mean and

Monte-carlo standard deviation (SD) of θ{φ̂(Y)} and mean

MCRTB{φ̂(Y)} are reported. The performance of the true

treatment rule, θ{φ(Y)}, is calculated as an average of θ̂{φ(Y)}
over 100 Monte-carlo simulations where each θ̂{φ(Y)} is ob-
tained using n = 3 × 107 observations.

3.3. Results of the Simulation Study

Tables 2 and 3 summarize the simulation results for sample
sizes n = 500 and n = 5000, respectively. The performances of
marker combinations obtained using the following methods
are compared: Logistic regression with maximum likelihood
estimation (hereafter “linear logistic MLE”), the boosting
method described in Section 2.3 with linear logistic working
model (“linear logistic boosting”), maximizing the IPW or
AIPW estimators of θ as proposed by Zhang et al. (2012)
(“maximizing IPWE or AIPWE of θ”), a single classification
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Δ(Y)=P(D=1|T=0, Y)−P(D=1|T=1, Y)
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D

F
 o

f Δ
(Y
)

Figure 1. Distribution of the marker-specific treatment ef-
fect, �(Y) = P(D = 1|T = 0, Y) − P(D = 1|T = 1, Y), for each
of the seven simulation scenarios. The proportion of individu-
als with negative treatment effects is indicated on the Y-axis,
and θ = [P{D = 1|T = 1, φ(Y) = 1} − P{D = 1|T = 0, φ(Y) =
1}] × P{φ(Y) = 1}, measuring the impact of marker-based
treatment assignment, is shown.

tree with marker-by-treatment interactions (“single classifi-
cation tree”), the boosting method with a classification tree
working model including marker-by-treatment interactions
(“classification tree boosting”), and applying Adaboost trees
to each treatment group separately (“separate Adaboost”).
For each scenario, the method with the highest mean θ is
marked in bold.

When the linear logistic working model was correctly spec-
ified (Scenario 1), as expected the combination of markers
obtained using linear logistic MLE had the highest mean θ,
smallest SD of θ, and smallest MCRTB. Linear logistic boost-
ing produced almost identical results, whereas all other meth-
ods produced modestly lower mean θ and substantially higher
SD of θ and MCRTB.

In the presence of high leverage points (Scenario 2), linear
logistic MLE continued to produce the highest mean θ and
smallest MCRTB. However, the SD of θ was slightly lower with
linear logistic boosting and substantially lower when maximiz-
ing the AIPWE of θ, or employing classification tree boosting,
even while the associated mean θ’s were close to optimal. This
suggests that, as expected, linear logistic MLE yields variable
estimates in the presence of high leverage points; this effect

disappears with large n (Table 3). Another observation is that
only linear logistic boosting produced MCRTB near that of
linear logistic MLE; all other methods produced substantially
higher classification error.

Mis-specifying the link function of the logistic working
model (Scenario 3) had minimal impact on θ and both lin-
ear logistic MLE and linear logistic boosting produced nearly
optimal mean θ and similarly low SD of θ and MCRTB. All
other methods yielded slightly lower mean θ and substan-
tially higher SD of θ and MCRTB. The superiority of the lin-
ear logistic regression methods persisted with larger n (Table
3). When both the link function and main effects were mis-
specified (Scenario 4), methods with linear logistic working
models produced similar mean θ (close to the optimal value)
but linear logistic boosting had some advantage in terms of
lower SD of θ and MCRTB. Differences among methods were
smaller again for larger n (Table 3).

Scenarios 5 and 6 explore substantial mis-specification of
the linear logistic working model; the mean θ for linear lo-
gistic MLE is far from the optimal value. In these scenarios,
boosting improved upon linear logistic MLE. Classification
tree boosting yielded the best performance with the most
dramatic improvement over logistic regression in the highly
nonlinear setting of Scenario 6. These results persisted for
large n (Table 3).

When the risk model mis-specification was due to outly-
ing observations (Scenario 7), maximizing the AIPWE of θ

and boosting provided marker combinations with improved
performance over those generated by linear logistic MLE.

In summary, these simulation results demonstrate that the
boosting method can improve upon existing methods for com-
bining markers in certain settings. Under a substantially mis-
specified working model, boosting can dramatically improve
model performance. When the working model is mis-specified
but not far from the true risk model, boosting may slightly im-
prove performance. When high leverage points exist, boosting
reduces variability without compromising mean performance.
Boosting can perform better than direct maximization of the
IPWE and AIPWE of θ, under mild or substantial working
model mis-specification. As expected, linear logistic boost-
ing performs best with minor mis-specification of the logistic
risk function while classification tree boosting better captures
nonlinear main effects and interactions with treatment.

4. Breast Cancer Data

The boosting method was then applied to the breast can-
cer data. The performance of the Oncotype DX Recurrence
Score was most recently evaluated in the Southwest Oncol-
ogy Group (SWOG)-SS8814 trial (Albain et al., 2010a), which
randomized women with node-positive, ER-positive breast
cancer to tamoxifen plus adjuvant chemotherapy (cyclophos-
phamide, doxorubicin, and fluorouracil before or concurrent
with tamoxifen) or tamoxifen alone. For 367 women (219 on
tamoxifen plus adjuvant chemotherapy sequentially (T = 1)
and 148 on tamoxifen alone (T = 0)), expression levels of
16 breast cancer-related and 5 reference genes were mea-
sured on tumor samples obtained at surgery (before adjuvant
chemotherapy), and the Recurrence Score was calculated.
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We use the SS8814 data to explore alternative combina-
tions of the 16 breast cancer related genes that are optimized
for treatment selection. In these data, there were 80 deaths
or breast cancer recurrences by 5 years (35 given T = 0 and
45 given T = 1). There was little censoring; for nine subjects
censored before 5 years, we assume D = 0. Because the data
are not currently available for public use, we modified the
gene values but preserved the basic underlying structure of the
data. Specifically, we use scaled versions of the markers (mean
centered with unit variance) and un-labeled genes. A modified
version of the original Recurrence Score was used. Combina-
tions of the following marker sets were considered for their
potential to guide treatment decisions: (1) The modified risk
score (MRS); (2) three genes, G1, G2, and G3, that showed
evidence of marker-by-treatment interactions in a multivari-
ate linear logistic regression model; and (3) two genes, G4 and
G5, that exhibited a significant three-way interaction TG4G5

in a linear logistic regression model.
We implement the following approaches: Linear logistic

MLE, linear logistic boosting, maximization of the IPWE
or AIPWE of θ described by Zhang et al. (2012), a single
classification tree with marker-by-treatment interactions, and
classification tree boosting. The tuning parameters Mmax and
w̃{�(Y)} varied across marker sets and were determined us-
ing cross-validation (see Web Appendix A); Cmax was set to
500 (see Web Appendix A). To assess model performance, we

calculate the apparent performance (̂θ{φ̂(Y)}) using the orig-
inal (training) data and use the percentile bootstrap to cal-
culate a 95% confidence interval. A bootstrap-bias-corrected
estimate of model performance (̂θc{φ̂b(Y)}) (Efron and Tib-
shirani, 1993) is also calculated along with a 95% confi-
dence interval obtained using the double-bootstrap (see Web
Appendix B).

Performance measures of the various marker combinations
are shown in Table 4. For every set of markers, maximizing
the AIPWE of θ, linear logistic boosting, a single classifica-
tion tree, or classification tree boosting yields a combination
of markers with better performance (higher θ̂) than that ob-
tained using linear logistic MLE. For example, for the models
including G4, G5, and G4G5, classification tree boosting yields
a marker combination associated with a 9% decrease in 5-year
recurrence or death (95% CI: 8–18%) and the marker combi-
nation maximizing the AIPWE of θ yields a 3% decrease (95%
CI: 2–11%). In contrast, the combination derived using linear
logistic MLE yields a 0.3% decrease (95% CI: −2 to 8%).
These new combinations of markers may have improved abil-
ity to identify a subgroup of women who can avoid adjuvant
chemotherapy, in terms of providing a lower population rate of
5-year death or recurrence. For example, the best function of
the MRS is estimated to yield a 5% reduction in 5-year death
or recurrence (95% CI: 4–13%), while allowing 64% women to
avoid adjuvant chemotherapy.

Observe in Table 5 that the differences in performance be-
tween models are due to a large proportion of subjects being
differently classified according to treatment benefit using lin-
ear logistic MLE versus the other approaches. The results
also suggest that the linear logistic model may not hold for
the modified risk score since maximizing the AIPWE of θ

and classification tree boosting produce substantially higher
θ̂ than linear logistic MLE.

These results must be interpreted with caution, however,
since even our bootstrap-bias-corrected estimates of model
performance may be overoptimistic. With the small sample
size, cross-validation did not produce satisfactory estimates
of test data performance; results were highly dependent on
the random seed used to split the data. Other bias correction
approaches such as the 0.632 bootstrap method (Efron and
Tibshirani, 1993) do not appear to apply to the measure θ.
Obtaining sufficiently large data sets to validate marker com-
binations is a pervasive challenge for the treatment selection
field.

5. Discussion

This article describes a novel application of boosting to
combining markers for predicting treatment effect. The ap-
proach is intended to build in robustness to risk model mis-
specification, by averaging across risk models fit by iteratively
upweighting subjects potentially misclassified according to
treatment benefit at the previous stage. We evaluate the per-
formance of the approach using clinically relevant measures
and find several settings in which the boosting method results
in combinations of markers that have closer-to-optimal per-
formance than combinations derived using less-robust existing
approaches. Specifically, boosting appears advantageous un-
der substantial risk model mis-specification and in settings
with high leverage points. Our analysis of the breast can-
cer data suggests that, in these data, boosting can yield new
marker combinations that may have superior ability to iden-
tify women who do not benefit from adjuvant chemotherapy.

A simple approach to combining markers for treatment se-
lection is to apply one of the plethora of methods available for
combining markers for classification separately to each treat-
ment group. As discussed by Claggett et al. (2011), however,
the two best performing risk models for each treatment group
do not necessarily produce the best model for treatment ef-
fect. This strategy risks missing markers that are strongly
associated with treatment effect but which have modest main
effects, and risks including markers which have strong main
effects but modest interactions with treatment. For exam-
ple, human epidermal growth factor receptor 2 (HER-2) is
not considered a significant predictor of cancer recurrence in
breast cancer patients while it is an important predictor of the
effects of some adjuvant chemotherapies and hormone thera-
pies (Clark, 1995; Henry and Hayes, 2006). In our simulations,
fitting a risk model to each treatment group separately tended
to produce marker combinations with inferior performance
compared to those that simultaneously considered both treat-
ment groups, such as the novel boosting method.

When evaluating candidate approaches for combining
markers, it is important that methods be compared with re-
spect to compelling and clinically relevant measures of model
performance. Measures such as the frequency of correct vari-
ables selected (Gunter et al., 2007; Lu et al., 2013), the area
under the receiver operating characteristic curve (AUC) for
each treatment group (Claggett et al., 2011) and the mean
squared error (MSE) of model coefficients (Lu et al., 2013) suf-
fer from lack of clinical interpretation and do not characterize
the benefit of the marker combination. The rate of incorrect
treatment recommendation, MCRTB, is appealing and useful
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for simulation studies evaluating new methods. The decrease
in the disease rate under marker-based treatment, measured
by θ, has clear relevance. This measure, or a variation on it,
has been advocated in several recent articles on evaluating
treatment selection markers (Song and Pepe, 2004; Gunter
et al., 2007, 2011b; Brinkley et al., 2010; Qian and Murphy,
2011; Janes et al., 2011, 2014; Zhang et al., 2012). θ is com-
prised of the proportion of subjects who are marker-negative
and the treatment effect in the marker-negative subgroup.
While these constituents inform about the nature of mark-
ers’ effect, neither can serve as the sole basis for comparing
combinations of markers.

The relative performance of the different approaches to
combining markers for treatment selection depends on the
scale of the outcome. While many of the methods to-date
have focused on the continuous outcome setting, this article
compares approaches given a binary outcome. In particular,
we present results on the IPWE or AIPWE of θ maximiza-
tion approach compared to logistic regression MLE, whereas
the original article (Zhang et al., 2012) focused on a contin-
uous outcome and linear regression. In our simulation study,
improving upon logistic regression proved difficult. Even un-
der risk model mis-specification, maximizing the IPWE or
AIPWE of θ only resulted in moderately higher mean θ in
most scenarios. In Scenario 4, constructed to be similar to the
first simulation scenario of Zhang et al. (2012), maximizing
the IPWE or AIPWE of θ did not yield a marker combina-
tion with superior performance to that associated with logistic
regression MLE. Based on these results, it appears more dif-
ficult to improve upon logistic regression for binary outcomes
than it is to improve upon linear regression for continuous
outcomes. Pepe et al. (2005) also found logistic regression to
be remarkably robust in the classification context.

The boosting method described here warrants further re-
search along several avenues. The method can be generalized
naturally to settings where the outcome does not capture all
consequences of treatment and therefore the optimal treat-
ment rule is �(Y) ≤ δ for some δ > 0 (Vickers et al., 2007;
Janes et al., 2014). Continuous outcomes and time-to-event
outcomes could be also accommodated. Further investigation
of the optimal weight function for the boosting method is
of interest. The method could be extended to settings with
marker values missing at random, multiple treatment options,
or to the observational study setting. Another challenge is
doing variable selection in the treatment selection context.
Application of boosting with a penalized regression working
model is one potential approach that would accommodate
high dimensional makers.

6. Supplementary Materials

Web Appendix A, referenced in Sections 2.3 and 4, and Web
Appendix B, referenced in Section 4, and R code to perform
the estimation are available with this paper at the Biometrics
website on Wiley Online Library
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1. Introduction

We congratulate the Kang, Janes, and Huang (hereafter KJH)
on an interesting and powerful new method for estimating
an optimal treatment rule, also referred to as an optimal
treatment regime. Their proposed method relies on having
a high-quality estimator for the regression of outcome on
biomarkers and treatment, which the authors obtain using
a novel boosting algorithm. Methods for constructing treat-
ment rules/regimes that rely on outcome models are some-
times called indirect or regression-based methods because the
treatment rule is inferred from the outcome model (Barto and
Dieterich, 1988).

Regression-based methods are appealing because they
can be used to make prognostic predictions as well as
treatment recommendations. While it is common practice to
use parametric or semiparametric models in regression-based
approaches (Robins, 2004; Chakraborty and Moodie, 2013;
Laber, Linn, and Stefanski, in press; Schulte et al., in press),
there is growing interest in using nonparametric methods
to avoid model misspecification (Zhao et al., 2011; Moodie,
Dean, and Sun, 2013). In contrast, direct estimation meth-
ods, also known as policy-search methods, try to weaken
or eliminate dependence on correct outcome models and
instead attempt to search for the best treatment rule within a
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pre-specified class of rules (Orellana, Rotnitzky, and Robins,
2010; Zhang et al., 2012a,b, 2013; Zhao et al., 2012). Direct
estimation methods make fewer assumptions about the
outcome model, which may make them more robust to model
misspecification but potentially more variable.

We derive a direct estimation analog to the method of
KJH, which we term value boosting. The method is based
on recasting the problem of estimating an optimal treatment
rule as a weighted classification problem (Zhang et al., 2012a;
Zhao et al., 2012). We show how the method of KJH can
be used with existing policy-search methods to construct a
treatment rule that is interpretable, logistically feasible, par-
simonious, or otherwise appealing.

2. Setup and Notation

We assume that the available data are (Di, Ti, Yi), i = 1, . . . , n,
which comprise n independent and identically distributed
copies of (D, T, Y), where Y ∈ Rp denotes biomarker informa-
tion; T ∈ {0, 1} denotes treatment received; and D ∈ R denotes
the outcome of interest coded so that higher values are bet-
ter, as is customary in the treatment regime literature. To
match the development of KJH, we assume that the data
are collected in a randomized clinical trial so that π(t|y) =
P(T = t|Y = y) is known by design, where ε < π(t|Y) < 1 − ε

for some ε < 0 with probability one. This setup includes the
binary outcome considered by KJH as a special case with the
roles of D = 1 and D = 0 interchanged.

A treatment rule g is a map from the domain of Y

into that of T , so that a patient presenting with Y = y is
recommended treatment g(y). Define the value of a rule
g, denoted V (g), as the expected outcome if all patients
are treated according to g. An optimal regime, gopt, sat-
isfies V (gopt) ≥ V (g) for all other rules g under considera-
tion. Under suitable conditions (e.g., Zhang et al., 2012b)
V (g) = E[E{D|Y, T = g(Y)}]. Letting Q(y, t) = E(D|Y = y, T =
t), gopt(y) = arg maxt Q(y, t). The foregoing expression moti-
vates estimating gopt by first estimating the function Q(y, t)

by regressing D on Y and T to obtain Q̂(y, t) and then ob-

taining ĝReg(y) = arg maxt Q̂(y, t). We refer to approaches of
this form as regression-based methods; the method proposed
by KJH is of this type.

An alternative approach is to construct first an esti-
mator for V (g), say V̂ (g), and subsequently obtain ĝVal =
arg maxg∈G V̂ (g) for some suitable class of rules G. We
refer to approaches of this form as policy-search meth-
ods. Policy-search and regression-based methods are not
clearly delineated. For example, one could estimate V (g) by

n−1
∑n

i=1
Q̂{Yi, g(Yi)}, in which case ĝVal = ĝReg provided that

ĝReg ∈ G. Let B̂KJH(Y) be the estimator of Q̂(Y, 1) − Q̂(Y, 0)

proposed by KJH. Because Q̂{Y, g(Y)} = Q̂(Y, 0) + g(Y)B̂(Y),
the method of KJH can be viewed as a policy-search estima-
tor of the form arg maxg∈G n−1

∑n

i=1
g(Yi)B̂KJH(Yi). However,

the success of this approach relies on the correctness of the
outcome model.

Generally, policy-search methods employ estimators for
V (g) that do not rely heavily on correctness of an outcome
model (Zhang et al., 2012b, 2013; Zhao et al., 2012). In the
clinical trial setting considered here, both the inverse proba-
bility weighted estimator (IPWE) and the augmented inverse

probability weighted estimator (AIPWE) described by KJH
are consistent estimators for V (g), pointwise in g, that do
not require a consistent outcome model. We assume subse-
quently that the AIPWE is used to estimate V (g). Let Pn de-
note the empirical measure so that Pnf (Z) = n−1

∑n

i=1
f (Zi).

The AIPWE is

V̂AIPWE(g) = Pn

[
1T=g(Y)D

πc(Y ; g)
− 1T=g(Y) − πc(Y ; g)

πc(Y ; g)
Q̂{Y, g(Y)}

]
,

(1)

where 1ν is one if ν is true and zero otherwise, πc(Y ; g) =
π{g(Y)|Y}, and Q̂(y, t) is an estimator for Q(y, t). The AIPWE
can be viewed as adding a mean zero but negatively correlated
term to the IPWE to gain efficiency (Scharfstein, Rotnitzky,
and Robins, 1999). Define

Ĉ(D, Y, T ) = T

π(1|Y)
D − T − π(1|Y)

π(1|Y)
Q̂(Y, 1)

− 1 − T

1 − π(1|Y)
D − T − π(1|Y)

1 − π(1|Y)
Q̂(Y, 0),

and Ĉi = Ĉ(Di, Yi, Ti). Let Ŵi = |Ĉi| and Ẑi = 1
Ĉi>0

.

Zhang et al. (2012a) showed that

arg max
g∈G

V̂AIPWE(g) = arg min
g∈G
PnŴ1

Ẑ �=g(Y)
,

and thus the policy-search objective function using (1) is
equivalent to a weighted misclassification error with predictor-
label pairs {(Yi, Ẑi)}n

i=1 and weights {Ŵi}n
i=1. Taking this ap-

proach, any classification algorithm that can incorporate
weights can be used to estimate an optimal treatment regime.
In the next section, we use this framework to develop a policy-
search boosting algorithm for estimating gopt.

3. Value Boosting

3.1. Policy-Search Boosting Algorithm

To apply boosting using this classification perspective, we
require an algorithm that can accommodate weights. How-
ever, standard boosting algorithms assume unweighted data.
To provide intuition and to match the development of KJH,
we describe a simple boosting algorithm with a logistic re-
gression model as the base classifier, although other choices
are possible. To gain intuition, consider first a thought ex-
periment. Suppose that each weight Ŵi is a rational num-
ber expressed as qi/ri, where qi and ri are positive integers.
Let N denote the smallest common multiple of r1, . . . , rn,
and create a new, augmented data set with qiN/ri copies of
(Yi, Ẑi). Let DAug = {(Yik, Ẑik)} k = 1, . . . , qiN/ri, i = 1, . . . , n

denote this augmented data set, where Yik ≡ Yi and Ẑik ≡ Ẑi

for i = 1, . . . , n. In this case

V̂AIPWE(g) ∝
n∑

i=1

qiN/ri∑
k=1

1
Ẑik �=g(Yik)

,
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which is the (unweighted) misclassification rate of the rule
g evaluated on the augmented data set. Thus, we can apply
a boosting algorithm without modification to the augmented
data set. The algorithm we consider is as follows:

1. Initialize weights ω
(1)
ik = 1, k = 1, . . . , Nqi/ri, i = 1, . . . , n.

2. Repeat for b = 1, . . . , B

(a) Fit a logistic regression model ĝ
(b)
n to DAug with

weights ω
(b)
ik , k = 1, . . . , qiN/ri, i = 1, . . . , n.

(b) Compute m
(b)
ik = 1̂

g
(b)
n (Yik) �=Ẑik

and weighted misclas-

sification error e(b) = ∑
i,k

ω
(b)
ik m

(b)
ik /

∑
i,k

ω
(b)
ik .

(c) Set ω
(b+1)
iK = ω

(b)
ik

{
(1 − e(b))/e(b)

}mik
.

3. The final boosted treatment rule is

ĝn(Y) =

⎧⎪⎨⎪⎩
1 if

∑B

b=1
log{(1 − e(b))/e(b)}ĝ(b)

n (Y)

> 1
2

∑B

b=1
log{(1 − e(b))/e(b)},

0 otherwise.

This algorithm is not computationally feasible because
DAug is potentially very large. However, it suggests a sim-
ple weighted procedure that can be applied to the original
data. First, note that step 2(a) is equivalent to fitting logistic

regression to obtaining ĝ
(b)
n using the original data {(Yi, Ẑi}n

i=1

with weights ω
(b)
i = ω

(b)
i1 Ŵi. Second, defining m

(b)
i = 1̂

g
(b)
n (Yi) �=Ẑi

,

the weighted misclassification at iteration b of the boosting
algorithm is

e(b) =
∑

i,k
ω

(b)
ik m

(b)
ik∑

i,k
ω

(b)
ik

=
∑n

i=1
(Nqi/ri)ω

(b)
i1 m

(b)
i1∑n

i=1
(Nqi/ri)ω

(b)
i1

=
∑n

i=1
Ŵiω

(b)
i1 m

(b)
i∑n

i=1
Ŵiω

(b)
i1

.

This suggests the following algorithm, which we term value
boosting.

1. Initialize weights ω
(1)
i = n−1, i = 1, . . . , n.

2. Repeat for b = 1, . . . , B

(a) Fit a logistic regression model ĝ
(b)
n to {(Yi, Ẑi)}n

i=1

with weights ω
(b)
i , i = 1, . . . , n.

(b) Compute m
(b)
i = 1̂

g
(b)
n (Yi) �=Ẑi

and weighted misclas-

sification error e(b) = ∑
i
ω

(b)
i Ŵim

(b)
i /

∑
i
ω

(b)
i Ŵi.

(c) Set ω
(b+1)
i = ω

(b)
i

{
(1 − e(b))/e(b)

}mi
.

3. The final boosted treatment rule is

ĝn(Y) =

⎧⎪⎨⎪⎩
1 if

∑B

b=1
log{(1 − e(b))/e(b)}ĝ(b)

n (Y)

> 1
2

∑B

b=1
log{(1 − e(b))/e(b)},

0 otherwise.

The form of the above algorithm can be viewed as a version
of the adacost algorithm (Fan et al., 1999) and is thus one of
many potential boosting algorithms that could be used to

Table 1
Performance of value boosting and the method proposed by
KJH in terms of mean θ based on 1000 Monte Carlo data

sets, n = 500. Monte Carlo standard deviations are given in
parentheses. Scenario indicators correspond to those defined

in Section 3.2 of KJH.

Scenario True θ Value boosting KJH

1 0.127 0.113 (0.007) 0.118 (0.004)
2 0.124 0.125 (0.007) 0.128 (0.004)
3 0.134 0.129 (0.007) 0.134 (0.003)
4 0.066 0.036 (0.016) 0.059 (0.014)
5 0.095 0.072 (0.012) 0.077 (0.007)
6 0.139 0.126 (0.005) 0.045 (0.015)
7 0.142 0.124 (0.011) 0.111 (0.010)

construct a direct search analog of the algorithm proposed by
KJH.

3.2. Boosting the Value or Boosting the Contrast

Value-boosting focuses on iteratively improving performance
of a treatment regime in terms of the estimated value. The
method of KJH iteratively attempts to improve an estima-
tor of the contrast function B(y) = Q(y, 1) − Q(y, 0). Because
the optimal treatment regime is gopt(y) = 1B(y)>0 and for any
treatment regime, say g, V (g) − EQ(Y, 0) = Eg(Y)B(y), the
problems of estimating the contrast and maximizing the value
are closely related. However, value-boosting directly targets
gopt rather than B, which may be advantageous in settings
where gopt is markedly more parsimonious than B(y); be-
cause gopt is a function of B, it is necessarily more par-
simonious in some sense. An exaggerated example that il-
lustrates this point is Q(y, t) = t

(∑p

j=1
y2

j

)
y1; in this case

B(y) = (∑p

j=1
y2

j

)
y1 is a complex nonlinear function of all p

variables whereas gopt(y) = 1y1>0 is a univariate linear thresh-
old. However, the operating characteristics of policy-search
and regression-based estimators have not been directly com-
pared on examples of this type; we believe such a comparison
would be provide valuable information on the differences be-
tween these two classes of methods.

4. Simulation Experiments

To examine the finite sample performance of the value boost-
ing algorithm, we use the seven simulation scenarios consid-
ered by KJH with n = 500. We use a logistic working model
of the form Q(y, t) = P(D = 1|T = t, Y = y) = expit(ỹᵀβ0 +
tỹᵀβ1), where ỹ = (1, yᵀ)ᵀ; β0, β1 are unknown parameters;
and expit(u) = eu/(1 + eu). We estimate Q(y, t) using max-
imum likelihood. Our base classifier is a logistic model of
the form P(Z = 1|Y = y) = expit(ψ

ᵀ
0ỹ + ψ12y1y2 + ψ13y1y3 +

ψ23y2y3 + ψ11y
2
1 + ψ22y

2
2 + ψ33y

2
3). We estimate the perfor-

mance of value boosting and the method proposed by KJH
using the mean θ value as proposed by KJH computed us-
ing a test set of size 104 and 1000 Monte Carlo replications.
Table 1 shows the estimated performance of each method.
Value boosting is comparable with KJH in all scenarios ex-
cept Scenario 6, where it shows a marked advantage. However,
value boosting is more variable than KJH, which is antic-
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ipated given that policy-search methods are typically more
variable than regression-based methods. The simulations sug-
gest that the boosting method proposed by KJH and value
boosting may warrant further investigation.

5. Parsimony, Feasibility, and Interpretability

Boosting and other “black-box” estimation algorithms have a
strong track record for predictive performance, especially on
benchmark data sets. However, it is not apparent that such
methods are suited to inform clinical practice, guidelines, or
research. One of the strongest features of policy-search meth-
ods is that it is possible to control the class of potential treat-
ment rules. Consequently, one can constrain the estimated
treatment rule to be interpretable, low-cost, logistically feasi-
ble, and so on. However, boosting these methods to improve
value may destroy some or all of the foregoing features.

Consider three approaches for estimating an optimal treat-
ment strategy: (A1) optimize within a small but informative
class of regimes; (A2) optimize within a large but difficult to
interpret class; and (A3) optimize within a large but difficult
class and then project the estimated regime onto a smaller,
interpretable class. Approach (A1) is taken by Orellana et al.
(2010), Zhang et al. (2012a,b), and Zhang et al. (2013). In
addition to the benefits of interpretability and feasibility im-
posed on the estimated regime, in some contexts, (A1) is ap-
pealing because the best regime within a pre-specified class
of regimes is of independent interest. Approach (A2), taken
by Zhao et al. (2011, 2012) and Moodie et al. (2013), uses
the predictive power of machine-learning methods and re-
duces the risk of model misspecification. Approach (A3) at-
tempts to maintain both interpretability and performance
(e.g., Breiman and Shang, 1996); furthermore, the “residual”
of the estimated treatment regime relative to its projection
onto the smaller class may be informative about where and
how the smaller class is not sufficiently expressive.

The trade off between flexibility and interpretability is
ubiquitous in statistical modeling. However, the importance of
each component depends on the context in which the model
is estimated. Estimation of an optimal treatment regime is
often conducted as a secondary analysis aimed at generating
scientific hypotheses and informing follow-up studies. In con-
trast, KJH seem to be primarily interested in constructing a
high-quality treatment regime. Their boosting method seems
ideally suited for this purpose.
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I would like to congratulate Kang, Janes, and Huang for
their interesting article on a novel boosting algorithm for
combining multiple biomarkers to optimize patient treat-

ment recommendations. Their results show the potential
of modern machine learning methods especially when one
cannot correctly specify a regression model for the complex
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underlying relationship of interest. Since the publication of
the AdaBoosting procedure by Freund and Schapire (1997),
there has been great interest in seeking an explanation for its
excellent performance and generalizing the method in various
settings. For example, AdaBoosting can be viewed as a
numerical algorithm performing forward stagewise regression
with a set of weak classifiers to minimize a regularized
exponential loss function. Along this line, several versions of
boosting procedures have been proposed by changing the loss
function to be minimized (Friedman, Hastie, and Tibshirani,
2000). Boosting is arguably one of the best off-the-shelf
methods and it is not a surprise that when appropriately
adapted, it can perform competitively well for differentiating
patients with positive treatment benefit from those without.
On the other hand, after carefully examining the proposed
boosting algorithm in the article, I see some crucial depar-
tures from the classical version of boosting. Therefore, I will
first discuss the differences between the proposed method
and the conventional boosting algorithm and their potential
implications. Secondly, I will propose simple alternatives to
resolve some of the difficulties. To simplify the discussion, I
will assume P(T = 1) = P(T = 0) = 0.5 throughout.

1. The Difference between the Proposal and
Convention Boosting

Suppose for the time being that the directions of the treat-
ment effect, Si = I{�(Yi) ≤ 0}, i = 1, . . . , n are observed, and
then the real AdaBoosting (a generalized version of Ad-
aBoosting returns a class probability) proceeds as follows:

(1) Start with weights w
(0)
i = 1/n for subjects i = 1, . . . , n,

and fit a working model to calculate �̃(0)(y), the esti-
mated probability P(S = 1|Y = y) based on the working
model.

(2) For m = 1, . . . , M,

• update the weights according to w
(m)
i = w

∗(m)
i /∑n

i=1
w

∗(m)
i , where

w
∗(m)
i = w

(m−1)
i exp

(
−1

2
(2Si−1) log

[
�̃(m−1)(yi)

1−�̃(m−1)(yi)

])
for i = 1, . . . , n.

• Refit the working model with updated weights w
(m)
i

to obtain �̃(m)(y), the updated estimated probabil-
ity P(S = 1|Y = y).

(3) After the last iteration, the estimated treatment rule is

φ̂(Yi) = I

(
M∑

m=1

log

[
�̃(m)(yi)

1 − �̃(m)(yi)

]
≥ 0

)
.

Although the assumption that Si are all observed is
artificial, it reveals an important message in comparing the
proposed boosting algorithm with the ideal counterpart
above. Firstly, while the updated weight in the ideal Real
AdaBoosting depends on the fitted probability, the old
weight and the true outcomes Si, the weight in the proposed
algorithm depends only on the fitted probability. Intuitively,

the Real AdaBoosting always tries to upweight misclassified
observations in the previous step to ensure that the new
classification rule likely adds value to existing ones, especially
on subgroup of observations for which the performance of the
old classifiers is unsatisfactory. Since Si is unobserved, the
new algorithm upweights observations close to the estimated
decision boundary, whose classification (optimal treatment
recommendation) is relatively ambiguous. It is clear that
there is a genuine difference in the reweighting scheme:
following the same logic of the new algorithm, the Real Ad-
aBoosting would upweights observations with the estimated
class probability close to 0.5, which may or may not be the
same observations misclassified in the previous step. One
certainly can imagine that if the initial working model is
a poor approximation to the truth, then some misclassified
observations could mistakenly have an estimated class prob-
ability close to 0 or 1 and receive less weight. Furthermore,
even when the working model yields reasonable class prob-
ability estimates, the misclassification that occurred near
the decision boundary affects the value-function θ the least.
Therefore, one may wonder if the new proposal sometimes
fails to upweight the “right” observations. Secondly, while the
Real AdaBoosting can be viewed as an algorithm to minimize
a regularized loss function, the proposed algorithm can not be
easily fit into the same framework. One consequence is that it
is not clear if the algorithm provides a consistent estimate to
the optimal treatment rule I{�(Y) ≤ 0}. To gain some insight
into the consistency issue, lets consider the convergence limit
of P̃(1)(D = 1|T = t, Y) in the proposed boosting procedure.

The final estimator �̂(Y) should be close to the difference
between the two limits after sufficient number of iterations.
When the simple logistic working model is used, the limit of
P̃(1)(D = 1|T = t, Y) is {1 + exp(−β′

tY)}−1 and βt solves the
estimating equation

E

[
Yw̃

(∣∣∣∣ exp(β′
1Y)

1 + exp(β′
1Y)

− exp(β′
0Y)

1 + exp(β′
0Y)

∣∣∣∣)
×

{
P(D = 1|T = t, Y) − exp(β′

tY)

1 + exp(β′
tY)

}]
= 0, t = 0, 1,

as n → ∞, which implies that

E
[
Yw̃

(|�̃(Y)|){
�(Y) − �̃(Y)

}] = 0,

where �̃(Y) = {1 + exp(−β′
0Y)}−1 − {1 + exp(−β′

1Y)}−1 can
be viewed as a reasonable approximation to �(Y), especially
in the region where β′

0Y ≈ β′
1Y. However, it seems that in

general �̃(Y) is different from �(Y) unless the simple logistic
working model is correctly specified. The extra weight
function does not solve this problem. This is in contrast
to the appealing “consistency” property of the original
AdaBoosting procedure, which does not require the “weak”
learners to be “strong” or “correct.”

2. Alternative Boosting Procedure

From the discussion in the previous section, it seems that
the new proposal may sacrifice some important components
in the AdaBoosting procedure due to the simple fact that
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Si, i = 1, . . . , n are not observable in practice. This may cause
concerns about its performance in settings beyond those inves-
tigated in the comprehensive simulation study. On the other
hand, noticing the fact that

E{(2D − 1)(2T − 1)|Y} = −�(Y),

one may treat the binary variable S̃i = (2Di − 1)(2Ti −
1) as the surrogate to the unobserved Si = I{−�(Yi) ≥ 0}
(Signorovitch, 2007) and simply replace Si by S̃i in the Real
AdaBoosting procedure described above. To justify this ap-
proach, one notes that AdaBoosting can be viewed as a nu-
merical algorithm to minimize the empirical version of the
loss function

J(d) = E
[
exp{−S̃d(Y)}]

in terms of d(·), a function of y. In this case, the minimizer
of J(d) is

d1(y) = 1

2
log

{
P(S̃ = 1|Y = y)

P(S̃ = −1|Y = y)

}
= 1

2
log

{
1 − �(y)

1 + �(y)

}
.

It suggests that I{d1(Y) ≥ 0}, the treatment assignment rule
based on d1(·), is equivalent to our target I{�(Y) ≤ 0}. There-
fore, as a numerical algorithm to estimate I{d1(Y) ≥ 0}, the
output of AdaBoosting with S̃i, 1 ≤ i ≤ n, as responses can be
used to assign patients according to their individual treatment
effects.

The second alternative is to estimate the optimal treat-
ment rule by maximizing the mean outcome. As the authors
advocated, the mean outcome is a clinically relevant and in-
terpretable quantity to measure the value of a given treatment
assignment rule. In the current setting, maximizing the mean
outcome is equivalent to minimizing

n∑
i=1

DiI{Ti �= g(Yi)} =
∑

i:Di=1

I{Ti �= g(Yi)},

the misclassification error for predicting Ti among the sub-
group of patients having outcome Di = 1, with respect to the
binary classification rule g : Y → {0, 1}. This again provides
a very natural platform for applying the AdaBoosting
algorithm. Specifically, one may use AdaBoosting procedure
to construct a classification rule to classify a patient to
his/her actual randomized treatment assignment based
on Y for the subgroup of patients with D = 1. To justify
the validity of this boosting procedure, one only needs to
note that the minimizer of the corresponding loss function
J(d) = E[exp{−(2T − 1)d(Y)} | D = 1] is

d2(y) = 1

2
log

{
P(T = 1|Y = y, D = 1)

P(T = 0|Y = y, D = 1)

}
= 1

2
log

{
P(D = 1|T = 1, Y = y)

P(D = 1|T = 0, Y = y)

}
.
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Thus, the d2(·)-based treatment assignment rule
I{d2(Y) ≥ 0} = I{�(Y) ≤ 0} and the corresponding boosting
procedure provides a flexible algorithm to approximate the
decision boundary of the optimal treatment rule.

I have selected the two most challenging scenarios (4 and
6) in the simulation study performed by Kang, Janes, and
Huang to examine the relative performance of the above two
proposals. For both cases, the “ada” function with default
parameters in R is used to perform the boosting algorithm.
The sample size of the training set is 500 and final results are
based on 1000 Monte-Carlo replications (Table 1). It seems
that the empirical performances of these two simple alterna-
tives are comparable to those proposed by Kang, Janes, and
Huang with classification tree as the base learner.

3. Remarks

We statisticians can learn a great deal from the rapid develop-
ment of machine learning techniques, which oftentimes offer
robust performance for a broad range of problems. The au-
thors convincingly demonstrated the power of a version of the
generalized boosting method for estimating the optimal strat-

egy for assigning treatment. On the other hand, the proposed
boosting method is different from its conventional counter-
part in several key aspects and new explanations are needed
to account for its good performance. Furthermore, there are
alternative boosting procedures, which in my opinion can cir-
cumvent the difficulties caused by unobservable class labels
Si = I{�(Yi) ≤ 0}, i = 1, . . . , n, in more natural ways. Further
research in these directions is certainly warranted.
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Summary. Kang, Janes and Huang propose an interesting boosting method to combine biomarkers for treatment selection.
The method requires modeling the treatment effects using markers. We discuss an alternative method, outcome weighted
learning. This method sidesteps the need for modeling the outcomes, and thus can be more robust to model misspecification.

Key words: Boosting; Outcome weighted learning; Personalized medicine; Support vector machine.

1. Introduction

The problem of combining markers to optimize treatment se-
lection has recently received significant attention among sta-
tistical researchers. We congratulate Kang, Janes, and Huang
(in press; hereafter K.J.H.) on an elegant contribution to this
important area. K.J.H. provide a novel application of boost-
ing to find the best marker combination. In particular, with
a binary outcome, the optimal treatment rule is determined
by the conditional probability of having disease, that is, the
risk, given the covariates and the treatment. If the risk mod-
els are correctly specified, the optimal rule can be deduced
accordingly. While a generalized linear model is a simple and
popular option, it may suffer from model misspecification.

The proposed method in K.J.H. achieves a measure of ro-
bustness to such model misspecification through the use of
boosting, combined with iteratively reweighting each subject’s
potential misclassification based on treatment benefit in the
previous iteration.

Although K.J.H. indicate that the purpose of the proposed
method is to classify subjects according to the unobserved op-
timal treatment decision rule, the approach does not utilize a
clear objective function for optimization. Risk modeling is re-
quired to estimate the optimal rules and to further update the
weights at each step. As shown in the simulation results, the
performances vary with different working models. An alter-
native approach, outcome weighted learning (OWL), is given
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Table 1
Results of the simulation study with sample size n = 500. OWL-HL: outcome weighted learning with hinge loss, linear kernel;
OWL-HG: outcome weighted learning with hinge loss, Gaussian kernel; OWL-E: outcome weighted learning with exponential

loss; L-Boosting: linear logistic boosting; C-boosting: classification tree boosting: Logit: logistic regression.

SN True θ OWL-HL OWL-HG OWL-E L-Boosting C-Boosting Logit

Mean 0.1225 0.1057 0.1020 0.1240 0.1149 0.1256
θ

1 0.1268 SD 0.0025 0.0038 0.0034 0.0018 0.0040 0.0019
MCRTB Mean 0.0640 0.1363 0.1620 0.0517 0.1128 0.0309

Mean 0.1224 0.1129 0.0946 0.1248 0.0921 0.1241
θ

2 0.1243 SD 0.0024 0.0052 0.0024 0.0017 0.0037 0.0017
MCRTB Mean 0.0664 0.1160 0.1883 0.0481 0.1811 0.0545

Mean 0.1256 0.1191 0.1010 0.1315 0.1154 0.1315
θ

3 0.1341 SD 0.0026 0.0045 0.0031 0.0015 0.0051 0.0016
MCRTB Mean 0.0865 0.1062 0.1461 0.0498 0.1307 0.0499

Mean 0.0654 0.0061 0.0436 0.0657 0.0356 0.0657
θ

4 0.0657 SD 0.0058 0.0070 0.0031 0.0031 0.0031 0.0040
MCRTB Mean 0.0855 0.4638 0.2721 0.0202 0.2853 0.0489

Mean 0.0798 0.0646 0.0783 0.0594 0.0517 0.0592
θ

5 0.0950 SD 0.0046 0.0034 0.0035 0.0030 0.0037 0.0030
MCRTB Mean 0.2049 0.2250 0.1810 0.3110 0.2708 0.3070

Mean 0.0001 0.0931 0.0903 0.0313 0.0926 −0.0023
θ

6 0.1393 SD 0.0049 0.0035 0.0035 0.0032 0.0034 0.0055
MCRTB Mean 0.4010 0.2264 0.2267 0.3469 0.2408 0.4296

Mean 0.1295 0.1217 0.1140 0.1312 0.1185 0.1313
θ

7 0.1419 SD 0.0028 0.0056 0.0038 0.0015 0.0044 0.0015
MCRTB Mean 0.0718 0.1123 0.1455 0.0468 0.1448 0.0468

in Zhao et al. (2012), which estimates the optimal treatment
decision rule through a weighted classification procedure that
incorporates outcome information. To be more specific, the
optimization target, which directly leads to the optimal treat-
ment decision rule, can be viewed as a weighted classification
error where each subject is weighted proportional to his or her
clinical outcome. In the next section, we will briefly introduce
the idea of OWL and modify it to the binary outcome setup.
In Section 3, we present simulation studies comparing OWL
with the boosting method proposed by KJH. We conclude
with a brief discussion in Section 4.

2. Outcome Weighted Learning (OWL)

Using the same notation as K.J.H., we let D ∈ {0, 1} be the
binary indicator of an adverse outcome, T indicate treatment
(T = 1) or not (T = 0), and Y be the marker which can be used
to identify a subgroup. We assume that the data {Di, Ti, Yi}n

i=1

are from a randomized clinical trial. For arbitrary treatment
rule g : Y �→ {0, 1}, the expected benefit under g, that is, if g

were implemented in the whole population, can be written as
(Qian and Murphy, 2011)

P

{
I(D = 0)I(T = g(Y))

πc(Y)

}
, (1)

where πc(Y) is the known probability of treatment, and the
optimal treatment rule gopt(Y) can be obtained by maximiz-

ing the above quantity. Equivalently, by minimizing

P

{
I(D = 0)I(T �= g(Y))

πc(Y)

}
,

we can obtain that gopt(Y) = 1{�(Y) ≤ 0}, where �(Y) =
P(D = 1|T = 0, Y) − P(D = 1|T = 1, Y). Indeed, this can be
viewed as a weighted classification error in the setting where
we wish to classify T in the responders group using the co-
variate Y , with 1/πc(Y) as the weights. In particular, when
πc(Y) = 0.5, the problem falls into a regular classification
framework if we only consider responders. In this case, we
classify subjects according to their assigned treatments only
among those who received benefit from the assignment (i.e.,
the responders).

Provided with the data, we could potentially minimize the
empirical analog

min
g
Pn

{
I(D = 0)I(T �= g(Y))

πc(Y)

}
(2)

to estimate gopt(Y), where Pn denotes the empirical average.
Note that this is similar to the quantity IPWE(η) presented in
Zhang et al. (2012). Due to the nonconvexity and discontinu-
ity of the 0-1 loss, it is computationally difficult to minimize
(2). We address this problem by using a convex surrogate loss
function to replace the 0-1 loss, a common practice in the field
of machine learning literature (Zhang, 2004; Bartlett, Jordan,
and McAuliffe, 2006). In other words, instead of minimizing
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Table 2
Results of the simulation study with sample size n = 5000. OWL-HL: outcome weighted learning with hinge loss, linear
kernel; OWL-HG: outcome weighted learning with hinge loss, Gaussian kernel; OWL-E: outcome weighted learning with
exponential loss; L-Boosting: linear logistic boosting; C-boosting: classification tree boosting: Logit: logistic regression.

SN True θ OWL-HL OWL-HG OWL-E L-Boosting C-Boosting Logit

Mean 0.1228 0.1256 0.1218 0.1265 0.1177 0.1265
θ

1 0.1268 SD 0.0025 0.0038 0.0034 0.0018 0.0040 0.0019
MCRTB Mean 0.0776 0.0338 0.0709 0.0124 0.0961 0.0111

Mean 0.1251 0.1246 0.1233 0.1264 0.1083 0.1264
θ

2 0.1243 SD 0.0024 0.0052 0.0024 0.0017 0.0037 0.0017
MCRTB Mean 0.0442 0.0459 0.0598 0.0162 0.1201 0.0181

Mean 0.1319 0.1316 0.1284 0.1338 0.1204 0.1337
θ

3 0.1341 SD 0.0026 0.0045 0.0031 0.0015 0.0051 0.0016
MCRTB Mean 0.0408 0.0433 0.0628 0.0110 0.1095 0.0161

Mean 0.0653 0.0634 0.0640 0.0652 0.0530 0.0652
θ

4 0.0657 SD 0.0058 0.0070 0.0031 0.0031 0.0031 0.0040
MCRTB Mean 0.0357 0.1515 0.1189 0.0090 0.2256 0.0035

Mean 0.0792 0.0923 0.0893 0.0761 0.0750 0.0732
θ

5 0.0950 SD 0.0046 0.0034 0.0035 0.0030 0.0037 0.0030
MCRTB Mean 0.2165 0.0693 0.0878 0.2364 0.2215 0.2522

Mean 0.0417 0.1315 0.1258 0.0457 0.1116 0.0123
θ

6 0.1393 SD 0.0049 0.0035 0.0035 0.0032 0.0034 0.0055
MCRTB Mean 0.3574 0.1081 0.1349 0.3490 0.2585 0.4039

Mean 0.1294 0.1319 0.1288 0.1327 0.1218 0.1327
θ

7 0.1419 SD 0.0028 0.0056 0.0038 0.0015 0.0044 0.0015
MCRTB Mean 0.0928 0.0440 0.0789 0.0329 0.1094 0.0307

(2), we minimize

min
f∈F
Pn

{
I(D = 0)φ{(2T − 1)f (Y)}

πc(Y)

}
+ λn‖f‖2, (3)

where F is the functional space that f resides in, 2T − 1 is
used to rescale T to reside in {−1, 1}, φ(t) is a convex sur-
rogate loss function, and λn‖f‖2 is a regularization term to
avoid overfitting, with ‖ · ‖ denoting the norm of f in F and λn

controlling the amount of penalization. The estimated treat-
ment rule is ĝ(Y) = I(f̂ (Y) > 0), where f̂ is the solution to
(3). We can specify F to be a linear functional space if we are
only interested in linear decision rules. We can also consider
nonlinear functional spaces where treatment effects can po-
tentially be complex and nonlinear. In the simulation section,
we will examine the performances using two popular choices
for φ(t), including the hinge loss φ(t) = max(1 − t, 0) and the
exponential loss φ(t) = exp(−t).

Since being at high risk does not necessarily imply a larger
benefit from treatment, we aim to find methods that are op-
timized for treatment selection (Kang, Janes, and Huang, in
press). We point out that OWL directly targets the optimal
decision rule, hence the covariate-treatment interaction effects
are separated from the main effects. Indeed, it does not in-
volve a modeling step for the risk and �(Y) as required by
K.J.H. If the functional space F is correctly specified for the
interaction effects, we can consistently estimate gopt(Y) (Zhao
et al., 2012). Specifically, using the exponential loss, we gener-
alize Adaboost (Freund and Schapire, 1997; Friedman, Hastie,

and Tibshirani, 2000) to select the optimal treatment. Rather
than using the weight function w̃{�(Y)} to be updated at each
step, we use instead I(Di = 0) exp(−Tif (Yi)) as the weight for
each observation, where the f (Yi) are repeatedly updated in
each iteration.

As a side note, the OWL method can be naturally gen-
eralized to continuous outcomes, which commonly occurs in
practice. For example, if we let R denote the continuous out-
comes, with larger values being more preferable, we only need
to change I(D = 0) to R in (1). The subsequent derivation and
computation follow accordingly.

3. Simulation Studies

We compare the OWL method with logistic regression and
with the boosting methods (both linear logistic boosting and
classification tree boosting) proposed by K.J.H. The OWL
methods are implemented using the hinge loss and the expo-
nential loss as the convex surrogates. We use the same simula-
tion scenarios as presented in K.J.H. Since patients are equally
randomized to T = 0 or 1, πc(Y) can be dropped from the op-
timization objective (3). Thus, we can apply the standard
classification algorithm to the simulated data by only consid-
ering the responders with D = 0. The adaboost (Freund and
Schapire, 1997) or support vector machine (SVM)(Cortes and
Vapnik, 1995) can be carried out for this subset of patients, by
treating their assignments T ∈ {0, 1} as the class labels and the
biomarkers Y as the predictors. The adaboost is implemented
by the R function ada (R package ada (Culp, Johnson, and
Michailides, 2006)) using the default settings with exponen-
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tial loss function. The SVM is implemented by the R function
svm (R package e1071 (Dimitriadou et al., 2008)). Both lin-
ear and Gaussian kernels are used for comparison, yielding
linear and nonlinear decision rules, respectively.

For each scenario, 1000 data sets are generated as training
data to build the treatment decision rule, ĝ(Y). A large
independent test data set with n = 105 observations is gener-
ated to evaluate the performance of the obtained ĝ(Y) under
different methods. Mean and Monte-Carlo standard deviation
(SD) of θ{ĝ(Y)} and mean MCRTB{ĝ(Y)} are reported, where
θ and MCRTB are defined in K.J.H. The method is marked
in bold if it outperforms other methods by producing the
highest mean θ. Logistic regression performs the best when
the model is correctly specified, which is anticipated and
has been noted in K.J.H. The linear logistic boosting has a
similar performance to logistic regression if the models are
correct, and can improve on logistic regression to some extent
when the models are misspecified. However, if the effects are
nonlinear, classification tree boosting may be a better option.
An appropriate working model is important in practice,
when the underlying truth is masked. The OWL method has
comparable performances with linear treatment effects. When
the outcome models are complex with nonlinear treatment
interactions (Scenarios 5 and 6), the OWL methods lead to
better performances. In general, OWL using hinge loss with
Gaussian kernel has a favorable performance which is always
close-to-optimal, especially when the sample size is large.

4. Discussion

In summary, the intuition underlying the proposed boosting
method by classifying subjects according to their (unob-
served) optimal treatment holds much promise. However, in
practice, attention must be paid to the selection of the work-
ing models and the weight function w̃ since they may impact
the results to some extent. The OWL procedure discussed
for comparison utilizes a machine learning approach to find
the best treatment rule through optimizing a target function
which directly reflects the overall benefit of the decision
rule. When the outcome is binary, the method proposed in
K.J.H. can have a better performance with small sample
sizes, given that the OWL essentially only uses information
from the responders. Also, if there is prior information on the

relationship between outcomes and candidate biomarkers,
the K.J.H. method can be preferable. On the other hand, due
to its flexibility in handling covariate-treatment interaction
effects, OWL can yield better results when the dimension of
the covariate space is high or when the true model is fairly
complex. For large samples sizes, OWL with hinge loss and
Gaussian kernel performs nearly optimally in every scenario.
Additionally, while OWL can also readily handle additional
data types such as continuous outcomes, this is not yet the
case for the K.J.H. method and so it would be worthwhile to
investigate the possibility of such a generalization.
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1. Introduction

Kang, Janes, and Huang (KJH) proposed a new approach
to study an important problem of comparative treatment se-

lection based on selected markers. Although correct predic-
tion of outcomes under different treatments facilitates treat-
ment selection, such prediction can be hard due to model
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Table 1
Performance comparison from various methods

Non-boosting methods Boosting methods

Logistic Single tree Logistic Tree M-boost

Model 1: scenario 1 in K.J.H.; true θ = 0.1270

MCRTB 0.0368 0.2367 0.0415 0.1300 0.0632

θ̂ 0.1255 0.1089 0.1252 0.1088 0.1155

SD(θ̂) 0.0025 0.0090 0.0027 0.0157 0.0024

Model 2: scenario 5 in K.J.H.; true θ = 0.0956

MCRTB 0.3264 0.2235 0.3255 0.2102 0.1246

θ̂ 0.0535 0.0664 0.0537 0.0674 0.0876

SD(θ̂) 0.0053 0.0160 0.0048 0.0119 0.0036

Model 3: log{− log(1 − P(D = 1|T, Y))} = 0.1 − 0.2Y1 + 0.2Y2 − Y1Y2 + T (−0.5 − Y1 + Y2 + 3Y1Y2)
true θ = 0.1575

MCRTB 0.3676 0.2057 0.3689 0.1891 0.1757

θ̂ 0.0414 0.1280 0.0414 0.1259 0.1431

SD(θ̂) 0.0029 0.0158 0.0028 0.0240 0.0032

Model 4: Pr(D = 1|T, Y)/Pr(D = 0|T, Y) = |0.1 − 0.2Y1 + 0.2Y2 − Y1Y2 + T (−0.5 − Y1 + Y2 + 3Y1Y2)|
true θ = 0.2345

MCRTB 0.3020 0.2514 0.3083 0.2719 0.2544

θ̂ 0.1755 0.1917 0.1743 0.1804 0.1882

SD(θ̂) 0.0096 0.0153 0.0089 0.0218 0.0091

mis-specification, especially when there are multiple mark-
ers involved. On the other hand, treatment selection basically
depends on the sign of the contrast function �(Y). Direct
modeling this contrast function or its sign may lead to more
parsimonious and robust results. For example, it can be shown
that, if the binary response D follows a single index model as
logitP(D = 1|T, Y) = h{l(Y) + g(TY ′β)} where h(·) and g(·) are
increasing functions and l(·) is arbitrary, then for any given
Y , �(Y) ≤ 0 only and if only Y ′β ≥ 0. Therefore the treat-
ment rule is substantially simpler than the outcome model.
This formulation of the problem into a classification frame-
work nicely connects with a vast amount of available machine
learning algorithms. For example, the procedure can be eas-
ily generalized to treatment selection among three or more
treatments by utilizing multicategory boosting (Zou, Zhu, and
Hastie, 2008; Schapire and Freund, 2012, Chapter 10).

2. The Boosting Algorithm

Our main comments are related to the boosting algorithm
used by K.J.H. This article seems to bring a new dimension
to the classification problem. Even though we observe D, the
target function is actually based on �(Y), a quantity not di-
rectly observable. So it is not a completely supervised learning
problem. This brings challenges to the following aspects.

(1) Sensitivity of the working model
A basic principle of the boosting algorithm is to

“boost” weak learners to an adequate learner. The
boosting iteratively “trains” the weak classifiers using
a weighting distribution. The weights are usually re-

lated to the weak learners’ accuracy: misclassified ex-
amples gain weight and correctly classified examples
lose weight. Thus, future weak learners focus more on
the examples that previous weak learners misclassified.
This scheme seems to suit the treatment selection prob-
lem very well. Because of the possibility of model mis-
specification, �̃(Y) is a weak learner. This weak learner
can then be boosted into a strong one with properly
chosen weights based on some function of �̃(Y). How-
ever different from the usual boosting setting, these
weights may be incorrect. To conform with the princi-
ple of the boosting algorithm, one’s hope is that mis-
classified examples would still gain weight and correctly
classified examples lose weight. Therefore the working
model plays a dual role here. Mis-specification of the
working model may be severe enough that this principle
does not hold anymore.

(2) Thresholds of weights
K.J.H. controls the influence from those observations

with tiny �̃(Y) using a thresholding Cm. The choice of
Cm was shown to have minimum influence on the re-
sults. With the weight function w̃{�̃(Y)} = |�̃(Y)|−1/3,
the threshold is effective only for those with |�̃(Y)| <

(1/Cm)3. When Cm = 300, 500, and 1000, the thresholds
are 3.7e − 08, 8e − 09, 1e − 10. The threshold might be
too small to threshold observations with small �̃(Y).
To a certain degree, if �̃(Y) converges to �(Y), mis-
classifying the subjects with small �(Y) should have
a negligible effect on estimating θ. We wonder if the
algorithm may spend too much efforts on these “non-
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important” but easily misclassified examples. In other
words, maybe more liberal thresholds can be explored.
Alternatively we wonder if boosting algorithms that ac-
tually decrease the weight of repeatedly misclassified
examples, for example, boost by majority (Schapire and
Freund, 2012, Chapter 13) and BrownBoost Freund
(2001) may be adopted here. In the meantime, over-
fitting can be an issue with possibly misspecified work-
ing models. This may be reflected by “over-confident”
votes or very large �̃(Y). In such case, increasing the
weights from these subjects can be helpful.

(3) Target function
The target function used in the algorithm is

1{�(Y) ≤ 0} . The 0-1 loss function is non-continuous
and non-convex. Similar to the usual boosting set-
ting, we wonder if convex surrogate target functions
can be used similar to (Hastie, Tibshirani, and Fried-
man, 2005, Chapter 10). In the original boosting set-
ting, the surrogate functions were argued from sta-
tistical principles and lead to some nice algorithms
including the well known functional gradient descent
algorithm (Friedman, Hastie, and Tibshirani, 2000;
Friedman, 2001). Another possible target function
is actually θ{φ(Y)}. This function, or equivalently,
E{P(T |Y)−11{T = φ(Y)}D}, was used in Zhao et al.
(2012) for individualized treatment selection based on
a support vector machine framework. Different from
1{�(Y) ≤ 0}, E{P(T |Y)−11{T = φ(Y)}D} is empirically
estimable given φ(Y) when P(T |Y) is known, for ex-
ample, from clinical trial settings. A corresponding
boosting algorithm can then be designed to maximize
E{P(T |Y)−11{T = φ(Y)}D}.

3. Improvement Using the Component-Wise
Boosting

In a small simulation study we explored the sensitivity of
the results to the working model. To reduce the undue
influence of a multivariate working model, which is likely
to be misspecified, we adopted BinomialBoosting with a
component-wise generalized additive model as the “weak
learner” (Bühlmann and Hothorn, 2007). More explicitly, Bi-
nomialBoosting iteratively approximates 2−1logitP(D = 1|·)
by f̂ [m](·) = ν

∑m

k=1
ĝ[k](·), where ν is a step-length factor. At

the mth iteration, ĝ[m](·) was given by the following procedure.
Let X = (Y1, . . . , Yp, T, T × Y1, . . . , T × Yp) be a 2p + 1 vector
of biomarkers, treatment, and treatment-biomarker interac-
tions. Let X(j) be the jth component of X for 1 ≤ j ≤ 2p + 1.

Denote U
[m−1]
1 , . . . , U

[m−1]
n as the current negative gradients

of the binomial loss function (c.f. equation (3.1) of Bühlmann
and Hothorn (2007)) corresponding to n subjects in the train-

ing set. We fit U
[m−1]
1 , . . . , U

[m−1]
n against X

(j)
1 , . . . , X

(j)
n by

a one-dimensional smoothing spline function ĥ(j)(·). Then,
ĝ[m](·) was chosen to be the best component-wise fitting,

ĝ[m](·)= ĥ(ĵ)(x(ĵ)) where ĵ = arg min
1≤j≤2p+1

n∑
i=1

(U
[m−1]
i − ĥ(j)(X

(j)
i ))2.

Therefore simple smoothing splines based on each (univariate)
biomarker, treatment, and treatment-biomarker interactions

formed a pool of candidate weak learners. At each iteration,
we chose the weak learner as the simple smoothing spline that
best predicted the current negative gradient of the binomial
loss function.

The intuition behind our choice of the component-wise
boosting is 2-fold. First, the flexibility of the smoothing
splines may overcome possible misspecification of variable
functional forms. Note that due to the ensemble nature of
the boosting algorithm, we just need to get the contribu-
tion of each variable right. Second, fitting the gradients of
the binomial loss function may reduce the undue influence
of wrong working models on the weighting distributions. The
component-wise boosting procedure is quite flexible and can
also incorporate variable selection (Bühlmann and Hothorn,
2007). This may be attractive when the number of biomarkers
is large.

We compared the above boosting method with K.J.H.
methods through four models. Models 1 and 2 were the same
as Scenarios 1 and 5 in K.J.H. Model 3 used the log(− log)
link function and had the complexity between Scenarios 3 and
4 in K.J.H. Model 4 had severe deviation from the logistic re-
gression setting. For each model, we ran 100 simulations with
n = 1000 in each simulation. We used the R package mboost

to implement the above boosting algorithm. We chose each
ĥ(j)(·) to be a P-spline of three degrees of freedom with a B-
spline basis by using the option bbs in the mboost package.
We used the default choices of ν and number of iterations
in the package. The performances from various methods are
summarized in Table 1. Both MCRTB and θ̂ were calculated
based on testing data sets of size 10,000. Best performers are
highlighted. One thing we noticed from the K.J.H. simulation
results was that the performances of the boosting methods can
depend on the working and true models. The misclassification
rates (MCRTB) were quite high when the true model was lo-
gistic and the boosting was based on classification trees (see
Scenarios 1 and 2 in J.K.H.), or when the true model was not
logistic and the boosting was based on logistic working models
(see Scenarios 5 and 6 in J.K.H.). Without knowing the truth,
it is therefore hard to determine which boosting algorithm
to use. In comparison, the component-wise boosting seems
to have improved all-around performance under various true
models. A more comprehensive investigation is warranted.
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Rejoinder

Chaeryon Kang,
Holly Janes,
and Ying Huang

We thank co-editor Jeremy M. G. Taylor for organizing this
discussion and the discussants for their insightful comments
and suggestions. In this rejoinder, we will address the broad
points made by individual discussants and draw connections
between them.

We agree with Laber, Tsiatis, Davidian, and Holloway
(hereafter LTDH) that a taxonomy of methodology for de-
riving treatment rules is useful for discussing the relative
merits of the various approaches. LTDH classified statisti-
cal approaches to find marker-based treatment rules into two
classes based on the estimation method: “regression-based
methods” obtain a rule by first modeling the outcome us-
ing a regression model; and “policy search methods” directly
maximize a criterion of interest, for example, the expected
outcome under marker-based treatment, in order to derive
a treatment rule. Our boosting approach was characterized
as a regression-based approach, whereas outcome weighted
learning (OWL, Zhao et al., 2012), direct maximization of
the expected outcome under marker-based treatment using
the inverse probability weighted estimator (IPWE) and the
augmented inverse probability weighted estimator (AIPWE)
(Zhang et al., 2012a,b), and modeling marker-by-treatment
interactions through Q- and A-learning (e.g., Murphy, 2003;
Zhao, Kosorok, and Zeng, 2009) were characterized as policy
search methods.

We prefer to group methods using somewhat different
labels. We call “policy search methods” those that yield a
treatment rule. In contrast, “outcome prediction methods”
yield a model for the expected outcome given marker and
treatment, which can then be used to derive a treatment
rule. Using this terminology, our boosting approach, OWL,
direct maximization of the expected outcome under marker-
based treatment, and Q- and A-learning approaches are all
examples of policy search methods: they yield treatment
rules only and do not produce a model for the outcome.
The methods differ in whether they are “direct” in that
they search for treatment rules by directly maximizing a
criterion of interest such as the expected outcome under
marker-based treatment; or “indirect” in that they search for
treatment rules by maximizing a criterion which is different
from, but presumably related to the criterion of interest. Our
boosting method is an indirect approach. The first method
proposed by Tian, which minimizes the rate at which subjects

are misclassified according to treatment benefit (using a
surrogate variable for this unobserved outcome), is also an
indirect policy search method. This taxonomy is helpful, we
believe, in that it makes plain the fact that the approaches
mentioned in our article and by the discussants are all policy
search methods, except for the method suggested by Yu and
Li (hereafter YL), which is an outcome modeling approach
that is designed to be robust to model misspecification.
They are therefore limited in that they are suitable only for
addressing the problem of identifying a treatment rule, and
not for the more difficult task of predicting outcome given
marker value and treatment assignment.

Several discussants proposed novel direct policy search ap-
proaches that also use boosting ideas. Several rely on the
fact that maximizing the expected outcome under marker-
based treatment can be refomulated as a classification prob-
lem with weights that are functions of the outcome (Zhao
et al., 2012; Zhang et al., 2012a,b). Using this formulation,
Zhao and Kosorok (hereafter ZK) and Tian proposed solving
an approximation of the weighted classification problem and
applied AdaBoost to improve weak classifiers, while LTDH
proposed “value boosting” that allows more general weights
such as those from AIPWE. We agree that these methods
have broad appeal and deserve in-depth investigation.

YL and Tian both raised questions about our proposed
strategy of upweighting subjects with small estimated treat-
ment effects, near the decision boundary, who are more likely
to be incorrectly classified with respect to treatment benefit.
They raised an interesting and fundamental question: should
subjects who lie close to the decision boundary have more
influence on the classifier? Or should subjects who lie far
from the decision boundary but whose incorrect treatment
recommendations will have greater impact have more influ-
ence? Many traditional classification methods have focused
on subjects who are difficult to classify, for example, support
vector machines and AdaBoost. In contrast, other recently
developed boosting methods such as BrownBoost (Freund,
2001) focus on subjects whose estimated class labels are con-
sistently correct across iterations, and give up on “noisy sub-
jects” whose estimated class labels are consistently incorrect.
We agree that, in the treatment selection context, boosting
subjects whose estimated treatment effects are large is worth
further investigation. We suspect that the optimal weighting
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Table 1
Results of the simulation study for the continuous outcome

setting. Marker combinations obtained using linear regression
with maximum likelihood estimation (Linear MLE) and the

boosting method described in our article with linear
regression working model (Linear Boosting) are compared.
Scenarios similar to 5 and 6 in our article are examined.a

For each scenario, 1000 training datasets (n = 500) and one
test dataset (N = 105) were generated. Mean and

Monte-carlo standard deviation (SD) of θ are shown, along
with the mean and SD of the misclassification rate for
treatment benefit (MCRTB), calculated using test data.

Linear Linear
Scenario True MLE Boosting

Mean 1.821 2.121
θ 3.385

SD 0.365 0.427
Scenario 5

Mean 0.352 0.303
MCRTB SD 0.062 0.061

Mean 2.396 2.477
θ 3.049

SD 0.379 0.157
Scenario 6

Mean 0.198 0.154
MCRTB SD 0.054 0.025

aIn Scenario 5, the true risk model is D = 0.1 + 0.2Y1 − 0.2Y2 +
0.1Y3 − Y2

1 + T (0.5 + Y1 + 0.5Y2 + 0.1Y3 − Y2
1 ) + ε, and in Scenario

6, the true risk model is D = −0.1 − 0.2Y1 + 0.2Y2 + Y1Y2 +
T (−0.5 − Y1 − 0.5Y2 + 2Y1Y2) + ε, given T and Y , where Y1, Y2, and
Y3 are independent N(0, 1), and ε follows N(0, 1) and is independent

of Y1, Y2, and Y3. The same weight function w̃{�̂(Y)} = |�̂(Y)|−1/3,
maximum number of iterations (M = 500), and the maximum
weight (CM = 500) were used as in our article.

strategy will depend on the particular setting, and will be af-
fected by factors such as the distribution of the markers and
their associations with the treatment effect.

We agree with the point raised by ZK and Tian that the
performance of our boosting approach depends on the choice
of working model. In practice, prior biological knowledge and
cross-validation techniques are useful for guiding the choice of
working model. There appears to be similar sensitivity of the
OWL method of ZK to the choice of “kernel” parameterizing
the treatment rule boundary. Comparing the finite sample
performance of the boosting and OWL methods to one an-
other in simulations will be challenging, particularly under
model misspecification, given that each requires specification
of a different set of inputs.

One simple question raised by ZK is how to extend our
boosting approach from the binary outcome setting, which is
the focus of our article, to other types of outcomes such as con-
tinuous and count outcomes. The method extends naturally as
illustrated in Table 1. We let D ∈ R1 be a continuous outcome
in which a smaller value is preferable, T be treatment assign-
ment (T = 0/1, where T = 1 is the default), and Y ∈ Rp be a

set of markers. Denote by �(Y) = E(D|T = 0, Y) − E(D|T =
1, Y) the marker-specific treatment effect, φ(Y) = 1{�(Y) ≤ 0}
the optimal treatment rule, and

θ{φ(Y)} = E(D|T = 1) − [E{D|T = 1, φ(Y) = 0}P{φ(Y) = 0}
+ E{D|T = 0, φ(Y) = 1}P{φ(Y) = 1}]

the primary measure of its performance. Using the boost-
ing approach with linear regression working model can yield
marker combinations with slightly higher θ and smaller mis-
classification of treatment benefit than using classical lin-
ear regression with maximum likelihood estimation. We note,
however, that further investigation is needed to specify rea-
sonable ranges for the tuning parameters of the boosting
method in the continuous outcome setting.

We conclude with two observations that emerge from this
discussion. First, there is much to be gained from bringing
researchers from different areas of statistics and biostatistics
together around a single topic. This discussion highlights the
connections between the fields of adaptive treatment regimes
and risk prediction and biomarker evaluation. Undoubtedly,
it has brought relevant work in one field to the attention of
researchers in another. With such interactions our science will
surely improve. Second, there is tremendous value in repro-
ducible research. We applaud the journal for encouraging us to
publish our simulation code along with our article. With this
code, the discussants were able to efficiently compare alterna-
tive approaches to ours using the same simulation scenarios,
thus expediting the scientific process.
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