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SUMMARY

High-dimensional data are often most plausibly generated from distributions with complex
structure and leptokurtosis in some or all components. Covariance and precision matrices provide
a useful summary of such structure, yet the performance of popular matrix estimators typically
hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose
performance is guaranteed for a much richer class of distributions. The proposed estimators,
under a bounded fourth moment assumption, achieve the same minimax convergence rates as do
existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators
is also established under the weak assumption of bounded 2 + ε moments for ε ∈ (0, 2). The
associated convergence rates depend on ε.

Some key words: Constrained �1-minimization; Leptokurtosis; Minimax rate; Robustness; Thresholding.

1. INTRODUCTION

Covariance and precision matrices play a central role in summarizing linear relationships
among variables. Our focus is on estimating these matrices when their dimension is large relative
to the number of observations. Besides being of interest in themselves, estimates of covariance
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and precision matrices are used for numerous procedures from classical multivariate analysis,
including linear regression.

Consistency is achievable under structural assumptions provided regularity conditions are met.
For instance, under the assumption that all rows or columns of the covariance matrix belong to
a sufficiently small �q-ball around zero, thresholding (Bickel & Levina, 2008; Rothman et al.,
2008) or its adaptive counterpart (Cai & Liu, 2011) gives consistent estimators of the covariance
matrix in the spectral norm for data from a distribution with sub-Gaussian tails. For precision
matrix estimation, the same sparsity assumption on the precision matrix motivates the use of the
constrained �1-minimizer of Cai et al. (2011) or its adaptive counterpart (Cai et al., 2016), both
of which are consistent in spectral norm under the same sub-Gaussianity condition. Under sub-
Gaussianity, Cai & Liu (2011) and Cai et al. (2016) showed that in high-dimensional regimes the
adaptive thresholding estimator and adaptive constrained �1-minimization estimator are minimax
optimal within the classes of covariance or precision matrices satisfying their sparsity constraint.

Since sub-Gaussianity is often too restrictive in practice, we seek new procedures that can
achieve the same minimax optimality when data are leptokurtic. Inspection of the proofs of
Bickel & Levina (2008), Cai & Liu (2011) and Cai et al. (2016) reveals that sub-Gaussianity
is needed because their methods are built on the sample covariance matrix, which requires the
assumption to guarantee its optimal performance. Here we show that minimax optimality is
achievable within a larger class of distributions if the sample covariance matrix is replaced by
a robust pilot estimator, thus providing a unified theory for covariance and precision matrix
estimation based on general pilot estimators. We also show how to construct pilot estimators that
have the required elementwise convergence rates of (1) and (2) below. Within a much larger
class of distributions with bounded fourth moment, it is shown that an estimator obtained by
regularizing a robust pilot estimator attains the minimax rate achieved by existing methods under
sub-Gaussianity. The analysis is extended to show that when only bounded 2 + ε moments exist
for ε ∈ (0, 2), matrix estimators with satisfactory convergence rates are still attainable.

Some related work includes that of Liu et al. (2012) and Xue & Zou (2012), who considered
robust estimation of graphical models when the underlying distribution is elliptically symmetric,
Fan et al. (2015, 2016a,b), who studied robust matrix estimation in the context of factor models,
and Chen et al. (2015) and Loh & Tan (2015), who investigated matrix estimation when the data
are contaminated by outliers. The present paper is concerned with efficient estimation of general
sparse covariance and precision matrices when only certain moment conditions are assumed.

For a p-dimensional random vector X with mean μ, let �∗ = E{(X − μ)(X − μ)T} and let
�̃ = (σ̃uv) denote an arbitrary pilot estimator of �∗ = (σ ∗

uv), where u, v ∈ [p] with [p] standing
for {1, . . . , p}. The key requirement on �̃ for optimal covariance estimation is that

pr
[
max

u,v
|σ̃uv − σ ∗

uv| � C0{(log p)/n}1/2
]

� 1 − εn,p, (1)

where C0 is a positive constant and εn,p is a deterministic sequence converging to zero as n, p → ∞
such that n−1 log p → 0. This delivers rates of convergence that match the minimax rates of Cai &
Liu (2011) even under violations of their sub-Gaussianity condition, which entails the existence
of b > 0 such that E(exp[t{Xu − E(Xu)}]) � exp(b2t2/2) for every t ∈ R and every u ∈ [p].
Introduce the sample covariance matrix

�̂ = (σ̂uv) = n−1
n∑

i=1

(
Xi − X̄

)(
Xi − X̄

)T,
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Robust matrix estimators 3

where X1, . . . , Xn are independent and identically distributed copies of X and X̄ = n−1 ∑n
i=1 Xi.

Proposition 1 shows that �̂ violates (1) when X is not sub-Gaussian. In other words, the sample
covariance does not concentrate exponentially fast in an elementwise sense if sub-Gaussianity is
violated.

Similarly, for estimation of the precision matrix �∗ = (�∗)−1, the optimality of the adaptive
constrained �1-minimization estimator is retained under a pilot estimator satisfying

pr
[
max

u,v

∣∣(�̃�∗ − Ip)uv
∣∣ � C0{(log p)/n}1/2

]
� 1 − εn,p, (2)

where C0 and εn,p are as in (1) and Ip denotes the p × p identity matrix. While (2) holds with
�̃ = �̂ under sub-Gaussianity of X , it fails otherwise.

The following proposition provides a more formal illustration of the unsuitability of �̃ = �̂

as a pilot estimator in the absence of sub-Gaussianity.

PROPOSITION 1. Let E(|XuXv − σ ∗
uv|1+γ ) � 2 for u |= v and some γ > 0. For all distributions

of X satisfying this assumption, there is a distribution pr such that for some ε < 1/2,

pr
{|σ̂uv − σ ∗

uv| > 2−1ε−1/(1+γ )n−γ /(1+γ )} � ε.

This implies that the choice to take the sample covariance as the pilot estimator �̃ results in
a polynomial rate of convergence, which is slower than the exponential rate of concentration in
(1). Instead, we introduce robust pilot estimators in § 4 that satisfy the conditions (1) and (2).
These estimators only require max1�u�p E(|Xu|4) < ∞.

Throughout the paper, for a vector a = (a1, . . . , ap)
T ∈ R

p, ‖a‖1 = ∑p
v=1 |av|, ‖a‖2 =

(
∑p

v=1 a2
v)

1/2 and ‖a‖∞ = max1�v�p |av|. For a matrix A = (auv) ∈ R
p×q, ‖A‖max =

max1�u�p,1�v�q |auv| is the elementwise maximum norm, ‖A‖2 = sup‖x‖2�1 ‖Ax‖2 is the spec-
tral norm, and ‖A‖1 = max1�v�q

∑p
u=1 |auv| is the matrix �1-norm. We let Ip denote the p × p

identity matrix; A � 0 and A � 0 mean that A is positive definite and positive semidefinite, respec-
tively. For a square matrix A, we denote its maximum and minimum eigenvalues by λmax(A) and
λmin(A), respectively. We also assume that E(X ) = 0.

2. BROADENING THE SCOPE OF THE ADAPTIVE THRESHOLDING ESTIMATOR

Let τλ(·) be a general thresholding function for which:

(i) |τλ(z)| � |y| for all z and y that satisfy |z − y| � λ;
(ii) τλ(z) = 0 for |z| � λ;

(iii) |τλ(z)− z| � λ for all z ∈ R.

Similar properties are set forth in Antoniadis & Fan (2001) and were proposed in the context
of covariance estimation via thresholding in Rothman et al. (2009) and Cai & Liu (2011). Some
examples of thresholding functions satisfying these three conditions are the soft thresholding rule
τλ(z) = sgn(z)(z − λ)+, the adaptive lasso rule τλ(z) = z(1 − |λ/z|η)+ with η � 1, and the
smoothly clipped absolute deviation thresholding rule (Rothman et al., 2009). Although the hard
thresholding rule τλ(z) = z 1(|z| > λ) does not satisfy (i), the results presented in this section
also hold for hard thresholding. The adaptive thresholding estimator is defined as

�̂T = (σ̂ T
uv) = {

τλuv(σ̂uv)
}
,
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where σ̂uv is the (u, v)th entry of �̂ and the threshold λuv is entry-dependent. Equipped with these
adaptive thresholds, Cai & Liu (2011) established optimal rates of convergence of the resulting
estimator under sub-Gaussianity of X . To accommodate data drawn from distributions violating
sub-Gaussianity, we replace the sample covariance matrix �̂ by a pilot estimator �̃ satisfying
(1). The resulting adaptive thresholding estimator is denoted by �̃T. As suggested by Fan et al.
(2013), the entry-dependent threshold

λuv = λ

(
σ̃uuσ̃vv log p

n

)1/2

(3)

is used, where λ > 0 is a constant. This is simpler than the threshold used by Cai & Liu (2011),
as it does not require estimation of var(σ̃uv) and achieves the same optimality.

Let S+(R, p) denote the class of positive-definite symmetric matrices with elements in R.
Theorem 1 relies on the following conditions on the pilot estimator and the sparsity of �∗.

Condition 1. The pilot estimator �̃ = (σ̃uv) satisfies (1).

Condition 2. The matrix �∗ = (σ ∗
uv) belongs to the class

Uq = Uq{s0(p)} =
{
� : � ∈ S+(R, p), max

u

p∑
v=1

(σ ∗
uuσ

∗
vv)

(1−q)/2|σ ∗
uv|q � s0(p)

}
.

The class of weakly sparse matrices Uq was introduced by Cai & Liu (2011). The columns of a
covariance matrix in Uq are required to lie in a weighted �q-ball, where the weights are determined
by the variance of the entries of the population covariance.

THEOREM 1. Suppose that Conditions 1 and 2 hold, log p = o(n), and minu σ
∗
uu = γ > 0.

There exists a positive constant C0 such that

inf
�∗∈Uq

pr
{
‖�̃T −�∗‖2 � C0s0(p)

(
log p

n

)(1−q)/2}
� 1 − εn,p,

where εn,p is a deterministic sequence that decreases to zero as n, p → ∞.

The constant C0 in Theorem 1 depends on q, λ and the unknown distribution of X , and so do
the constants appearing in Theorem 2 and Propositions 2–4.

Our result generalizes Theorem 1 of Cai & Liu (2011); the minimax lower bound of our
Theorem 1 matches theirs, implying that our procedure is minimax optimal for a wider class of
distributions containing the sub-Gaussian distributions.

Cai & Liu (2011) also give convergence rates under bounded moments in all components of
X . In that case, a much more stringent scaling condition on n and p is required, as shown in
Theorem 1(ii) of Cai & Liu (2011). Their result does not cover the high-dimensional case where
p > n when fewer than 8 + ε finite moments exist. If a larger number of finite moments is
assumed, p is allowed to increase polynomially with n. However, we allow log p = o(n).

For the three pilot estimators to be given in § 4, even universal thresholding can achieve the
same minimax optimal rate given the bounded fourth moments assumed there. However, adaptive
thresholding as formulated in (3) results in better numerical performance.
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Robust matrix estimators 5

Unfortunately, �̃T may not be positive semidefinite, but it can be projected onto the cone of
positive-semidefinite matrices through the convex optimization

�̃T+ = arg min
��0

‖� − �̃T ‖2. (4)

By definition, ‖�̃T+ − �̃T ‖2 � ‖�∗ − �̃T ‖2, so the triangle inequality yields

‖�̃T+ −�∗‖2 � ‖�̃T+ − �̃T ‖2 + ‖�̃T −�∗‖2 � 2 ‖�̃T −�∗‖2.

Hence, the price to pay for projection is no more than a factor of two, which does not affect the
convergence rate. The projection is easily made by linear programming (Boyd & Vandenberghe,
2004).

3. BROADENING THE SCOPE OF THE ADAPTIVELY CONSTRAINED �1-MINIMIZATION

ESTIMATOR

We consider a robust modification of the adaptively constrained �1-minimization estimator of
Cai et al. (2016). In a spirit similar to § 2, our robust modification relies on the existence of a pilot
estimator �̃ satisfying (2). Construction of the robust adaptive constrained �1-minimizer relies
on a preliminary projection, resulting in the positive-definite estimator

�̃+ = arg min
��εIp

‖� − �̃‖max (5)

for an arbitrarily small positive number ε. The minimization problem in (5) can be rewritten as
minimizing ϑ such that |(�̃−�)uv| � ϑ and � � εIp for all 1 � u, v � p. This problem can be
solved in Matlab using the cvx solver (Grant & Boyd, 2014).

Given �̃+ = (σ̃+
uv), our estimator of�∗ is constructed by replacing (�̂+n−1Ip)with �̃+ in the

original constrained �1-minimization procedure. For ease of reference, the steps are reproduced
below. Define the first-stage estimator �̌(1) of �∗ through the vectors

ω̌†
v = arg min

ωv∈Rp

{
‖ωv‖1 : ‖�̃+ωv − ev‖∞ � δn,p max

v
(σ̃+

vv) ωvv, ωvv > 0
}

, v ∈ [p], (6)

with ωv = (ω1v, . . . ,ωpv)
T, δn,p = δ{(log p)/n}1/2 for δ > 0, and ev being the vector that has

value 1 in the vth coordinate and zeros elsewhere. More specifically, define ω̌(1)v as an adjustment
of ω̌†

v such that the vth entry is

ω̌(1)vv = ω̌†
vv 1

{
σ̃+

vv � (n/ log p)1/2
}

+ {(log p)/n}1/2 1
{
σ̃+

vv > (n/ log p)1/2
}

, (7)

and define the first-stage estimator as �̌(1) = (ω̌
(1)
1 , . . . , ω̌(1)p ). A second-stage adaptive estimator

�̌(2) = (ω̌
(2)
1 , . . . , ω̌(2)p ) is defined by solving, for each column,

ω̌(2)v = arg min
ωv∈Rp

{
‖ωv‖1 :

∣∣(�̃+ωv − ev

)
u

∣∣ � λn,p(σ̃
+
uuω̌

(1)
vv )

1/2 (u = 1, . . . , p)
}

, (8)
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6 M. AVELLA-MEDINA, H. S. BATTEY, J. FAN AND Q. LI

where λn,p = λ{(log p)/n}1/2 for λ > 0. In practice, the optimal values of δ and λ are chosen by
crossvalidation. The final estimator, �̃, of �∗ is a symmetrized version of �̌(2) constructed as

�̃ = (ω̃uv), ω̃uv = ω̃vu = ω̌(2)uv 1(|ω̌(2)uv | � |ω̌(2)vu |)+ ω̌(2)vu 1(|ω̌(2)uv | > |ω̌(2)vu |). (9)

The theoretical properties of �̃ are derived under Conditions 3 and 4.

Condition 3. The pilot estimator �̃ = (σ̃uv) satisfies (2).

Condition 4. The matrix �∗ = (ω∗
uv) belongs to the class

Gq = Gq(cn,p, Mn,p) =
{
� ∈ S+(R, p) : max

v

p∑
u=1

|ωuv|q � cn,p, ‖�‖1 � Mn,p,

1

M1
� λmin(�) � λmax(�) � M1

}
,

where 0 � q � 1, M1 > 0 is a constant, and Mn,p and cn,p are positive deterministic sequences
that are bounded away from zero and allowed to diverge as n and p grow.

In this class of precision matrices, sparsity is imposed by restricting the columns of �∗ to lie
in an �q-ball of radius cn,p (0 � q < 1).

THEOREM 2. Suppose that Conditions 1, 3 and 4 are satisfied with cn,p = o(n/ log p). Under
the scaling condition log p = O(n1/2) we have, for a positive constant C0,

inf
�∗∈Gq

pr
{
‖�̃−�∗‖2 � C0M 1−q

n,p cn,p

(
log p

n

)(1−q)/2 }
� 1 − εn,p,

where εn,p is a deterministic sequence that decreases to zero as n, p → ∞ and �̃ is the robust
adaptively constrained �1-minimization estimator described in (6)–(9).

Remark 1. Our class of precision matrices is slightly more restrictive than that considered
in Cai et al. (2016), since we require 1/M1 � λmin(�

∗) � λmax(�
∗) � M1 instead of

λmax(�
∗)/λmin(�

∗) � M1. The difference is marginal since σ ∗
uu = eT

u�
∗eu = ‖�∗1/2eu‖2

2 �
λmax(�

∗) = 1/λmin(�
∗) and λmax(�

∗)/λmin(�
∗) � M1 implies that 0 < M−1

1 λmax(�
∗) �

λmin(�
∗) � λmax(�

∗) � M1λmin(�
∗) < ∞. We therefore only exclude precision matrices

associated with either exploding or imploding covariance matrices, i.e., we exclude σ ∗
uu → 0 and

σ ∗
uu → ∞ for all u ∈ [p]. Ren et al. (2015) also require 1/M1 � λmin(�

∗) � λmax(�
∗) � M1.

A positive-semidefinite estimator with the same convergence rate as �̃ can be constructed by
projecting the symmetric matrix �̃ onto the cone of positive-semidefinite matrices, as in (4).

Next, we present three pilot estimators whose performance is favourable with respect to
the sample covariance matrix when the sub-Gaussianity assumption is violated. We verify
Conditions 1 and 3 for these estimators. Condition 1 will be verified for all three pilot esti-
mators. When ‖�∗‖1 is bounded, Condition 1 implies Condition 3 because ‖�̃�∗ − Ip‖max =
‖(�̃ − �∗)�∗‖max � ‖�∗‖1‖�̃ − �∗‖max. When ‖�∗‖1 → ∞, Condition 3 is verified for the
adaptive Huber estimator. We emphasize that Condition 3 is only needed if the goal is to obtain
a minimax optimal estimator of �. A consistent estimator is still attainable if only Condition 1
holds when ‖�∗‖1 → ∞. A more thorough discussion appears in the Supplementary Material.
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4. ROBUST PILOT ESTIMATORS

4·1. A rank-based estimator

The rank-based estimator requires only the existence of the second moment. However, it
makes arguably more restrictive assumptions, as it requires the distribution of X to be elliptically
symmetric.

DEFINITION 1. A random vector Z = (Z1, . . . , Zp)
T follows an elliptically symmetric distribu-

tion if and only if Z = μ + ξAU, where μ ∈ R
p, A ∈ R

d×q with q = rank(A), U is uniformly
distributed on the unit sphere in R

q, and ξ is a positive random variable independent of U .

Observe that �∗ = D∗R∗D∗ where R = (r∗
uv) denotes the correlation matrix and D∗ =

diag{(σ ∗
11)

1/2, . . . , (σ ∗
pp)

1/2}. Liu et al. (2012) and Xue & Zou (2012) both proposed rank-based
estimation of R∗, exploiting a bijective mapping between Pearson correlation and Kendall’s tau
or Spearman’s rho dependence measures that hold for elliptical distributions. More specifically,
Kendall’s tau concordance between Xu and Xv is defined as

τ ∗
uv = pr

{
(Xu − Yu)(Xv − Yv) > 0

} − pr
{
(Xu − Yu)(Xv − Yv) < 0

}
,

where Y is an independent copy of X . With Xi = (Xi,1, . . . , Xi,p)
T, the empirical analogue

of τ ∗
uv is

τ̃uv =
(

n

2

)−1 ∑
i

∑
j<i

[
1
{
(Xiu − Yiu)(Xiv − Yiv) > 0

} − 1
{
(Xiu − Yiu)(Xiv − Yiv) < 0

}]
.

Since τ ∗
uv = 2π−1 arcsin(r∗

uv), an estimator of R∗ is R̃ = (r̃uv) = {sin(πτ̃uv/2)}. An analo-
gous bijection exists between Spearman’s rho and Pearson’s correlation; see Xue & Zou (2012)
for details. We propose to estimate the elements of the diagonal matrix D∗ using a median
absolute deviation estimator, D̃ = diag{(σ̃11)

1/2, . . . , (σ̃pp)
1/2}, where σ̃uu = Cu medi∈[n]{|Xiu −

medj∈[n](Xju)|}. Here, medi∈[n](·) denotes the median within the index set [n] and Cu = F−1
u (3/4)

is the Fisher consistency constant, where Fu is the distribution function of X1u − νu and νu is the
median of X1u. Finally, the rank-based estimator is defined as �̃R = (σ̃R

uv) = D̃R̃D̃.

PROPOSITION 2. Let X1, . . . , Xn be independent and identically distributed copies of the
elliptically symmetric random vector X with covariance matrix �∗ = D∗R∗D∗. Assume that
maxu σ

∗
uu = ς < ∞ and minu σ

∗
uu > C2{(log p)/n}1/2 + 1/U 4, where U < C1π

√
2/(4ς) for

C1 > 0 and C2 > 0. Then

pr
[
max

u,v
|σ̃R

uv − σ ∗
uv| � c{(log p)/n}1/2

]
� 1 − εn,p,

with εn,p � C0p−L for positive constants c, C0 and L.

In estimating marginal variances, we use median absolute deviation estimators to avoid higher
moment assumptions. This assumes knowledge of F−1

u (3/4), without which these marginal
variances can be estimated by using the adaptive Huber estimator or the median of means
estimator given in the next two subsections. This requires existence of a fourth moment; see
Propositions 3 and 5.
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8 M. AVELLA-MEDINA, H. S. BATTEY, J. FAN AND Q. LI

4·2. An adaptive Huber estimator

The Huber-type M-estimator only requires the existence of fourth moments. Let Yuv = (Xu −
μ∗

u)(Xv − μ∗
v). Then σ ∗

uv = E(Yuv) = μ∗
uv − μ∗

uμ
∗
v where μ∗

u = E(Xu), μ∗
v = E(Xv) and

μ∗
uv = E(XuXv). We propose to estimate σ ∗

uv robustly through robust estimators of μ∗
u, μ∗

v and
μ∗

uv. For independent and identically distributed copies Z1, . . . , Zn of a real random variable Z
with mean μ, Huber’s (1964) M-estimator of μ is defined as the solution to

n∑
i=1

ψH (Zi − μ) = 0, (10)

where ψH (z) = min{H , max(−H , z)} is the Huber function. Replacing Zi in (10) by Xi,u, Xi,u
and Xi,uXi,v gives the Huber estimators μ̃H

u , μ̃H
v and μ̃H

uv of μ∗
u, μ∗

v and μ∗
uv, respectively, from

which the Huber-type estimator of �∗ is defined as �̃H = (σ̃H
uv) = (μ̃H

uv − μ̃H
u μ̃

H
v ).

We depart from Huber (1964) by allowing H to grow to infinity as n increases, as our objectives
differ from those of Huber (1964) and of classical robust statistics (Huber & Ronchetti, 2009).
There, the distribution generating the data is assumed to be a contaminated version of a given
parametric model, where the contamination level is small, and the objective is to estimate features
of the parametric model as if no contamination were present. Our goal is instead to estimate the
mean of the underlying distribution, allowing departures from sub-Gaussianity. In related work,
Fan et al. (2017) have shown that when H is allowed to diverge at an appropriate rate, the Huber
estimator of the mean concentrates exponentially fast around the true mean when only a finite
second moment exists. In a similar spirit, we allow H to grow with n in order to alleviate the
bias. An appropriate choice of H trades off bias and robustness. We build on Fan et al. (2017)
and Catoni (2012), showing that our proposed Huber-type estimator satisfies Conditions 1 and 3.

PROPOSITION 3. Assume max1�u�p E(X 4
u ) = κ2 < ∞. Let �̃H = (σ̃H

uv) be the Huber-type
estimator with H = K(n/ log p)1/2 for K � 4κ(2+L)1/2 and L > 0 satisfying (2+L)(log p)/n <
1/8. Under the scaling condition (log p)/n → 0 we have, for large n and a constant C >

κ(1 + 2 maxu |μ∗
u|),

pr
[
max

u,v
|σ̃H

uv − σ ∗
uv| � C{(log p)/n}1/2

]
� 1 − εn,p,

where εn,p � C0p−L for positive constants C0 and L.

Proposition 3 verifies Condition 1 for �̃H , provided H is chosen to diverge at the appropriate
rate. As quantified in Proposition 4, �̃H also satisfies Condition 3 when H is of the same rate
as in Proposition 3. The proof of this result entails extending a large deviation result of Petrov
(1995).

PROPOSITION 4. Assume that max1�u�p E(X 4
u ) = κ2 < ∞ and �∗ ∈ Gq(cn,p, Mn,p) with

cn,p = O{n(1−q)/2/(log p)(3−q)/2}. Let �̃H = (σ̃H
uv) be the Huber-type estimator defined below

(10) with H = K(n/ log p)1/2 for K � 4κ(2 + L)1/2 and L > 0. Assume that the truncated
population covariance matrix �H = E{1(|XuXv| � H )XuXv} satisfies ‖�H�

∗ − Ip‖max =
O[{(log p)/n}1/2]. Under the scaling condition (log p)/n1/3 = O(1) we have, for large n and a
constant C > κ(1 + 2 maxu |μ∗

u|),

pr
[
max

u,v

∣∣(�̃H�
∗ − Ip)uv

∣∣ � C{(log p)/n}1/2
]

� 1 − εn,p,

where εn,p � C0(log p)−1/2p−L for positive constants C0 and L.

Downloaded from https://academic.oup.com/biomet/advance-article-abstract/doi/10.1093/biomet/asy011/4955410
by guest
on 01 April 2018



Robust matrix estimators 9

4·3. A median of means estimator

The median of means estimator was proposed by Nemirovsky & Yudin (1983) and has been
further studied by Lerasle & Oliveira (2011), Bubeck et al. (2013) and Joly & Lugosi (2016).
It is defined as the median of M means obtained by partitioning the data into M subsamples.
A heuristic explanation for its success is that taking means within subsamples results in a more
symmetric sample while the median makes the solution concentrate faster.

Our median of means estimator for �∗ is constructed as �̃M = (σ̃M
uv ) = (μ̃M

uv − μ̃M
u μ̃

M
v ),

where μ̃M
uv, μ̃M

u and μ̃M
v are median of means estimators of (XiuXiv)

n
i=1, (Xiu)

n
i=1 and (Xiv)

n
i=1,

respectively; in each case, each of the M means is computed on an regular partition B1, . . . , BM
of [n]. It is assumed that M is a factor of n.

The value of M is a tuning parameter that affects the accuracy of the median of means estimator.
The choice of M involves a compromise between bias and variance. For the extreme cases,
M = n and M = 1, we obtain respectively the sample median and the sample mean. The latter
is asymptotically unbiased but does not concentrate exponentially fast in the presence of heavy
tails, while the former concentrates exponentially fast but not to the population mean under
asymmetric distributions. Proposition 5 gives the range of M for which both goals are achieved
simultaneously.

PROPOSITION 5. Assume max1�u�p E(X 4
u ) = κ2 < ∞. Let �̃M = (σ̃M

uv )be the median of means
estimator described above based on a regular partition B1, . . . , BM with M = 
(2 + L) log p�
for a positive constant L. Under the scaling condition (log p)/n → 0 we have, for large n and a
constant C > 2(6e)1/2{κ + 2 maxu,v μ

∗
u(σ

∗
vv)

1/2},

pr
[

max
u,v

|σ̃M
uv − σ ∗

uv| � C{(log p)/n}1/2
]

� 1 − εn,p,

where εn,p � C0p−L for positive constants C0 and L.

5. INFINITE KURTOSIS

In the previous discussion we assumed the existence of fourth moments of X for the Huber-
type estimator in § 4. We now relax the condition of boundedness of E(X 4

u ) to that of E(|Xu|2+ε)
for some ε > 0 and all u ∈ [p]. The following proposition lays the foundations for the analysis
of high-dimensional covariance or precision matrix estimation with infinite kurtosis. It extends
Theorem 5 in Fan et al. (2017) and gives rates of convergence for Huber’s estimator of E(Xu)

assuming a bounded 1 + ε moment for ε ∈ (0, 1]. The result is optimal in the sense that our rates
match the minimax lower bound given in Theorem 3.1 of Devroye et al. (2016). The rates depend
on ε, and when ε = 1 they match those of Catoni (2012) and Fan et al. (2017).

PROPOSITION 6. Let δ ∈ (0, 1), ε ∈ (0, 1] and n > 12 log(2δ−1), and let Z1, . . . , Zn be
independent and identically distributed random variables with mean μ and bounded 1 + ε

moment, i.e., E(|Z1 −μ|1+ε) = v < ∞. Take H = {vn/ log(2δ−1)}1/(1+ε). Then, with probability
at least 1 − δ,

μ̃H − μ � 7 + √
2

2
v1/(1+ε)

{
log(2δ−1)

n

}ε/(1+ε)
,

where μ̃H is as defined in § 4·2.
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COROLLARY 1. Under the conditions of Proposition 6, the Huber estimator satisfies

pr

[
|μ̃H − μ| � 7 + √

2

2
v1/(1+ε)

{
log(2δ−1)

n

}ε/(1+ε)]
� 1 − 2δ.

Corollary 1 allows us to generalize the upper bounds of the Huber-type estimator. The following
two theorems establish rates of convergence for the adaptive thresholding and the adaptively
constrained �1-minimization estimators. While we do not prove that these rates are minimax
optimal under 2 + ε finite moments, the proof expands on the elementwise maximum norm
convergence of the pilot estimator, which is optimal by Theorem 3.1 of Devroye et al. (2016),
and the resulting rates for adaptive thresholding match the minimax rates of Cai & Liu (2011)
when ε = 2. This is a strong indication that the rates are sharp.

THEOREM 3. Suppose that Condition 2 is satisfied and assume max1�u�p E(|Xu|2+ε) � κ2
ε .

Let �̂T
H be the adaptive thresholding estimator defined in § 2 based on the Huber pilot estimator

�̃H with H = K(n/ log p)1/(2+ε) for K � 2−1(7 + √
2)κε(2 + L)ε/(2+ε) and L > 0. Under

the scaling condition log p = O(n1/2) and choosing λuv = λ{σ̃H
uuσ̃

H
vv (log p)/n}ε/(2+ε) for some

λ > 0, we have, for sufficiently large n,

inf
�∗∈Uq

pr

{
‖�̂T

H −�∗‖2 � Cs0(p)

(
log p

n

)ε(1−q)/(2+ε)}
� 1 − εn,p,

where εn,p � C0p−L for positive constants C0 and L.

THEOREM 4. Suppose that Condition 4 is satisfied, max1�u�p E(|Xu|2+ε) � κ2
ε and cn,p =

O{n(1−q)/2/(log p)(3−q)/2}. Let �̂H be the adaptively constrained �1-minimization estimator
defined in § 3 based on the Huber pilot estimator �̃H with H = K(n/ log p)1/(2+ε) for
K � 2−1(7 + √

2)κε(2 + L)ε/(2+ε) and L > 0. Assume that the truncated population covariance
matrix�H = E{1(|XuXv| � H )XuXv} satisfies ‖�H�

∗−Ip‖max = O[{(log p)/n}ε/(2+ε)]. Under
the scaling condition (log p)/n1/3 = O(1), we have, for sufficiently large n,

inf
�∗∈Gq

pr

{
‖�̃H −�∗‖2 � CM 1−q

n,p cn,p

(
log p

n

)ε(1−q)/(2+ε)}
� 1 − εn,p,

where εn,p � C0p−L for positive constants C0 and L.

A result similar to Proposition 6 was obtained in Lemma 2 of Bubeck et al. (2013) for the
median of means estimator. Expanding on it, we obtain a result analogous to Theorem 3 for the
median of means matrix estimator.

6. FINITE-SAMPLE PERFORMANCE

We illustrate the performance of the estimators discussed in § § 2 and 3 under a range of data-
generating scenarios and for every choice of pilot estimator discussed in § 4. For the adaptive
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Table 1. Estimation errors (with standard errors in parentheses) of the adaptive thresholding
estimator of�∗ based on four different pilot estimators; values are averaged over 500 replications
Distribution Error Sample covariance Adaptive Huber Median of means Rank-based

MVN ‖�̂ −�∗‖2 2·88 (0·04) 2·86 (0·04) 3·31 (0·05) 3·01 (0·07)
MVN ‖�̃ −�∗‖max 0·98 (0·09) 0·92 (0·09) 1·50 (0·14) 1·61 (0·23)
T ‖�̂ −�∗‖2 8·95 (0·53) 3·92 (0·06) 4·46 (0·24) 5·02 (0·06)
T ‖�̃ −�∗‖max 8·72 (0·55) 1·87 (0·05) 3·35 (0·74) 2·54 (0·04)
ST ‖�̂ −�∗‖2 7·12 (0·17) 4·88 (0·05) 4·96 (0·06) 5·16 (0·06)
ST ‖�̃ −�∗‖max 6·89 (0·18) 2·41 (0·04) 2·43 (0·04) 2·57 (0·04)
CST ‖�̂ −�∗‖2 5·47 (0·23) 4·14 (0·06) 4·60 (0·05) 5·13 (0·06)
CST ‖�̃ −�∗‖max 5·07 (0·27) 2·02 (0·05) 2·27 (0·05) 2·56 (0·04)

MVN, the normal distribution; T, the t distribution; ST, the skewed t distribution; CST, the contaminated skewed
t distribution.

thresholding estimator of�∗, we use a hard thresholding rule with the entry-dependent thresholds
of (3). In each of 500 Monte Carlo replications, n = 200 independent copies of a random vector
X of dimension p = 400 are drawn from a model with either a sparse covariance matrix �∗ or a
sparse precision matrix �∗, depending on the experiment. We consider four different scenarios
for the distribution of X : the zero-mean multivariate normal distribution; the t distribution with
3·5 degrees of freedom and infinite kurtosis; the skewed t distribution with four degrees of
freedom and skew parameter equal to 20; and the contaminated skewed t distribution (Azzalini,
2005) with four degrees of freedom and skew parameter equal to 10. Data in the last scenario
are generated as X = (1 − b)Z1 + bZ2, where Z1 ∼ P, Z2 ∼ Q and b ∼ Bi(1, 0·05); here P
is the t distribution generating most of the data, while Q is a normal distribution with a mean
vector of −8 and covariance matrix equal to the identity. Any unspecified tuning parameters
from the adaptive thresholding estimator and adaptively constrained �1-minimization estimator
are chosen by crossvalidation to minimize the spectral norm error. Unspecified constants in the
tuning parameters of the robust pilot estimators are conservatively chosen to be those that would
be optimal if the true distribution was a Student t distribution with five degrees of freedom. We
consider the following two structures for �∗ and �∗.

(i) Sparse covariance matrix: similar to Model 2 in the simulation section of Cai & Liu
(2011), we take the true covariance model to be the block-diagonal matrix �∗ =
blockdiag(�∗

1 ,�∗
2), where �∗

2 = 4Ip/2×p/2, �∗
1 = A + εIp/2×p/2, A = (auv) with indepen-

dent auv = Un(0·3, 0·8)× Bi(1, 0·2) and ε = max{−λmin(A), 0} + 0·01 to ensure that �∗
1

is positive definite.
(ii) Banded precision matrix: following Cai et al. (2016), we take the true precision matrix to

be of the banded form �0 = {ωij}, where ωii = 1, ωi,i+1 = 0·6, ωi+2,i = ωi,i+2 = 0·3 and
ωij = 0 for |i − j| � 3.

Table 1 shows that while the sample covariance estimator performs well for the normally
distributed case, when the true model departs from normality, thresholding this estimator gives
poor performance, reflected by its elevated estimation error in both the maximum norm and the
spectral norm. By contrast, thresholding one of our proposed robust pilot estimators does not
suffer from these heavy-tailed distributions. Table 2 shows a similar pattern for the precision
matrix estimators. The gains are apparent for all robust pilot estimators, as predicted by our
theory.

Downloaded from https://academic.oup.com/biomet/advance-article-abstract/doi/10.1093/biomet/asy011/4955410
by guest
on 01 April 2018



12 M. AVELLA-MEDINA, H. S. BATTEY, J. FAN AND Q. LI

Table 2. Estimation errors (with standard errors in parentheses) of the adaptively con-
strained �1-minimizers to �∗ based on four different pilot estimators; values are averaged

over 500 replications
Distribution Error Sample covariance Adaptive Huber Median of means Rank-based

MVN ‖�̂−�∗‖2 2·62 (0·01) 2·61 (0·01) 2·59 (0·01) 2·59 (0·01)
MVN ‖�̃�∗ − Ip‖max 1·05 (0·09) 1·02 (0·09) 1·85 (0·28) 2·90 (0·55)
T ‖�̂−�∗‖2 2·54 (0·03) 2·26 (0·02) 2·43 (0·02) 2·41 (0·02)
T ‖�̃�∗ − Ip‖max 2·66 (3·96) 0·81 (0·03) 1·02 (0·19) 1·01 (0·19)
ST ‖�̂−�∗‖2 2·27 (0·15) 1·97 (0·05) 2·08 (0·08) 2·12 (0·08)
ST ‖�̃�∗ − Ip‖max 1·40 (1·59) 0·97 (0·02) 1·05 (0·03) 0·96 (0·02)
CST ‖�̂−�∗‖2 2·65 (0·02) 2·01 (0·04) 2·12 (0·06) 2·10 (0·06)
CST ‖�̃�∗ − Ip‖max 9·65 (3·76) 0·97 (0·04) 2·16 (2·19) 0·92 (0·03)

Table 3. Number of connections detected by two types of methods
Top 100 connections Equal tuning parameters

Within Between Total Within Between Total
Huber estimator 60 40 100 Huber estimator 27 15 42
Sample covariance 55 45 100 Sample covariance 55 45 100

7. REAL-DATA EXAMPLE

A gene regulatory network, also known as a pathway, is a set of genes that interact with each
other to control a specific cell function. With recent advances in genomic research, many such
networks have been discovered and their functions thoroughly studied. Certain pathways are now
known and available in public databases such as KEGG (Ogata et al., 2000). One popular way to
infer a gene regulatory network is through estimation of the precision matrix associated with gene
expression (Wit & Abbruzzo, 2015). However, such data often contain outliers. To assess whether
our robust estimator can improve inference on gene regulatory networks, we use a microarray
dataset and compare our findings with generally acknowledged scientific truth from the genomics
literature. The microarray data come from a study by Huang et al. (2011) on the inflammation
process of cardiovascular disease. They identified that the toll-like receptor signalling pathway
plays a key role in the inflammation process. Their study involves n = 48 patients and the
data are available from the Gene Expression Omnibus via the accession name GSE20129. We
consider 95 genes from the toll-like receptor signalling pathway and another 62 genes from the
peroxisome proliferator-activated receptor signalling pathway, which is known to be unrelated
to cardiovascular disease. A good method should discover connections for genes within each of
the pathways but not across them. We use both the original version of the adaptively constrained
�1-minimization estimator and our robustified version via the Huber pilot estimator to estimate
the precision matrix and therefore the gene regulatory network.

We first choose the tuning parameters that deliver the top 100 connections for each method.
Table 3 reports the selection results, also displayed in Fig. 1. Our robust method identifies more
connections within each pathway and fewer connections across the pathways.

We tried taking the same tuning parameter in the constrained �1-minimization step (8) for
each procedure. Table 3 gives the results. Our estimator detects fewer connections; however, the
percentage of within-pathway connections estimated using the Huber pilot estimator is much
higher than that of the sample covariance estimator. If the genomics literature is correct, our
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Fig. 1. Connections estimated by the adaptively constrained �1-minimization estimator using (a) the sample covari-
ance and (b) the Huber-type pilot estimator; blue lines represent within-pathway connections and red lines

between-pathway connections.

results show that use of the Huber pilot estimator improves inference for this example, in which
heavy tails and skewness are present.
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