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Summary

Multiple types of data measured on a common set of subjects arise in many areas. Numerous
empirical studies have found that integrative analysis of such data can result in better statistical
performance in terms of prediction and feature selection. However, the advantages of integrative
analysis have mostly been demonstrated empirically. In the context of two-class classification, we
propose an integrative linear discriminant analysis method and establish a theoretical guarantee
that it achieves a smaller classification error than running linear discriminant analysis on each data
type individually. We address the issues of outliers and missing values, frequently encountered
in integrative analysis, and illustrate our method through simulations and a neuroimaging study
of Alzheimer’s disease.

Some key words: Bayes error; High-dimensional classification; Integrative analysis; Linear discriminant analysis;
Multi-type data; Regularization.

1. Introduction

Integrative analysis is receiving increasing attention in biomedical research. One example
is genomics, where gene expression, DNA copy number variation, and DNA methylation data
are simultaneously measured from the same biospecimen. Numerous empirical studies have
demonstrated that such analysis boosts power for predicting disease progression and identifying
important biomarkers (Shen et al., 2013; Liu et al., 2013, 2014; Li et al., 2014; Cai et al., 2016;
Richardson et al., 2016). Another example is neuroimaging, where both structural and functional
brain imaging scans are acquired for the same study subject. Integrative analysis of multiple types
of images improves our understanding of the brain and the diagnosis of neurological disorders
(Zhang et al., 2011; Dai et al., 2012; Uludag & Roebroeck, 2014). The advantages of integrative
analysis have, however, mostly been established empirically, with little theory on when joint
analysis is guaranteed to improve statistical performance. In this paper, we provide a theoretical
justification for the benefit of joint analysis in two-class classification.
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918 Q. Li AND L. Li

Linear discriminant analysis is effective for many benchmark datasets (Hand, 2006). Recently,
aiming at high-dimensional classification where the number of features exceeds the sample size,
there have been a number of proposals of regularized linear discriminant analysis (Wu et al., 2009;
Clemmensen et al., 2011; Witten & Tibshirani, 2011; Shao et al., 2011; Cai & Liu, 2012; Fan
et al., 2012; Mai et al., 2012; Han et al., 2013). However, all these methods focus on classification
using a single data type.

In this article, we develop an integrative linear discriminant analysis method for multi-type
data, and we show that it is guaranteed to asymptotically reduce classification error compared
with running linear discriminant analysis on a single data type. We first show that the Bayes error
for linear discriminant analysis is a decreasing function of the number of variables involved.
On the other hand, as it involves more unknown parameters, multi-type classification introduces
additional variance and often a larger estimation error. Without proper control, the resulting
classifier can perform poorly, and in the extreme case it can be as bad as random guessing (Bickel
& Levina, 2004). To address this, we propose a regularized classifier, show that it enjoys rate
consistency in that its error rate approaches the Bayes error, and establish a theoretical guarantee
that our approach using multi-type data has a smaller classification error than using single-
type data. This is achieved by a careful characterization of the trade-off between the additional
discriminative information brought by using more variables and the extra estimation error it
brings. To the best of our knowledge, this is the first result of its kind in the integrative analysis
literature. We also show that our method consistently excludes all non-discriminative features
and uniformly consistently estimates the discriminative ones. Most existing regularized linear
discriminant analysis solutions obtain either only rate consistency (Shao et al., 2011; Cai &
Liu, 2012; Fan et al., 2012) or selection consistency (Mai et al., 2012), but rarely both (Han
et al., 2013). We develop a robust version of our method and show that the guaranteed error rate
improvement holds under a class of elliptical distributions. Our method can also accommodate
blocks of missing values. For the special case where there is only a single data type, our method
achieves the same convergence rate as the linear programming discriminant rule of Cai & Liu
(2012), but requires less restrictive conditions when the underlying distribution is nonnormal.

2. Methodology

2·1. Bayes error

We consider a binary classification problem, where Y ∈ {0, 1} is a class label with prior
distribution pr(Y = k) = πk (k = 0, 1), π0 = π1 = 1/2, and X ∈ R

d is the predictor vector. We
assume E(X | Y = k) = μk ∈ R

d and var(X | Y = k) = � ∈ R
d×d (k = 0, 1). If both classes

are normally distributed, the Bayes rule classifies a new observation x to class 0 if and only if
δT�−1(x − μ) � 0, where δ = μ0 − μ1 and μ = (μ0 + μ1)/2. The corresponding Bayes error
is given by

R∗
d = �

(−√
�d/2

)
, �d = δT�−1δ, (1)

where �(x) is the standard normal cumulative distribution function and �d , the Mahalanobis
distance between the centroids of the two classes, is a normalized Euclidean distance that measures
how far the two centroids are apart and quantifies the difficulty of classifying the classes. Clearly,
the Bayes error R∗

d is a decreasing function of �d . We now show that �d increases with d, and
thus R∗

d is a decreasing function of d. We introduce the following notation. Let δ1:d−1 and δd
denote the first d − 1 and the dth coordinates of δ, let σ1:d−1,d denote the first d − 1 coordinates
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Integrative linear discriminant analysis 919

of the dth column of �, and let �1:d−1,1:d−1 denote the first d − 1 rows and columns of �. We
then have the next proposition.

Proposition 1. The Mahalanobis distance �d is a nondecreasing function of the dimension
d, and it is strictly increasing if δd |= σ T

1:d−1,d�
−1
1:d−1,1:d−1δ1:d−1.

This result shows that, as long as the mean difference of a new variable between the two
classes is not a particular linear combination of the mean differences of the variables already
included, the distance �d strictly increases, so including more variables in classification leads
to a smaller Bayes error. However, using more variables in classification also involves more
unknown parameters and thus induces a larger variance. Next we propose an integrative classifier
that can effectively control the estimation error and can asymptotically reach the Bayes error.

2·2. Integrative linear discriminant analysis

Classical linear discriminant analysis replaces the unknown parameters in the Bayes rule with
their maximum likelihood estimators, and classifies a new observation x into class 0 if and only
if δ̂T�̂−1(x − μ̂) � 0, where

μ̂0 = 1

n0

n0∑
i=1

X0i, μ̂1 = 1

n1

n1∑
i=1

X1i, μ̂ = (μ̂0 + μ̂1)/2,

δ̂ = μ̂0 − μ̂1, �̂ = 1

n

1∑
k=0

nk∑
i=1

(Xki − μ̂k)(Xki − μ̂k)
T.

(2)

Next we develop our integrative linear discriminant analysis classifier using multi-type data.
From now on, X denotes the vector that concatenates the variables from all data types.

We first consider the scenario in which all M types share a set of p common variables, so
that d = Mp. By common variables we mean those variables in different data types that are
related through some common structure. For instance, in genomics, common variables could
represent different genetic measurements corresponding to the same gene; in neuroimaging,
they could represent different brain characteristics for the same brain region. The optimal Bayes
classification direction β∗ = �−1δ minimizes βT�β/2 − δTβ. Accordingly, to estimate β∗, we
replace (δ,�) with (δ̂, �̂) in (2) and solve the regularized problem

minimize
β∈Rd

1

2
βT�̂β − δ̂Tβ + λn

p∑
j=1

‖βSj‖G, (3)

where jm is the index of the jth variable in the mth data type, Sj = {j1, . . . , jM } is the set of indices
corresponding to its appearance in M data types, and βSj is the subvector of β with indices in
Sj ( j = 1, . . . , p). Although the common variables are shared by all data types, their contributions
to classification may vary, resulting in potentially different values of βjm . In (3),

‖βSj‖G = (1 − α)‖βSj‖1 + α‖βSj‖2, α ∈ [0, 1], (4)

where ‖βSj‖1 and ‖βSj‖2 denote the �1-norm and the Euclidean norm of βSj . Letting β̂ denote

the minimizer of (3), we build a rule that classifies x into class 0 if and only if β̂T(x − μ̂) � 0,
and call it the integrative linear discriminant analysis classifier.
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920 Q. Li AND L. Li

The regularization term in (4) is a weighted sum of the �1-norm and the Euclidean norm of
βSj . If α = 1, it reduces to a group lasso penalty (Yuan & Lin, 2006), and then either all elements
of βSj appear in the classification rule or none do. In other words, a variable’s appearance in M
data types acts as a group, and all data types have a common set of variables contributing to the
classification rule. If α = 0, the term in (4) reduces to an elementwise �1-penalty. In this case,
no group structure is built into the penalty, and different data types can have different sets of
variables contributing to classification. The key advantage of (4) is that, by tuning the value of
α given the data, it offers a data-adaptive way to balance the two cases. The tuning of α and λn
is done by crossvalidation. Moreover, when M = 1, the penalty in (4) reduces to an �1 penalty.
Therefore our method is applicable to single-type classification as well.

We next consider the more general scenario in which different data types do not share a common
set of variables. Suppose there are pm variables in the mth data type and d = ∑M

m=1 pm. Let J
denote the set of all unique variables, let M denote the set of common variables that appear
in more than one data type, and let N denote the set of variables that appear in only one data
type. We have J = M ∪ N . Again let Sj ( j ∈ J ) denote the set of indices corresponding to
the jth variable’s appearance across M data types, i.e., its positions in the concatenated index set
(1, . . . , d). Then, we propose to solve the regularized optimization problem

minimize
β∈Rd

1

2
βT�̂β − δ̂Tβ + λn

⎛
⎝∑

j∈N
‖βSj‖1 +

∑
j∈M

‖βSj‖G

⎞
⎠. (5)

That is, for those variables appearing in more than one data type, we continue to impose the
penalty in (4), whereas for those variables appearing in a single data type, we only impose the �1
penalty. For the special case that the same set of variables appears in all types, (5) reduces to (3).
When no variable appears in more than one type, (5) reduces to an �1-regularization problem.

In § 3, we develop a proximal gradient algorithm to solve (5), which includes (3) as a special
case. In § § 4–6, we present the results based on (3) for notational simplicity. Parallel results under
(5) can be obtained straightforwardly.

3. Estimation

For the objective function in (5), let L(β) = βT�̂β/2 − δ̂Tβ and g(β) = λn(
∑

j∈N ‖βSj‖1 +∑
j∈M‖βSj‖G). Since L(β) is differentiable, the convex problem (5) can be solved by a proximal

gradient algorithm using a majorization-minimization scheme (Parikh & Boyd, 2014). First, we
find a quadratic approximation to L(β) centred at β(k), the estimate at the kth iteration of the
algorithm, that majorizes L(β). That is,

L(β) � L{β(k)} + {β − β(k)}T∇L{β(k)} + 1

2t
‖β − β(k)‖2

2, (6)

where t is the step size. Denote the right-hand side of (6) by Qt{β,β(k)}. Then we minimize
Qt{β,β(k)} + g(β), which gives the proximal problem

minimize
β∈Rd

1

2

∥∥∥β −
[
β(k) − t∇L{β(k)}

]∥∥∥2

2
+ tg(β). (7)
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Integrative linear discriminant analysis 921

Following Friedman et al. (2010) and Simon et al. (2013), one can show that (7) has a closed-form
solution

β(k+1) = proxtg[β(k) − t∇L{β(k)}] =
{

s[β(k)Sj
− t{�̂β(k) − δ̂}Sj , λnt], j ∈ N ,

zSj (1 − tαλn‖zSj‖−1
2 )+, j ∈ M,

(8)

where zSj = s[β(k)Sj
− t{�̂β(k) − δ̂}Sj , t(1 − α)λn], {�̂β(k) − δ̂}Sj denotes the subvector of the

gradient �̂β(k) − δ̂ with indices in Sj, β
(k)
Sj

is defined similarly, and s(x, λ) is the elementwise
soft-thresholding operator, whose ith element is defined as {s(x, λ)}i = sgn(xi)(|xi| − λ)+, with
sgn(xi) denoting the sign of xi. The solution given in (8) reveals the effect of different penalties
on variables in M and N . For variables in N , the solution is given by an elementwise soft-
thresholding. For variables in M, if ‖zSj‖2 < tαλn, the �2-term in the penalty shrinks the entire
group to zero. Otherwise, the �1-term still shrinks some individual elements in that group to zero.
Consequently, our method provides a flexible selection of individual variables’effects in different
data types. As for the step size, we follow Parikh & Boyd (2014, § 4.2) to perform a backtracking
line search. This strategy is commonly used in the proximal gradient method. Moreover, Nesterov
(2013) has shown that such a choice of step size yields an O(1/k) convergence rate of computation,
meaning that after k iterations the difference between the value of the objective function and its
minimum is at most O(1/k). Alternatively, one may also use a fixed step size t, as long as it is
smaller than 1/c, where c is the Lipschitz constant for the gradient ∇L(β) and is equal to the
maximum eigenvalue of �̂ in our problem. Finally, we stop iterations when ‖β(k) − β(k−1)‖2 �
10−3. Our algorithm is summarized as follows:

Algorithm 1. The proximal gradient algorithm.

Initialize β at β(0) ∈ R
d and t at t(0) ∈ R

+.
At the kth iteration, let t = t(k−1) and repeat

Let β = proxtg[β(k−1) − t∇L{β(k−1)}] as defined in (8).
Break if L(β) � Qt{β,β(k−1)}.
Update t = 0·8t.

Let t(k) = t and β(k) = β.
Iterate until the stopping criterion is met.

4. Theory

Next we establish the error rate and selection consistency of our classification rule from (3).
We assume that both classes follow a normal distribution throughout this section, and relax this
assumption in § 5.

We first introduce some notation. For a vector a ∈ R
d , let ‖a‖∞ = max1�j�d |aj|,

‖a‖1 = ∑d
j=1 |aj| and ‖a‖2 = (

∑d
j=1 a2

j )
1/2 denote its max, �1- and Euclidean norms. Recall the

definitions of jm and Sj after (3). Define ‖a‖1,2 = ∑p
j=1(

∑M
m=1 a2

jm)
1/2, ‖a‖1,G = ∑p

j=1‖aSj‖G,

and ‖a‖∞,2 = max1�j�p‖aSj‖2. For a matrix A = (aij) ∈ R
d×d , define ‖A‖max = maxij |aij|,

‖A‖∞ = max1�i�d
∑d

j=1 |aij| and ‖A‖∞,2 = max1�j�p(
∑M

m=1 ‖ãjm‖2∞,2)
1/2, where ãjm is the

jmth row of A. In addition, letλmin(A) denote the minimum eigenvalue of A. For any two sequences
an and bn, we write an � bn if there exists a constant c > 0 such that an � cbn, an 	 bn if
an � bn and bn � an, and an 
 bn if bn/an → 0. Moreover, we define sets A = {jm : β∗

jm |= 0},
B = {jm : β∗

jm = 0 but β∗
Sj

|= 0} and C = {jm : β∗
Sj

= 0}, and let s = |A| be the size of A.
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922 Q. Li AND L. Li

The next lemma establishes the error rate of the integrative linear discriminant analysis rule.
Its proof follows that of Shao et al. (2011) and is omitted.

Lemma 1. The error rate of the integrative linear discriminant analysis rule is

Rn = 1

2
�

{
(μ1 − μ̂)Tβ̂

(β̂T�β̂)1/2

}
+ 1

2
�

{
(μ̂− μ0)

Tβ̂

(β̂T�β̂)1/2

}
.

Next we show that our proposed integrative linear discriminant analysis classifier is error rate
consistent. We begin with a set of regularity conditions.

Condition 1. Let max1�j�d σjj � c0 for some constant c0 > 0, where σjj are the diagonal
elements of �.

Condition 2. Let�d � c−1
0 for some constant c0 > 0, where�d is the Mahalanobis distance

as defined in (1).

Condition 3. Let νn‖β∗‖1,G + ϕn‖β∗‖2
1,G = o(1), where νn = M {�d(log d)/n}1/2 and ϕn =

M {(log d)/n}1/2.

Condition 1 is needed to establish the concentration results. Condition 2 avoids the extreme
situation that the Bayes error converges to 1/2 when �d → 0. Condition 3 requires β∗ to be
weakly sparse in the sense that ‖β∗‖1,G is much smaller than n, which further implies that many
elements in β∗ are small. When M = 1, this becomes the weak sparsity condition of Cai & Liu
(2012, Theorem 3). In Condition 3, d is allowed to diverge to infinity. Under these conditions,
the next theorem establishes the relation between the error rate Rn of our method and the Bayes
error R∗

d . The latter is to serve as a reference when we evaluate the error rate of a given classifier.

Theorem 1. Assume that Conditions 1–3 hold and nk/n → c̃k (k = 0, 1) for some c̃k ∈ (0, 1)
as n → ∞. If we choose λn = C0{M�d(log d)/n}1/2 for some large enough constant C0, then
there exist positive constants C1 and C2 such that, with probability at least 1 − C1d−C2 ,

Rn

R∗
d

− 1 = O(νn‖β∗‖1,G + ϕn‖β∗‖2
1,G).

Theorem 1 shows that the error rate Rn of our integrative classifier is of the same order as
the Bayes error R∗

d . This result is crucial in establishing the guaranteed error rate improvement
for our method. When M = 1, the convergence rate we obtain is the same as that of the linear
programming discriminant rule of Cai & Liu (2012), though the two methods have different
formulations. Moreover, we consider a special case where only an elementwise �1 penalty is
imposed in (3). This is equivalent to setting α = 0 in the penalty term (4). Following an argument
similar to that in Theorem 1, one can show that its error rate R̃n satisfies

R̃n

R∗
d

− 1 = O
(
νn‖β∗‖1 + ϕn‖β∗‖2

1

)
.

Therefore, R̃n is of the same order as the Bayes error rate. However, when comparing this rate
with that of our integrative linear discriminant analysis, we have ‖β∗‖1,G � ‖β∗‖1, since for any
vector a, ‖a‖2 � ‖a‖1. Thus, loosely speaking, our method can approach the Bayes error rate
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Integrative linear discriminant analysis 923

faster than the method only employing an elementwise �1 penalty, in the sense that the upper
bound of the former classifier is tighter than that of the latter. We compare the two methods
numerically in § 7.

According to Theorem 1, when more variables are involved in integrative linear discrimi-
nant analysis, the difference between the classifier’s error rate and the Bayes error can become
larger, as ‖β∗‖1,G and d would increase. This is because more unknown parameters need to
be estimated, which induces a larger estimation error. However, if the additional discriminative
information brought by the extra variables exceeds the estimation error they bring, the error rate
Rn is guaranteed to decrease, as shown by Theorem 2.

Condition 4. Assume �d − �p � c1 for some constant c1 > 0, where �m,p denotes the
Mahalanobis distance contributed by variables of the mth data type and �p = max1�m�M �m,p.

Theorem 2. Let R1n and R2n denote the error rates of the linear discriminant analysis classifier
using single-type data consisting of p variables and multi-type data consisting of d variables.
Assume Conditions 1–4 hold. Then, with probability tending to 1,

lim sup
n→∞

R2n

R1n
< 1.

Theorem 2 establishes the guaranteed error rate improvement of multi-type analysis through
our integrative classifier, and is a key contribution of this article. The increment of the Mahalanobis
distance�d −�p quantifies the information contained in additional variables. Theorem 1 shows
that our method approaches the Bayes error at a rate of O(νn‖β∗‖1,G + ϕn‖β∗‖2

1,G), which
eventually becomes o(1) as implied by Condition 3. Condition 4 ensures that the increment
�d − �p is large enough to surpass this estimation error. Consequently, the error rate of our
classifier is guaranteed to decrease.

Theorems 1 and 2 only require β∗ to be weakly sparse, in that ‖β∗‖1,G is much smaller than
the sample size n as characterized by Condition 3. Moreover, a consistent linear discriminant
analysis rule does not require μ0 − μ1 to be sparse; see also the discussion in Mai et al. (2012).
Next, we show that if β∗ is exactly sparse, in that many of its components are exactly zero, our
method is also selection consistent. That is, it consistently excludes all nondiscriminative features
and uniformly consistently estimates the coefficients of the discriminative ones. We first present
the required regularity conditions:

Condition 5. λmin(�) � c−1
0 ;

Condition 6. ‖�−1
AA‖∞ � c0;

Condition 7. ‖�BA�−1
AA‖∞ � (1 − α)(1 − ε), for some 0 < ε < 1;

Condition 8. ‖�CA�−1
AA‖∞ � (1 − ε)M−1/2, for some 0 < ε < 1.

Conditions 5–8 are standard for variable selection consistency (Zhao & Yu, 2006; Fan &
Lv, 2011). Conditions 7 and 8 are irrepresentability conditions required by the �1 penalty.
We need two different irrepresentability conditions, depending on whether or not the zero
component belongs to a group whose elements are all zero, as they have different forms in
the Karush–Kuhn–Tucker conditions; see the Supplementary Material. These conditions are
imposed on the population covariance matrix�, while similar conditions hold for �̂ with a high
probability.
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Theorem 3. Assume that Conditions 1 and 5–8 hold. If s2{(log d)/n}1/2 = o(1), minjm∈A |β∗
jm |


 {�d(log d)/n}γ /2 for some 0 < γ < 1, and we choose λn = C0{�d(log d)/n}γ /2 for some
large enough constant C0, then there exist positive constants C1 and C2 such that, with probability
at least 1 − C1d−C2 , the solution β̂ to problem (3) satisfies ‖β̂A − β∗

A‖∞ � λn and Â = A.

5. Robust integrative linear discriminant analysis

In practice, multi-type data may contain outliers and be nonnormal. We show that the benefit
of multi-type classification still holds in those situations.

The classification rule described in § 2·1 remains optimal when X follows an elliptical distri-
bution (Shao et al., 2011). This family includes normal, t, and double exponential distributions.
Define �(t) = pr{lT�−1/2(X − μk) � t | Y = k} (k = 0, 1), where Y is the class indicator,
l ∈ R

d is a deterministic vector with unit norm, and t ∈ R. Analogous to Shao et al. (2011) and
Cai & Liu (2012), we assume that �(t) is a continuous cumulative distribution function and its
density is symmetric around 0. All elliptical distributions satisfy this assumption. Moreover, we
characterize the tail probability of � by assuming that for some constants 0 � ζ � 2, w ∈ R,
and c > 0,

0 < lim
x→∞

xw exp(−cxζ )

�(−x)
< ∞. (9)

We next replace the normality assumption with a moment condition.

Condition 9. Assume that max0�k�1,1�j�d E{(Xj − μkj)
4 | Y = k} < c0 for some c0 > 0,

where μkj is the jth component of μk .

Some elliptical distributions are heavy-tailed. Accordingly, we propose to replace the usual
sample estimators of μ and � in (2) with their corresponding robust estimators μ̂k ,robust = (μ̂kj)

and �̂robust = (σ̂ij), where μ̂kj and σ̂ij solve the equations

nk∑
�=1

ψ
{
ν(Xk ,�j − μkj)

} = 0,
1∑

k=0

nk∑
�=1

ψ
{
ν(Xk ,�iXk ,�j − σij)

} = 0.

In both cases, ψ(x) = min{max(x, −1), 1} is the Huber score function and ν > 0 is a tuning
parameter. We insert the robust estimators μ̂k ,robust and �̂robust into (3) for robust integrative linear
discriminant analysis.

For any elliptical distribution, the Bayes error takes the form �(−√
�d/2), which is a

decreasing function of d. Under Condition 9, one can show that (Fan et al., 2017, § 4)

‖μ̂k ,robust − μk‖∞ = Op {(log d)/n} , ‖�̂robust −�‖max = Op {(log d)/n} . (10)

Such concentration results are exactly the same as those in the Supplementary Material that we
establish for integrative discriminant analysis under normality, so a similar result to Theorem 1
also holds for our robust classifier.

Theorem 4. Assume that the regularity conditions in Theorem 1 and Condition 9 hold. For
any distribution satisfying (9), there exist positive constants C1 and C2 such that, with probability
at least 1 − C1d−C2 ,
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Rn

R∗
d

− 1 = O(νn‖β∗‖1,G + ϕn‖β∗‖2
1,G).

Theorem 4 ensures that for a large class of distributions, our robust integrative classifier
continues to enjoy the guaranteed error rate improvement when using multi-type data. The choice
of the robust estimators for μk and � is not unique; see Avella-Medina et al. (2018) for some
alternatives. Indeed, any estimators satisfying (10) would ensure the same convergence rate as in
Theorem 4. For the special case that M = 1, Theorem 4 achieves the same convergence rate as Cai
& Liu (2012, Theorem 5), but under less restrictive conditions. For polynomial tail distributions,
Cai & Liu (2012) required the existence of higher moments than the fourth moment, and can only
handle d = O(nγ ) for some γ > 0. By contrast, our robust method can handle d = O{exp(nγ )}
for 0 < γ < 1, because the method of Cai & Liu (2012) was built on the sample mean and
covariance estimators.

6. Integrative linear discriminant analysis with missing data

Another issue that frequently arises is that measurements of certain data types for a subset of
subjects can be entirely missing. For instance, in genomics, some subjects may have both gene
expression and DNA methylation measurements, while others may only have gene expression
measurements (Cai et al., 2016). In neuroimaging, one group of subjects may have both structural
and functional imaging scans while another may only have structural scans. In such situations,
data are missing by blocks. We show that our method can be extended to handle block missing
data and the guaranteed error rate improvement still follows.

A simple solution is complete case analysis. That is, we obtain the sample estimators of δ̂
and �̂ using only the subset of subjects with complete observations for all data types. We can
establish similar results to Theorem 1, by replacing the sample size n with ncomplete, the number
of subjects with complete observations. Since ncomplete is only a fraction of n, and is usually very
small, the convergence rate in Theorem 1 becomes rather slow.

Alternatively, using a similar idea as G. Yu in a 2016 PhD thesis from the University of North
Carolina, we use as many observations as possible to estimate δ̂ and �̂, by considering

δ̂effective = (δ̂j), δ̂j = X̄0,j − X̄1,j = 1

n0j

∑
�∈S0j

X0,�j − 1

n1j

∑
�∈S1j

X1,�j,

�̂effective = (σ̂ij), σ̂ij = 1

nij

1∑
k=0

∑
�∈Sk ,ij

(Xk ,�i − X̄k ,i)(Xk ,�j − X̄k ,j).

Here X0,�j and X1,�j denote the jth element of the �th subject in classes 0 and 1, respec-
tively, S0j = {� : X0,�j is not missing}, S1j = {� : X1,�j is not missing}, Sk ,ij = {� :
both Xk ,�i and Xk ,�j are not missing}, n0j and n1j are the sizes of S0j and S1j, and nij is the size
of S0,ij ∪ S1,ij. Due to the unbalanced sample size, �̂effective itself may not be positive semidefi-
nite. In that case, we further project it onto the cone of positive-semidefinite matrices by solving
minimizeλmin(M )�0‖M − �̂effective‖max. This projection can be formulated as a linear program-
ming problem and solved efficiently (Liu et al., 2012). For notational simplicity, we still call the
minimizer �̂effective. Inserting δ̂effective and �̂effective into (3), we solve (3) in the presence of block
missing data. Under the normality assumption, one can show that

‖δ̂effective − δ‖∞ = Op
{
(log d)/n′} , ‖�̂effective −�‖max = Op

{
(log d)/n′′} ,
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where n′ = min1�j�d min{n0j, n1j} and n′′ = min1�i,j�d nij. Based upon these concentration
results and a similar derivation, we can show that Theorem 1 still holds in the presence of block
missingness, if we replace νn and ϕn by νeffective = M {�d(log d)/neffective}1/2 and ϕeffective =
M {(log d)/neffective}1/2, where neffective = min(n′, n′′) is the effective sample size of the entire
problem. In practice, neffective can be much larger than ncomplete, so the second solution is more
efficient than the complete case solution in handling missing data. Moreover, the normality
assumption is not essential. One can combine the two estimators in § 5 and § 6.

7. Numerical studies

7·1. Simulations

We conduct simulations to investigate the finite-sample performance, and compare four meth-
ods: our proposed integrative linear discriminant analysis classifier with the composite penalty (4)
applied to all data types; the integrative classifier with an �1 penalty only; the linear discriminant
classifier applied to each type separately; and a majority vote method, where a sample is classified
into the class to which the majority of separate classifiers assign it. All tuning parameters in these
methods are chosen by crossvalidation. We evaluate each method in terms of both classification
accuracy, measured by misclassification error rate, and variable selection accuracy, measured by
sensitivity and specificity. Sensitivity is defined as the proportion of nonzero β∗

jms being estimated
as nonzero, and specificity is defined as the proportion of zero β∗

jms being estimated as zero. For
the separate classification method, each criterion is taken to be the average across all types.

For each of the two classes, we simulate n/2 independent samples of M = 3 data types,
each of which has p variables: X | Y = 0 ∼ N (μ0,�), and X | Y = 1 ∼ N (μ1,�). We set
(n, p) = (50, 100) and (100, 200). We first generate β∗ and �, then set μ1 = 0 and μ0 = �β∗,
based on the fact that δ = μ0 − μ1 = �β∗. We consider two scenarios of data generation:
different data types contain either a common set of variables, or different sets of variables.

In the first scenario, which we refer to as Example A, all data types share a common set
of variables. That is, we generate Mp variables that are grouped into p groups. This mimics
the usual multi-type data, for instance in neuroimaging, where M different brain characteristics
are measured on the same p brain regions. We then generate β∗ as β∗

jm = 0·8 × Ber(π) ( j =
1, . . . , 5; m = 1, . . . , 3) and set the rest equal to zero. We consider π = 1 and 0·5. When π = 1,
the first five features are discriminative in all three data types. When π = 0·5, each of the first
five features is discriminative in one data type with probability 0·5. We set � = (σij) ∈ R

d×d ,
where d = Mp, such that σij = 1 for i = j, σij = 0·2 for |i − j| = 1, σij = 0·1 for |i − j| = 2 and
σij = 0 otherwise.

In the second scenario, we let 20% of the variables be shared by all three data types, 40% be
shared by two types, and 40% belong to only one type. We further consider two different patterns
of discriminative features and refer to them as Examples B and C. In Example B, we set the first
two β∗

j to 0·3×Ber(π) and the rest to zero for features appearing in two or three types; and we set
the first β∗

j to 0 ·3×Ber(π) and the rest to zero for features appearing in one type. In Example C,
we set β∗ as follows: for type one, we set the first five β∗

j to 0·2 × Ber(π) and the rest to zero for
features appearing in two or three types; and we set the first β∗

j to 0·2×Ber(π) and the rest to zero
for features appearing in one type. For data types two and three, the pattern is the same except that
the nonzero coefficients take values of β∗

j = −0·3×Ber(π) and β∗
j = 0·1×Ber(π) respectively.

Finally, we set � = (σij) with σij = 0·8|i−j|, which allows all variables to be correlated.
Table 1 reports the average criteria, with standard errors in parentheses, all in percentages, over

100 replications. We report�d −�p, which quantifies the extra discriminative information from
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Table 1. Classification and variable selection accuracy (%)
Example A

�d −�p = 12·2, Bayes error = 2% �d −�p = 3·1, Bayes error = 11%
n = 50, p = 100, π = 1 n = 50, p = 100,π = 0·5

iLDA iLDA-�1 m-vote sLDA iLDA iLDA-�1 m-vote sLDA
Error rate 2(3) 3(4) 6(4) 15(7) 11(8) 13(10) 14(10) 20(11)
Sensitivity 81(20) 57(15) 41(11) 41(8) 83(23) 60(25) 33(13) 32(12)
Specificity 94(13) 100(0) 97(1) 98(1) 94(13) 99(2) 98(1) 96(2)

n = 100, p = 200, π = 1 n = 100, p = 200,π = 0·5
iLDA iLDA-�1 m-vote sLDA iLDA iLDA-�1 m-vote sLDA

Error rate 2(2) 3(2) 6(3) 15(6) 11(8) 14(9) 15(7) 24(7)
Sensitivity 90(15) 70(9) 45(10) 43(7) 94(12) 78(22) 34(13) 34(12)
Specificity 97(8) 100(0) 99(0) 99(0) 98(7) 100(0) 99(0) 99(1)

Example B
�d −�p = 2·9, Bayes error = 10% �d −�p = 1·1, Bayes error = 22%

n = 50, p = 100, π = 1 n = 50, p = 100,π = 0·5
iLDA iLDA-�1 m-vote sLDA iLDA iLDA-�1 m-vote sLDA

Error rate 10(3) 12(6) 14(3) 23(5) 24(10) 26(11) 34(17) 39(12)
Sensitivity 63(20) 52(15) 16(10) 16(5) 66(31) 54(33) 3(0) 4(0)
Specificity 96(2) 95(2) 93(2) 91(2) 88(7) 92(3) 98(2) 98(2)

n = 100, p = 200, π = 1 n = 100, p = 200,π = 0·5
iLDA iLDA-�1 m-vote sLDA iLDA iLDA-�1 m-vote sLDA

Error rate 12(6) 14(6) 18(6) 26(6) 26(11) 27(16) 38(19) 40(16)
Sensitivity 45(20) 42(15) 13(10) 18(5) 51(48) 42(52) 3(0) 4(0)
Specificity 85(3) 84(3) 88(4) 82(5) 89(7) 90(3) 97(1) 96(3)

Example C
�d −�p = 5·3, Bayes error = 8% �d −�p = 1·7, Bayes error = 21%

n = 50, p = 100, π = 1 n = 50, p = 100,π = 0·5
iLDA iLDA-�1 m-vote sLDA iLDA iLDA-�1 m-vote sLDA

Error rate 9(4) 15(3) 18(9) 26(7) 22(7) 33(13) 35(10) 38(8)
Sensitivity 61(17) 37(21) 24(10) 26(10) 65(18) 33(32) 13(13) 18(11)
Specificity 92(23) 94(23) 81(8) 79(9) 90(10) 96(7) 89(10) 84(8)

n = 100, p = 200, π = 1 n = 100, p = 200,π = 0·5
iLDA iLDA-�1 m-vote sLDA iLDA iLDA-�1 m-vote sLDA

Error rate 9(1) 13(2) 15(5) 25(5) 22(7) 29(11) 34(9) 38(8)
Sensitivity 58(12) 39(14) 22(3) 21(4) 54(19) 43(27) 11(11) 13(8)
Specificity 98(9) 100(1) 90(3) 89(5) 96(8) 97(4) 95(5) 92(5)

iLDA, the integrative linear discriminant analysis classifier with the composite penalty (4); iLDA-
�1, the integrative linear discriminant analysis classifier with the �1 penalty only; sLDA, the linear
discriminant analysis classifier applied to each individual type separately; m-vote, a majority vote
based on the class assigned by sLDA.

the additional variables. We also report the Bayes error, which serves as the baseline. In all cases,
our method attains a classification error that is close to the Bayes error, and achieves reasonably
high sensitivity and specificity. Compared to the separate classifier and the majority vote method,
the larger the value of �d −�p, the more pronounced an improvement our method achieves in
classification accuracy. This supports our theoretical findings. Moreover, our method achieves
better selection accuracy, with a higher sensitivity and a comparable specificity. Comparing our
proposed integrative classifier with the composite penalty with the one using the �1 penalty only,
the former attains both a smaller classification error and better selection accuracy than the latter, by
leveraging a more flexible penalty function. When the effect of discriminative variables is large,
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such as in Example A, although the method with only the �1 penalty misses many important
variables, its classification error remains small, because the selected variables already enable
a reasonable classification. However, when there are many discriminative variables with small
effects, such as in Example C, it yields considerably worse classification performance.

In summary, our simulations have shown that the proposed integrative classifier consistently
outperforms the alternative classifiers for various scenarios: when all data types share the same or
have a different set of variables, when the discriminative variables differ in magnitude and in size,
and when the covariance matrix takes different structures. We also consider scenarios where the
data follow a heavy-tailed distribution, or when there are missing values. See the Supplementary
Material.

7·2. Positron emission tomography data analysis

We illustrate our method using a neuroimaging study of Alzheimer’s disease, which is char-
acterized by progressive and irreversible impairment of cognitive and memory functions, and
is the leading form of dementia in elderly subjects. With the ageing of the worldwide popula-
tion, it has become imperative to understand, diagnose, and treat this disorder. Positron emission
tomography is a nuclear medicine, functional imaging technique widely used in Alzheimer’s
disease research. It is designed to measure metabolic processes and protein accumulations, by
detecting gamma rays emitted indirectly by a positron-emitting radionuclide, or tracer. Different
metabolic processes and proteins can be quantified with different tracers: the fluorodeoxyglucose
tracer measures glucose metabolism in the brain, the Pittsburgh compound B tracer measures
deposition of amyloid-β protein, and the AV-1451 tracer measures accumulation of tau protein.

Our positron emission tomography study includes 35 subjects, each with a glucose metabolism
scan, a tau scan, and an amyloid-β scan. Given the amyloid-β measurement, each subject has been
classified as amyloid positive or amyloid negative. There are well-validated standard methods
for the assessment of amyloid deposition and thresholds for subject classification as amyloid
positive or negative (Landau et al., 2013). Moreover, following a common brain atlas that divides
the brain into a set of regions of interest, both the glucose metabolism image and the tau image
have been summarized by a vector, with each individual entry measuring glucose metabolism or
tau accumulation within the same brain region. Brain atlas-based partition has been frequently
used in neuroimaging analysis. Without partition, each image scan would take the form of a
multi-dimensional array. An integrative classification analysis of array data is of interest, but is
beyond the scope of this article. One of the scientific goals of this study is to classify the subjects as
amyloid positive or amyloid negative given the glucose metabolism and tau images. Classification
of amyloid positivity is a potentially highly useful application in Alzheimer’s disease research,
and could be readily disseminated in the therapeutic trial arena.

We randomly split the data into three folds, with two folds for training and one for testing.
We repeat the splitting 100 times. We compare four methods: our proposed integrative classifier
applied to both the glucose metabolism image and the tau image, the integrative classifier using
only the �1 penalty, and the separate classifier applied to only one imaging data type. Table 2
reports the results. Our integrative classifier outperforms the alternatives. We then apply our
method to the entire dataset. Figure 1 displays the estimated classification direction imposed on
a brain template. The selected top brain regions include the amygdala, the transverse temporal
gyrus, the cuneus, and the inferior temporal gyrus. Such findings are generally consistent with the
neuroscience literature. For instance, the amygdala has been observed to be severely affected in
Alzheimer’s disease (Poulin et al., 2011), and has been postulated to be one of the central regions
for early amyloid-β changes (Mann et al., 1987). The cuneus is also found to show elevated
amyloid-β concentrations that are associated with increased brain atrophy (Tosun et al., 2011).
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Table 2. Misclassification errors (%) based on three-fold data splitting
Min 1st-Q Median 3rd-Q Max Mean SD

iLDA 8 17 20 23 32 20 4
iLDA-�1 13 18 21 27 45 22 6
sLDA glucose 20 24 28 31 46 28 5
sLDA tau 14 20 23 26 46 23 5

iLDA, the integrative linear discriminant analysis classifier with the composite penalty (4); iLDA-�1,
the integrative linear discriminant analysis classifier with the �1 penalty only; sLDA glucose, the linear
discriminant analysis classifier applied to the glucose metabolism image; sLDA tau, the linear discriminant
analysis classifier applied to the tau image; Min, minimum; 1st-Q, first quartile; 3rd-Q, third quartile; Max,
maximum; SD, standard deviation.

(a) (b)

Fig. 1. The discriminative regions of interest selected by our integrative classifier. Panel (a) shows the selected
regions corresponding to tau images; (b) shows those corresponding to glucose metabolism images. Each
panel contains sagittal, axial, and coronal views. All the estimated coefficients are rescaled to the range −1
to 1. The colour reflects their magnitudes, with red corresponding to 1 and blue to −1. The blue region in

(a) is the amygdala.
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