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SUMMARY

This supplementary file includes proofs of the proposition and theorems in the main document,
the supporting technical lemmas and their proofs, and additional simulation results.

1. PROOF OF PROPOSITION 1

Proof. We partition 6 = (6], 64)", where d1.q—1 and 4 are the first d — 1 and the dth s
coordinates of 4. The covariance matrix ¥ is partitioned accordingly. Letting o = (04q —
-1 —
o-lT:dfl,dzl:d—l,lzd—l015d—1,d> !, we have

PRI

—1
- Y1:d—1,1:d—1 O1:d—1,d O1:d—1
= (51;d—1 5d) T )
01:d—1,d 0dd d

—1
T (P1:d—1,1:d-1 — Ogg 01:d-1,d01.q_1 d) O‘ZM 1,1:d—191:d-1,d 0:d—1
= (51:d71 5d) ’

T Z
—Q0.q-1, ST 1,1:d—1 « 0
(Sh

By the Sherman—Morrison—Woodbury formula,

-1 T —
(Crid-1,1:d-1 = 0gg Ul:dfl,dalzd—l,d) Z71 d-11:d-1 T 0421 :d—1,1:d—191:d~1 AT 1:d—1 d21 {d—1,1:d—1"
Then we have

(51) = 5 l:d— 121d 11d 151d 1+O‘51d 121d 1,1:d—191:d— 1d0'1d 1d21d 1,1:d— 151:d_1 20
20&(5 1 d 1,1:d— 101:d—1, d(Sd + aéd
2
= 014 ld 1,1:d— 101:d-1 + a(dq — 07— 1d21d 1,1:d— 101:4-1)

> 51; 121d 1,1:d— 151:d—17
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2 Q.LianD L. LI

where the equality holds if and only if alT: A1 dE;(lj_l 1. d_151:d—1 = ¢4, which happens only in
a set with Lebesgue measure zero. The last inequality is due to the fact that o > 0, since X is
positive definite. O

2. PROOF OF THEOREM 1

Proof. We use similar technique as in Cai & Liu (2012). First, we bound |(zz —
1) "B/ (BSB)Y2 — Ag'/? /2| and |(uo — 11)"B/(BEB)Y2 — Ag/? /2. Then, we utilize a result
of the tail probability of normal distribution to complete the proof.

Letting Q = X!, we have

~ A ~ ~ A ~ ~
(o = W)B+ 57 = (= W)B+ (u — W)+ 57 = (u— )5+ %wm - B).

Therefore,
T Ad TS 1 " —~
(= )78 + 52| < 10— YAl + 516725 = Bl (s2)

By the normality assumption and the standard concentration result (Biihimann & Van De Geer,
2011), it holds, with probability at least 1 — C d—C2 that,

17 — plloe < {(log d)/n}/2. (S3)

It then follows from Lemma 1 that ||fi — p1]|ce2 S {M (log d)/n}'/2.

Next, we show that, with a high probability, HB\ — B*|l1,c = o(1). By Lemma 1 and (S3), we
have

(= )8l S 18 h.a{M (log d) /n}"/2. (S4)

To prove |3 — B*|li,c = op(1), we use the results from Negahban et al. (2012). First, us-
ing a similar argument as in (S3), we have with probability at least 1 — C;d~“2 that
16 = 8]0z < {M(logd)/n}'/2. Together with Lemma 2, it implies that, [|£8* — 8]/cc2 <
{MA4(log d)/n}/2. Then, by choosing \,, = Co{ M Ay(log d)/n}'/? for some large constant
Cy, Corollary 1 of Negahban et al. (2012) implies that, with probability at least 1 — C;d =2,
||B — B e S8 h.eiMAq(logd)/n}'/? = o(1), where the last equality is ensured by Con-
dition 3. R
On the other hand, by Lemma 3, [|§ — ¥8||00.2 < Ay M /2 < v, Tt further implies

16 = SBlloc2 < v (S5)
Then,
16726 — B)| < 8708 — £B)| + [07QSF — 675
138 = 6lloo.2 + 12920 — 0l|sc 2/ Bll1.c

<|B*h,c (S6)
S B 1,6l128 = oo,z + [[X26 — 6|02l B |1,
S vnllB%a,

where the last inequality follows from (S5) and Lemma 2. Then by (S2), (S4) and (S6), we have

A .
(1 =08+ 5| S vl e (87)
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Next we bound BTEE — 5708 by
BTSB — 67Q0| < |BTSB — 56| + |B78 — 674 (S8)
For the first term, we have 50
8728 — B70] < 1B1,¢l128 = 8llosz S 181,611 (E = £)Blloo2 + 158 — 8lloo,2}
S8 IeUIE = Blso2llBlle + va) S8 1.6 (MI1E = Slmaxl 8116 + vn)
SenllB i c+ vnllB e,

where the third inequality follows from Lemma 1 and (S5), the fourth inequality follows from
Lemma 1 and ¢,, = M{(log d)/n}'/2. Together with (S6) and (S8), it implies that 55

BTEB — 67Q3| S @ull 8115 ¢ + vall B 1.6

Then we have
IBTSB — 6786
(BTEB)2(8TS8) VA (BTE6)Y2 + (5726)Y2)  (89)
<Al BB 6 + vall B

Denote r1,, = (i — p1)"3/(BTSB)"/2. We have

110 = Ad"?/2| < |r1n — (8a/2)(BTSB) 72| + |(Aa/2)(BTSB) T2 — A4 2 /2] (S10)
For the first term on the right-hand side of (S10), it follows from (S7) that
Ir1n = (8g/2)(B"SB) 2 < [{( — 1) "B — Ag/2}(B™SB) 2| S vl B
Since 6TQ > ¢y,

(BTEB)~/2 — (6720)7 2| <

1,G)-

1G(BTZB) 2,

)
dTQ6

— 1| < BB = 68| = o(1).

Then |ry, — (Ad/2)(B\TZB\)*1/2\ S ynAgl/zHﬁ*HLg. For the second term on the right-hand e
side of (S10), it follows from (S9) that

(Aq/2)(BEB) V2 — A2 /2 = (Ag/2)|(BTSH) V2 — A,
S A (el B3 6 + vallB”

1,G)-

Therefore,
11— A2 /20 S v AT 218 e + Ay (0l B3 6 + vall B llc) .
—1/2 * *
S A0l B2 .6 + vall Bl .0)-

Then we have

' La) = o(1).

AG22

Letting 7, = v || 8*|[1.¢ + ¢nll 8|7 o> We have

1‘ S A7 enll BN 6 + vall B*

A2 )2

Tin

-1

< Aglﬂ'n.
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Using the fact that ®(—2) < 2~ exp(—x2/2), we have

O(—rin) VA2 i Ad) -1 in , Ad
VA2 i exp 5 + 3 ={14+O(A; )} exp 5 + 3
(S11)
When A, is bounded, (S11) and Condition 2 imply that
(I)(—Tln)
_— 1= )
a(~va,m O S

When A, — oo, by the mean value theorem, exp(—r3,/2+ Ay/8) =1+ O(-r3,/2+
Ag/8) =1+ O{Ag(1 — 473, A1)} = 14 O(Ay). Therefore, in both cases (S12) holds. Sim-
ilarly, we can show that

@(—Tzn)
———— —1=0(m,),
B~/ O
where r9, = (uo — ﬂ)Tﬁ/(gTEE)l/Q. These two results imply that R,,/R}; — 1 = O(m,). This
completes the proof. O

3. PROOF OF OF THEOREM 2

Proof. Recall that we allow p and d to grow with n. We first prove that lim sup,,_, ., R3/R} <
1. This together with Ry, /R — 1 and Ra,/R5 — 1 in probability imply that

Ry, Ron R; RI
lim sup — = lim sup X X

<1.
n—00 1in n—r00 R2 R* Rln

We use a standard result regarding the normal distribution, see e.g., equation (22) of Shao et al.
(2011),

€z —1‘2/2 < < l —:132/2
112 x2e < P(—x) < . .
Then we have
R3 O(—/Ay/2) 44+ A, { 1 }
2 = < —(Ag— A . S13
Ry~ B~y 2) = YA/, TP 1B &) 1

When A, — oo, by Condition 4,

44+ A, 44+ A, 1 1
< — — < - .
JAaIA, S A, — 1, exp{ 4(Ad Ap)} < exp( 461) <1

Therefore, limsup,,_,, R5/R] < 1. When A, < C for some C' > 0 but Ay — o0, it is clear
from (S13) that limsup,,_, ., R5/R} < 1. When Ad < C, by the mean value theorem,

O(—v/Aa/2) = D(=VAp/2) = \/ P(—=vE€/2)(Aa — Ayp)

where A, <& < Ay, and ¢(x) is the standard normal density function. Therefore,

Ry _ S(-VOBa=By) _ | ad(-yC/2)

Ry~ AWOR(=Ap/2) T 4 /CB(—cy?)2) h
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based on the fact that A, < Ay < C and Condition 4. This completes the proof. ]

4. PROOF OF THEOREM 3

Proof. By the convex optimization theory, any vector # € R satisfying the following Karush—
Kuhn-Tucker conditions (Boyd & Vandenberghe, 2004) are the solution to problem (3)

S Bim

(£8)jm — Oj + (1 = @) Ansgn(B;,,) + adn o b neA (S14)
3

1(£8);,, — 0;.,| < (1 =) An, jm € B, (S15)

(28, = 0] < AM™Y2 G € C, (S16)

Amin(S44) > 0. (817)

We prove the theorem through the following three steps. First, we show that there exists a solution
B 4 € R® to equation (S14) within the neighborhood N = {5 : |3 — % |loc < CAy}. Second,
we show that B = (E 4,0)" satisfies (S15) and (S16). Third, we check (S17). The inequality
in (S16) further implies the Karush—Kuhn—Tucker condition ||(3) S; — 35]. ll2 < A, which is
needed for the ¢2-component of the composite penalty we use.

First, we have

(28)a — 04 = Baa(Ba — B2) + ZaaBiy — da.
By (S19), we have with probability at least 1 — C;d~¢? that
IS4483 = balloo < IZ448% — Salloo + 104 = dalloo < C{Ag(logd)/n}'/%. (SI18)
Define vectors 7€ R? and 7€ R? such that 7;, =sgn(B;,,) and n;, = B&n/HBSj |2
Eor Jjm €A and 15, =n;, =0 for j, € flc. Let f(B4) = EAA(/Bf — 62) +EAA@‘4 —
oA+ (1—a)Ta+arma and g(B4) = E34F(Ba) = Ba— B4 — S {SauBy — 04+

(1 — a)ApTa + aApna}. By Lemma 4, ”22\}4”00 is bounded with probability at least 1 —
C1d—2. Hence, by (S18) and the choice of \,, we have

IZ25{E 448y = da+ (1= )7+ adnnat oo
< E 2o {14484 = dallos + (1 = @)hn + @n}
< 2¢o |C{Ag(logd)/n}? + N,
< Ape
Then, for a sufficiently large n, if (54 — 8% );,, = CAn, for some large constant C' > 0,
{908} n > Chn = [EL0{EABL = Sa+ (1= a)dnma + adnnallj, > 0.
If (Ba = BL)jm = —CAn,

{9(B)}j < —CNy + 24 {5 4485 — 04 + (1 — @)AaTa + adna}]j, <0

By the continuity of ¢g(84) and the Miranda’s existence theorem (Vrahatis, 1989), g(54) =0
has a solution 3 4 in \V. Obviously, f(5.4) = 0. Hence, 34 also solves (S14).
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6 Q.LiaAND L. L1
Second, we have
(28)5 — 0 = Spa(Ba — B2) + (58" = 0)s
= SpAS W {8 aaBi = 0a+ (1 — a)Auma + adgnal + (E8* — 0)p.
Similarly as in (S18), ||[S8* — 8]|sc < C{Aq(log d)/n}'/? with probability at least 1 — C;d~—C2.
By Lemma4, [|E545 4 ]lc < (1 — a@)(1 —€/2) < 1 — o with probability at least 1 — Cd 2.
Hence, with probability at least 1 — C;d =2,
I(E8)5 = 8lloo < (1= a)(1 = €/2)(IZa48% — dalloo + An) + [(ZB* = 8)5lloc
< (1= a)(1 = ¢/2) [C{Aallogd)/n}/? + Ay | + C{A(log )/}
< (1= a)(1 = ¢/2)An + (2 ¢/2)C{Ag(logd) /n}'
< (1 — )M,

since {Ag(logd)/n}'/? = o(\,) by the stated choice of \,. By an analogous proof, we can
show that /3 satisfies (S16).
Finally, (S17) follows from Lemma 4. This completes the proof. O

5. ADDITIONAL LEMMAS AND PROOFS

LEMMA 1. For a matrix A € R¥> vectors a € R and x € RY, the following statements
G5 N Alloo2 € M|[Allmaxs [|2]loc2 < VM ||zl and [[Az|joc,2 <

[A]loo 21 l1.6-

Proof. For the first statement, we have

P M M
laz| = Z {(1 — ) Z a;, Lj, + o Z ajmxjm}

p

< (maxlas, ) S0l + (s ) Y eles I

= =1

p
< (fgag las, ||2> Z;{ (1 —a)|lzs,lli + allzs,|l2}
iz

The second and third statements follow from some simple algebra.
For the last statement, let a;,, denote the j,,th row of A. By (1), we have
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Then,

M
2 _ 2 2
40l = o I(ijm_lrgag Zuajmu _(1@&3{ OIS )rxul,a

= HAng

LEMMA 2. Under Condition 1, there exist positive constants C, C1 and Co such that it holds
with probability at least 1 — C1d~2 that

1296 — 6oz < C{MAg(log d)/n}*/?.

Proof. We use a similar argument as in Cai & Liu (2012). Denote the vectors Uy = (X | Y =
0) — pp,and Uy = (X | Y = 1) — 1. We have

\o)
I

Eyw%+zmﬂg_%mm_%mw
Y;=0 Y;=1

=5 - Ng,0r - Lo,07.
n n
It suffices to prove the result with ) replaced by ¥. To simplify the presentation, denote Z; =

Uio (1 <1< ’I’Lo) and Z; = U;; (TLO +1<:< TL) Then,

S5 — (o — ) = (5 — £)06 = = 3. 22705 — B(Z:.2195).
n
=1

Denote &;; = Z;; 2720 — E(Z;; ZTQ6). With e; being a vector with 1 for the jth coordinate and
0 elsewhere, we have

var(;;) = var(e; ZZ Q) = var(Z"Qde; Z) = %tr{(QéejT- + €07 Q)N(Qe] + €07 Q)X}
=067 +0;67Q8 < 67

Since {&;;}7_, are independent sub-exponential random variables with mean 0, we have

Aglogd\'/? _c
- < 2.
{Efzdnsz— (Fe) e

Then, by Lemma 1 and the union bound, we have

- MA,logd\ /2
pr {uma (o= )l > € (HELOED) }
- Aylogd\ /? (S19)
<Pr{||295—(uo—m)||oo20<dng> }

< Cyd= ¢

LEMMA 3. Let B\ be the solution of problem (3). Then it holds that
158 = 0)loon < An M2,
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Proof Let F(B) = BTSB/2 — 678 + Ay >4 _1118s; |- Define

1 - R p p
H(B,7,m) = 58758 = 38+ (1 — a)ha Y78, Bs, + ahu Y0 Bs;.
j=1 j=1

Then, we have

F(B) = e H(B,v,m).

[7llo0,2<1

~

By the strong duality, 3 also solves

min F(f) =min max H(B,v,n) = max minH(S,v,n).
P ) B o<1 ( ) o<l B ( )
[7llo0,2<1 [loo,2<1
s By the Karush-Kuhn-Tucker condition, we have $3 — 8 + (1 — a) Ay + alyn = 0. Since
17]loo < 1 and ||9]|oo,2 < 1, we have

1£8 = 8llooz < (1 = @) V]loo2 + @An0llooz < (1 = @)Aay/M + ady < Ayy/M.

LEMMA 4. Under Conditions 1 and 5-8, if s*{(log d) /n}'/? = o(1), there exist positive con-
stants C, Cy and Cs such that, with probability at least 1 — C1d=“2, we have ||E;\}4Hoo <
w0 2¢0; 245 ulloo < (1 —a)(1 —€/2); [ ZeaZYlloe < (1 —€/2)MY2; and Ayin(E.44) >
—1
co /2.

Proof. For the first statement, by the standard concentration inequality result, e.g., Equation
(10) of Bickel & Levina (2008), there exist positive constants C, C'; and C such that, for any
1<4,j<d,

pr [Iaj — 0i5] > C{(log d)/n}l/z} < Cyd(C2+2),

75 By the union bound, we have

pr [[Saa = Saallss > Cs{(logd)/n}'/?| = pr [max " (6 — oyl > Cs{(logd)/n}'/?
JjeA

< spr Z Gi; — 0ij| > Cs{(logd)/n}'/?| < s*pr UEU — o045 > C{(logd)/n}l/ﬂ
JEA
S C182d_(02+2) S Cld_CQ.
(S20)
Then, with probability at least 1 — C1d=©2, we have

1Z 2 4lloe < N5 3%l + 1E 4 lloo 1E a4 — ZaallooIZ 2 U Ml
< co + co)|Z 34l Cs{(log d) /n} /2.
Therefore, when n is sufficiently large,

Sy it <
IZa4lloe < 7 — Ceos{(logd)/n}1/2 —

200.
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For the second statement, we have
T T 2 | -1 S -1 -1
ZBAEAA:ZBA(EAA_EAA)+(ZBA_EBA)EAA+EBA2AA-

Then,

154550 = Ealloe < (IZBalloo + 1E84 = palloo) IZ 1 loo1Za4 = ZaallooE 7 4 loo-

(S21)
By definition, [|Xpalloc = maxiep ) c 4 |0i;] < s. Similarly as (S20), we have

pr |[E54 — Spallec > Cs{(logd)/n}'/?| < Cra=.
By (S21) and Condition 6, with probability at least 1 — C;d~2, we have
184330 — S e < 5*{(log d)/n} /2.

By a similar argument, H(fJBA - EB.A)Z_Z}‘\”oo < s2{(logd)/n}'/2. When the sample size n

is large enough, both upper bounds become arbitrarily small. Hence, Hilg A(i;&\ — 2;64) +
(SpA — ZBA)Z;hﬂg < (1 — a)e/2. Then the result follows from Condition 7.

For the third statement, it can be proved using similar arguments.

For the last statement, Condition 5 implies that Apin(X.4.4) > ¢ ! Then by a similar proof,
we can show that /\min(i AA) > ¢ 1 /2 with probability at least 1 — C d—¢2. O

6. ADDITIONAL SIMULATIONS

We consider two additional simulation examples to inspect the robustness of our method
and its adaptivity to block missing values. The settings are similar as in Example A, except
that we change the distribution of X or introduce missing values. In Example D, the data fol-
low a heavy-tailed distribution. Thatis, X | Y =0~ ¢3(0,%),and X | Y =1 ~ puy + t3(0, %),
where t3(0, ) is the multivariate ¢-distribution with 3 degrees of freedom and the scale pa-
rameter .. For this example, we add the robust integrative linear discriminant analysis into the
comparison. In Example E, the data follow a normal distribution. However, one data type has
probability 0-25 to be entirely missing. The missing of different types are assumed independent.
For this example, we compare two ways to utilize the data as discussed in Section 6 of the main
document, i.e., the effective way and the complete case analysis. Table S1 reports the average
criteria, and standard errors in parentheses, all in percentages, over 100 data replications. In Ex-
ample D, the robust integrative linear discriminant analysis further improves the performance of
the non-robust counterpart. In Example E, the effective integrative linear discriminative analysis
handles the missing data better than only using the complete data.

In addition, we conduct a simulation study with an increasing M. The setting is the same
as in Example A, with n = 50, p = 100, except that we choose B;fm =05 (=1,....,5;m=
1,..., M) and the rest equal to zero. We use M = 2,4, and 6. Table S2 reports the average
classification error of our method and the corresponding Bayes error over 100 replications. It is
observed that, as M increases, both errors decrease, meanwhile the difference between the two
errors increases. This observation agrees with Theorem 1, since as M increases, the convergence
rate of the integrative classifier relative to the Bayes error can become slower. This is essentially
due to the fact that more unknown parameters need to be estimated, which in turn induces a
larger estimation error. However, if the additional discriminative information brought by the extra
variables exceeds the estimation error they bring, the error rate R,, is guaranteed to decrease, as
we show in Theorem 2.
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Table S1: Classification and variable selection accuracy (%)

Example D
n=50,p=100,7r=1 n =50,p =100, 7 = 0-5
iLDA-r iLDA  m-vote sLDA iLDA-r iLDA  m-vote sLDA
error rate 8(4) 12(9) 15(5) 24(7) 12(8) 14(14)  26(10) 32(10)
sensitivity 92(11) 68(25) 54(23) 54(14) 79(22) 59(33) 18(23) 42(20)
specificity 74(22) 78(23) 99(1) 95(2) 66(33) 64(35) 99(1) 96(3)
n =100,p =200, 7 =1 n = 100, p = 200, 7 = 0-5
iLDA-r iLDA  m-vote sLDA iLDA-r iLDA  m-vote sLDA
error rate 14(5) 15(7) 18(4) 27(5) 19(8) 20(12) 31(9) 36(8)
sensitivity 97(6) 80(15)  72(21) 65(15) 88(15) 68(30) 24(25) 53(24)
specificity 92(11) 94(15)  100(0) 99(1) 90(16) 90(20)  100(0) 99(1)
Example E
n=>50,p=100,7 =1 n =50,p=100,7 =05
iLDA-e iLDA-c m-vote sLDA iLDA-e iLDA-c m-vote sLDA
error rate 22(9) 25(7) 30(6) 32(6) 36(10) 38(7) 43(7) 42(7)
sensitivity 66(20) 55(25) 62(21) 57(11) 56(35) 5127)  21(23)  45Q21)
specificity 91(27) 72(36)  100(0) 98(2) 81(37) 69(33)  100(0) 98(1)
n =100,p =200, 7 =1 n = 100, p = 200, 7 = 0-5
iLDA-e iLDA-c m-vote sLDA iLDA-e iLDA-c m-vote sLDA
error rate 21(8) 24(6) 30(5) 33(6) 37(10) 39(9) 43(8) 43(7)
sensitivity 6121 47(25) 57(25) 55(14) 53(31) 52(26) 21(22) 44(19)
specificity 98(14) 92(13)  100(0) 98(1) 85(35) 79(16)  100(0) 98(1)

iLDA, the integrative linear discriminant analysis classifier with the composite penalty; iLDA-r, the robust integrative
linear discriminant analysis classifier; iLDA-e, the integrative linear discriminant analysis classifier that effectively
using all the observations; iLDA-c, the integrative linear discriminant analysis classifier using the complete data only;
sLDA, the linear discriminant analysis classifier applied to each individual type separately; m-vote, a majority vote
based on the class assigned by sLDA.
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