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SUMMARY

This supplementary file includes proofs of the proposition and theorems in the main document,
the supporting technical lemmas and their proofs, and additional simulation results.

1. PROOF OF PROPOSITION 1
Proof. We partition δ = (δT1:d−1 δd)

T, where δ1:d−1 and δd are the first d− 1 and the dth 15

coordinates of δ. The covariance matrix Σ is partitioned accordingly. Letting α = (σdd −
σT
1:d−1,dΣ

−1
1:d−1,1:d−1σ1:d−1,d)

−1, we have

δTΣ−1δ

=
(
δT1:d−1 δd

)(Σ1:d−1,1:d−1 σ1:d−1,d
σT
1:d−1,d σdd

)−1(
δ1:d−1
δd

)
=
(
δT1:d−1 δd

){(Σ1:d−1,1:d−1 − σ−1dd σ1:d−1,dσ
T
1:d−1,d)

−1 −αΣ−11:d−1,1:d−1σ1:d−1,d
−ασT

1:d−1,dΣ
−1
1:d−1,1:d−1 α

}(
δ1:d−1
δd

)
.

(S1)

By the Sherman–Morrison–Woodbury formula,

(Σ1:d−1,1:d−1 − σ−1dd σ1:d−1,dσ
T
1:d−1,d)

−1 = Σ−11:d−1,1:d−1 + αΣ−11:d−1,1:d−1σ1:d−1,dσ
T
1:d−1,dΣ

−1
1:d−1,1:d−1.

Then we have

(S1) = δT1:d−1Σ
−1
1:d−1,1:d−1δ1:d−1 + αδT1:d−1Σ

−1
1:d−1,1:d−1σ1:d−1,dσ

T
1:d−1,dΣ

−1
1:d−1,1:d−1δ1:d−1 20

− 2αδT1:d−1Σ
−1
1:d−1,1:d−1σ1:d−1,dδd + αδ2d

= δT1:d−1Σ
−1
1:d−1,1:d−1δ1:d−1 + α(δd − σT

1:d−1,dΣ
−1
1:d−1,1:d−1δ1:d−1)

2

≥ δT1:d−1Σ−11:d−1,1:d−1δ1:d−1,
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where the equality holds if and only if σT
1:d−1,dΣ

−1
1:d−1,1:d−1δ1:d−1 = δd, which happens only in

a set with Lebesgue measure zero. The last inequality is due to the fact that α > 0, since Σ is25

positive definite. �

2. PROOF OF THEOREM 1
Proof. We use similar technique as in Cai & Liu (2012). First, we bound |(µ̂−

µ1)
Tβ̂/(β̂Σβ̂)1/2 −∆d

1/2/2| and |(µ0 − µ̂)Tβ̂/(β̂Σβ̂)1/2 −∆d
1/2/2|. Then, we utilize a result

of the tail probability of normal distribution to complete the proof.30

Letting Ω = Σ−1, we have

(µ1 − µ̂)Tβ̂ +
∆d

2
= (µ− µ̂)Tβ̂ + (µ1 − µ)Tβ̂ +

∆d

2
= (µ− µ̂)Tβ̂ +

1

2
δT(Ωδ − β̂).

Therefore, ∣∣∣∣(µ1 − µ̂)Tβ̂ +
∆d

2

∣∣∣∣ ≤ |(µ− µ̂)Tβ̂|+ 1

2
|δT(Ωδ − β̂)|. (S2)

By the normality assumption and the standard concentration result (Bühlmann & Van De Geer,
2011), it holds, with probability at least 1− C1d

−C2 that,35

‖µ̂− µ‖∞ . {(log d)/n}1/2. (S3)

It then follows from Lemma 1 that ‖µ̂− µ‖∞,2 . {M(log d)/n}1/2.
Next, we show that, with a high probability, ‖β̂ − β∗‖1,G = o(1). By Lemma 1 and (S3), we

have

|(µ− µ̂)Tβ̂| . ‖β∗‖1,G{M(log d)/n}1/2. (S4)

To prove ‖β̂ − β∗‖1,G = oP (1), we use the results from Negahban et al. (2012). First, us-
ing a similar argument as in (S3), we have with probability at least 1− C1d

−C2 that40

‖δ̂ − δ‖∞,2 . {M(log d)/n}1/2. Together with Lemma 2, it implies that, ‖Σ̂β∗ − δ̂‖∞,2 .
{M∆d(log d)/n}1/2. Then, by choosing λn = C0{M∆d(log d)/n}1/2 for some large constant
C0, Corollary 1 of Negahban et al. (2012) implies that, with probability at least 1− C1d

−C2 ,
‖β̂ − β∗‖1,G . ‖β∗‖1,G{M∆d(log d)/n}1/2 = o(1), where the last equality is ensured by Con-
dition 3.45

On the other hand, by Lemma 3, ‖δ̂ − Σ̂β̂‖∞,2 ≤ λnM1/2 � νn. It further implies

‖δ − Σ̂β̂‖∞,2 . νn. (S5)

Then,

|δT(Ωδ − β̂)| ≤ |δTΩ(δ − Σ̂β̂)|+ |δTΩΣ̂β̂ − δTβ̂|

≤ ‖β∗‖1,G‖Σ̂β̂ − δ‖∞,2 + ‖Σ̂Ωδ − δ‖∞,2‖β̂‖1,G
. ‖β∗‖1,G‖Σ̂β̂ − δ‖∞,2 + ‖Σ̂Ωδ − δ‖∞,2‖β∗‖1,G
. νn‖β∗‖1,G,

(S6)

where the last inequality follows from (S5) and Lemma 2. Then by (S2), (S4) and (S6), we have∣∣∣∣(µ1 − µ̂)Tβ̂ +
∆d

2

∣∣∣∣ . νn‖β∗‖1,G. (S7)
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Next we bound β̂TΣβ̂ − δ̂TΩδ by

|β̂TΣβ̂ − δTΩδ| ≤ |β̂TΣβ̂ − β̂Tδ|+ |β̂Tδ − δTΩδ|. (S8)

For the first term, we have 50

|β̂TΣβ̂ − β̂Tδ| ≤ ‖β̂‖1,G‖Σβ̂ − δ‖∞,2 . ‖β∗‖1,G{‖(Σ̂− Σ)β̂‖∞,2 + ‖Σ̂β̂ − δ‖∞,2}

. ‖β∗‖1,G(‖Σ̂− Σ‖∞,2‖β̂‖1,G + νn).‖β∗‖1,G(M‖Σ̂− Σ‖max‖β∗‖1,G + νn)

. ϕn‖β∗‖21,G + νn‖β∗‖1,G,

where the third inequality follows from Lemma 1 and (S5), the fourth inequality follows from
Lemma 1 and ϕn = M{(log d)/n}1/2. Together with (S6) and (S8), it implies that 55

|β̂TΣβ̂ − δTΩδ| . ϕn‖β∗‖21,G + νn‖β∗‖1,G.

Then we have∣∣∣(β̂TΣβ̂)−1/2 − (δTΣδ)−1/2
∣∣∣ ≤ |β̂TΣβ̂ − δTΣδ|

(β̂TΣβ̂)1/2(δTΣδ)1/2{(β̂TΣβ̂)1/2 + (δTΣδ)1/2}
. ∆

−3/2
d (ϕn‖β∗‖21,G + νn‖β∗‖1,G).

(S9)

Denote r1n = (µ̂− µ1)Tβ̂/(β̂TΣβ̂)1/2. We have

|r1n −∆d
1/2/2| ≤ |r1n − (∆d/2)(β̂TΣβ̂)−1/2|+ |(∆d/2)(β̂TΣβ̂)−1/2 −∆d

1/2/2|. (S10)

For the first term on the right-hand side of (S10), it follows from (S7) that

|r1n − (∆d/2)(β̂TΣβ̂)−1/2| ≤ |{(µ̂− µ1)Tβ̂ −∆d/2}(β̂TΣβ̂)−1/2| . νn‖β∗‖1,G(β̂TΣβ̂)−1/2.

Since δTΩδ ≥ c0, ∣∣∣∣∣ β̂TΣβ̂

δTΩδ
− 1

∣∣∣∣∣ . |β̂TΣβ̂ − δTΩδ| = o(1).

Then |r1n − (∆d/2)(β̂TΣβ̂)−1/2| . νn∆
−1/2
d ‖β∗‖1,G. For the second term on the right-hand 60

side of (S10), it follows from (S9) that

|(∆d/2)(β̂Σβ̂)−1/2 −∆d
1/2/2| = (∆d/2)|(β̂TΣβ̂)−1/2 −∆

−1/2
d |

. ∆
−1/2
d (ϕn‖β∗‖21,G + νn‖β∗‖1,G).

Therefore,

|r1n −∆d
1/2/2| . νn∆

−1/2
d ‖β∗‖1,G + ∆

−1/2
d (ϕn‖β∗‖21,G + νn‖β∗‖1,G) 65

. ∆
−1/2
d (ϕn‖β∗‖21,G + νn‖β∗‖1,G).

Then we have ∣∣∣∣ r1n

∆d
1/2/2

− 1

∣∣∣∣ . ∆−1d (ϕn‖β∗‖21,G + νn‖β∗‖1,G) = o(1).

Letting πn = νn‖β∗‖1,G + ϕn‖β∗‖21,G, we have∣∣∣∣∣∆d
1/2/2

r1n
− 1

∣∣∣∣∣ . ∆−1d πn.
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Using the fact that Φ(−x) � x−1 exp(−x2/2), we have

Φ(−r1n)

Φ(−
√

∆d/2)
�
√

∆d/2

r1n
exp

(
−r

2
1n

2
+

∆d

8

)
= {1 +O(∆−1d πn)} exp

(
−r

2
1n

2
+

∆d

8

)
.

(S11)
When ∆d is bounded, (S11) and Condition 2 imply that70

Φ(−r1n)

Φ(−
√

∆d/2)
− 1 = O(πn). (S12)

When ∆d →∞, by the mean value theorem, exp(−r21n/2 + ∆d/8) = 1 +O(−r21n/2 +
∆d/8) = 1 +O{∆d(1− 4r21n∆−1d )} = 1 +O(∆d). Therefore, in both cases (S12) holds. Sim-
ilarly, we can show that

Φ(−r2n)

Φ(−
√

∆d/2)
− 1 = O(πn),

where r2n = (µ0 − µ̂)Tβ̂/(β̂TΣβ̂)1/2. These two results imply that Rn/R∗d − 1 = O(πn). This
completes the proof. �75

3. PROOF OF OF THEOREM 2
Proof. Recall that we allow p and d to grow with n. We first prove that lim supp→∞R

∗
2/R

∗
1 <

1. This together with R1n/R
∗
1 → 1 and R2n/R

∗
2 → 1 in probability imply that

lim sup
n→∞

R2n

R1n
= lim sup

n→∞

R2n

R∗2
× R∗2
R∗1
× R∗1
R1n

< 1.

We use a standard result regarding the normal distribution, see e.g., equation (22) of Shao et al.
(2011),80

x

1 + x2
e−x

2/2 ≤ Φ(−x) ≤ 1

x
e−x

2/2.

Then we have
R∗2
R∗1

=
Φ(−
√

∆d/2)

Φ(−
√

∆p/2)
≤ 4 + ∆p√

∆d
√

∆p
exp

{
−1

4
(∆d −∆p)

}
. (S13)

When ∆p →∞, by Condition 4,

4 + ∆p√
∆d
√

∆p
≤ 4 + ∆p

∆p
→ 1, exp

{
−1

4
(∆d −∆p)

}
≤ exp

(
−1

4
c1

)
< 1.

Therefore, lim supp→∞R
∗
2/R

∗
1 < 1. When ∆p ≤ C for some C > 0 but ∆d →∞, it is clear

from (S13) that lim supp→∞R
∗
2/R

∗
1 < 1. When ∆d ≤ C, by the mean value theorem,

Φ(−
√

∆d/2) = Φ(−
√

∆p/2)− 1

4
√
ξ
φ(−
√
ξ/2)(∆d −∆p)85

≤ Φ(−
√

∆p/2)− 1

4
√
C
φ(−
√
C/2)(∆d −∆p),

where ∆p ≤ ξ ≤ ∆d, and φ(x) is the standard normal density function. Therefore,

R∗2
R∗1
≤ 1− φ(−

√
C/2)(∆d −∆p)

4
√
CΦ(−

√
∆p/2)

≤ 1− c1φ(−
√
C/2)

4
√
CΦ(−c−1/20 /2)

< 1,



Integrative Linear Discriminant Analysis 5

based on the fact that ∆p ≤ ∆d ≤ C and Condition 4. This completes the proof. �

4. PROOF OF THEOREM 3 90

Proof. By the convex optimization theory, any vector β ∈ Rd satisfying the following Karush–
Kuhn–Tucker conditions (Boyd & Vandenberghe, 2004) are the solution to problem (3)

(Σ̂β)jm − δ̂jm + (1− α)λnsgn(βjm) + αλn
βjm
‖βSj‖2

= 0, jm ∈ A, (S14)

|(Σ̂β)jm − δ̂jm | < (1− α)λn, jm ∈ B, (S15)

|(Σ̂β)jm − δ̂jm | < λnM
−1/2, jm ∈ C, (S16) 95

λmin(Σ̂AA) > 0. (S17)

We prove the theorem through the following three steps. First, we show that there exists a solution
β̂A ∈ Rs to equation (S14) within the neighborhood N = {β : ‖β − β∗A‖∞ ≤ Cλn}. Second,
we show that β̂ = (β̂A, 0)T satisfies (S15) and (S16). Third, we check (S17). The inequality
in (S16) further implies the Karush–Kuhn–Tucker condition ‖(Σ̂β)Sj − δ̂Sj‖2 < λn, which is 100

needed for the `2-component of the composite penalty we use.
First, we have

(Σ̂β)A − δ̂A = Σ̂AA(βA − β∗A) + Σ̂AAβ
∗
A − δ̂A.

By (S19), we have with probability at least 1− C1d
−C2 that

‖Σ̂AAβ∗A − δ̂A‖∞ ≤ ‖Σ̂AAβ∗A − δA‖∞ + ‖δA − δ̂A‖∞ ≤ C{∆d(log d)/n}1/2. (S18)

Define vectors τ ∈ Rd and η ∈ Rd such that τjm = sgn(βjm) and ηjm = βjm/‖βSj‖2
for jm ∈ A and τjm = ηjm = 0 for jm ∈ Ac. Let f(βA) = Σ̂AA(βA − β∗A) + Σ̂AAβ

∗
A − 105

δ̂A + (1− α)λnτA + αλnηA and g(βA) = Σ̂−1AAf(βA) = βA − β∗A − Σ̂−1AA{Σ̂AAβ∗A − δ̂A +

(1− α)λnτA + αλnηA}. By Lemma 4, ‖Σ̂−1AA‖∞ is bounded with probability at least 1−
C1d

−C2 . Hence, by (S18) and the choice of λn, we have

‖Σ̂−1AA{Σ̂AAβ
∗
A − δ̂A + (1− α)λnτA + αλnηA}‖∞

≤ ‖Σ̂−1AA‖∞{‖Σ̂AAβ
∗
A − δ̂A‖∞ + (1− α)λn + αλn} 110

≤ 2c0

[
C{∆d(log d)/n}1/2 + λn

]
. λn.

Then, for a sufficiently large n, if (βA − β∗A)jm = Cλn, for some large constant C > 0,

{g(βA)}jm ≥ Cλn − [Σ̂−1AA{Σ̂AAβ
∗
A − δ̂A + (1− α)λnτA + αλnηA}]jm ≥ 0.

If (βA − β∗A)jm = −Cλn,

{g(βA)}jm ≤ −Cλn + [Σ̂−1AA{Σ̂AAβ
∗
A − δ̂A + (1− α)λnτA + αλnηA}]jm ≤ 0.

By the continuity of g(βA) and the Miranda’s existence theorem (Vrahatis, 1989), g(βA) = 0 115

has a solution β̂A in N . Obviously, f(β̂A) = 0. Hence, β̂A also solves (S14).
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Second, we have

(Σ̂β)B − δ̂B = Σ̂BA(βA − β∗A) + (Σ̂β∗ − δ̂)B
= Σ̂BAΣ̂−1AA{Σ̂AAβ

∗
A − δ̂A + (1− α)λnτA + αλnηA}+ (Σ̂β∗ − δ̂)B.

Similarly as in (S18), ‖Σ̂β∗ − δ̂‖∞ ≤ C{∆d(log d)/n}1/2 with probability at least 1− C1d
−C2 .120

By Lemma 4, ‖Σ̂BAΣ̂−1AA‖∞ ≤ (1− α)(1− ε/2) < 1− αwith probability at least 1− C1d
−C2 .

Hence, with probability at least 1− C1d
−C2 ,

‖(Σ̂β)B − δ̂B‖∞ ≤ (1− α)(1− ε/2)(‖Σ̂AAβ∗A − δ̂A‖∞ + λn) + ‖(Σ̂β∗ − δ̂)B‖∞

≤ (1− α)(1− ε/2)
[
C{∆d(log d)/n}1/2 + λn

]
+ C{∆d(log d)/n}1/2

≤ (1− α)(1− ε/2)λn + (2− ε/2)C{∆d(log d)/n}1/2125

< (1− α)λn,

since {∆d(log d)/n}1/2 = o(λn) by the stated choice of λn. By an analogous proof, we can
show that β̂ satisfies (S16).

Finally, (S17) follows from Lemma 4. This completes the proof. �

5. ADDITIONAL LEMMAS AND PROOFS130

LEMMA 1. For a matrix A ∈ Rd×d, vectors a ∈ Rd and x ∈ Rd, the following statements
hold: |aTx| ≤ ‖a‖∞,2‖x‖1,G; ‖A‖∞,2 ≤M‖A‖max; ‖x‖∞,2 ≤

√
M‖x‖∞; and ‖Ax‖∞,2 ≤

‖A‖∞,2‖x‖1,G.

Proof. For the first statement, we have

|aTx| =

∣∣∣∣∣∣
p∑
j=1

{
(1− α)

M∑
m=1

ajmxjm + α
M∑
m=1

ajmxjm

}∣∣∣∣∣∣135

≤
p∑
j=1

{
(1− α)

M∑
m=1

|ajmxjm |+ α
M∑
m=1

|ajmxjm |

}

≤
p∑
j=1

{
(1− α)

(
max

1≤m≤M
|ajm |

)
‖xSj‖1 + α‖aSj‖2‖xSj‖2

}

≤
(

max
j,m
|ajm |

) p∑
j=1

(1− α)‖xSj‖1 +

(
max
1≤j≤p

‖aSj‖2
) p∑
j=1

α‖xSj‖2

≤
(

max
1≤j≤p

‖aSj‖2
) p∑
j=1

{
(1− α)‖xSj‖1 + α‖xSj‖2

}
= ‖a‖∞,2‖x‖1,G.140

The second and third statements follow from some simple algebra.
For the last statement, let ãjm denote the jmth row of A. By (1), we have

|ãT
jmx| ≤ ‖ãjm‖∞,2‖x‖1,G.
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Then,

‖Ax‖2∞,2 = max
1≤j≤p

M∑
m=1

(Ax)2jm ≤ max
1≤j≤p

M∑
m=1

‖ãjm‖2∞,2‖x‖21,G ≤

(
max
1≤j≤p

M∑
m=1

‖ãjm‖2∞,2

)
‖x‖21,G

= ‖A‖2∞,2‖x‖21,2. 145

LEMMA 2. Under Condition 1, there exist positive constants C, C1 and C2 such that it holds
with probability at least 1− C1d

−C2 that

‖Σ̂Ωδ − δ‖∞,2 ≤ C{M∆d(log d)/n}1/2.

Proof. We use a similar argument as in Cai & Liu (2012). Denote the vectors U0 = (X | Y =
0)− µ0, and U1 = (X | Y = 1)− µ1. We have

Σ̂ =
1

n

∑
Yi=0

Ui0U
T
i0 +

∑
Yi=1

Ui1U
T
i1

− n0
n
Ū0Ū

T
0 −

n1
n
Ū1Ū

T
1 150

= Σ̃− n0
n
Ū0Ū

T
0 −

n1
n
Ū1Ū

T
1 .

It suffices to prove the result with Σ̂ replaced by Σ̃. To simplify the presentation, denote Zi =
Ui0 (1 ≤ i ≤ n0) and Zi = Ui1 (n0 + 1 ≤ i ≤ n). Then,

Σ̃Ωδ − (µ0 − µ1) = (Σ̃− Σ)Ωδ =
1

n

n∑
i=1

ZiZ
T
i Ωδ − E(ZiZ

T
i Ωδ).

Denote ξij = ZijZ
T
i Ωδ − E(ZijZ

T
i Ωδ). With ej being a vector with 1 for the jth coordinate and

0 elsewhere, we have 155

var(ξij) = var(eTj ZZ
TΩδ) = var(ZTΩδeTj Z) =

1

2
tr{(ΩδeTj + eTj δ

TΩ)Σ(ΩδeTj + eTj δ
TΩ)Σ}

= δ2j + σjjδ
TΩδ . δTΩδ.

Since {ξij}ni=1 are independent sub-exponential random variables with mean 0, we have

pr

{
max
1≤j≤d

1

n

∣∣∣∣∣
n∑
i=1

ξij

∣∣∣∣∣ ≥ C
(

∆d log d

n

)1/2
}
≤ C1d

−C2 .

Then, by Lemma 1 and the union bound, we have

pr

{
‖Σ̃Ωδ − (µ0 − µ1)‖∞,2 ≥ C

(
M∆d log d

n

)1/2
}

≤ pr

{
‖Σ̃Ωδ − (µ0 − µ1)‖∞ ≥ C

(
∆d log d

n

)1/2
}

≤ C1d
−C2 .

(S19)

LEMMA 3. Let β̂ be the solution of problem (3). Then it holds that 160

‖Σ̂β̂ − δ̂‖∞,2 ≤ λnM1/2.
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Proof. Let F (β) = βTΣ̂β/2− δ̂Tβ + λn
∑p

j=1‖βSj‖G. Define

H(β, γ, η) =
1

2
βTΣ̂β − δ̂Tβ + (1− α)λn

p∑
j=1

γT
Sj
βSj + αλn

p∑
j=1

ηT
Sj
βSj .

Then, we have

F (β) = max
‖γ‖∞≤1
‖η‖∞,2≤1

H(β, γ, η).

By the strong duality, β̂ also solves

min
β
F (β) = min

β
max
‖γ‖∞≤1
‖η‖∞,2≤1

H(β, γ, η) = max
‖γ‖∞≤1
‖η‖∞,2≤1

min
β
H(β, γ, η).

By the Karush–Kuhn–Tucker condition, we have Σ̂β̂ − δ̂ + (1− α)λnγ + αλnη = 0. Since165

‖γ‖∞ ≤ 1 and ‖η‖∞,2 ≤ 1, we have

‖Σ̂β̂ − δ̂‖∞,2 ≤ (1− α)λn‖γ‖∞,2 + αλn‖η‖∞,2 ≤ (1− α)λn
√
M + αλn ≤ λn

√
M.

LEMMA 4. Under Conditions 1 and 5–8, if s2{(log d)/n}1/2 = o(1), there exist positive con-
stants C, C1 and C2 such that, with probability at least 1− C1d

−C2 , we have ‖Σ̂−1AA‖∞ ≤
2c0; ‖Σ̂BAΣ̂−1AA‖∞ ≤ (1− α)(1− ε/2); ‖Σ̂CAΣ̂−1AA‖∞ ≤ (1− ε/2)M−1/2; and λmin(Σ̂AA) ≥170

c−10 /2.

Proof. For the first statement, by the standard concentration inequality result, e.g., Equation
(10) of Bickel & Levina (2008), there exist positive constants C, C1 and C2 such that, for any
1 ≤ i, j ≤ d,

pr
[
|σ̂ij − σij | > C{(log d)/n}1/2

]
≤ C1d

−(C2+2).

By the union bound, we have175

pr
[
‖Σ̂AA − ΣAA‖∞ > Cs{(log d)/n}1/2

]
= pr

max
i∈A

∑
j∈A
|σ̂ij − σij | > Cs{(log d)/n}1/2


≤ spr

∑
j∈A
|σ̂ij − σij | > Cs{(log d)/n}1/2

 ≤ s2pr
[
|σ̂ij − σij | > C{(log d)/n}1/2

]
≤ C1s

2d−(C2+2) ≤ C1d
−C2 .

(S20)

Then, with probability at least 1− C1d
−C2 , we have

‖Σ̂−1AA‖∞ ≤ ‖Σ
−1
AA‖∞ + ‖Σ̂−1AA‖∞‖Σ̂AA − ΣAA‖∞‖Σ−1AA‖∞

≤ c0 + c0‖Σ̂−1AA‖∞Cs{(log d)/n}1/2.

Therefore, when n is sufficiently large,

‖Σ̂−1AA‖∞ ≤
c0

1− Cc0s{(log d)/n}1/2
≤ 2c0.
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For the second statement, we have 180

Σ̂BAΣ̂−1AA = Σ̂BA(Σ̂−1AA − Σ−1AA) + (Σ̂BA − ΣBA)Σ−1AA + ΣBAΣ−1AA.

Then,

‖Σ̂BA(Σ̂−1AA − Σ−1AA)‖∞ ≤ (‖ΣBA‖∞ + ‖Σ̂BA − ΣBA‖∞)‖Σ̂−1AA‖∞‖Σ̂AA − ΣAA‖∞‖Σ−1AA‖∞.
(S21)

By definition, ‖ΣBA‖∞ = maxi∈B
∑

j∈A |σij | . s. Similarly as (S20), we have

pr
[
‖Σ̂BA − ΣBA‖∞ > Cs{(log d)/n}1/2

]
≤ C1d

−C2 .

By (S21) and Condition 6, with probability at least 1− C1d
−C2 , we have

‖Σ̂BA(Σ̂−1AA − Σ−1AA)‖∞ . s2{(log d)/n}1/2.

By a similar argument, ‖(Σ̂BA − ΣBA)Σ−1AA‖∞ . s2{(log d)/n}1/2. When the sample size n
is large enough, both upper bounds become arbitrarily small. Hence, ‖Σ̂BA(Σ̂−1AA − Σ−1AA) + 185

(Σ̂BA − ΣBA)Σ−1AA‖2 ≤ (1− α)ε/2. Then the result follows from Condition 7.
For the third statement, it can be proved using similar arguments.
For the last statement, Condition 5 implies that λmin(ΣAA) ≥ c−10 . Then by a similar proof,

we can show that λmin(Σ̂AA) ≥ c−10 /2 with probability at least 1− C1d
−C2 . �

6. ADDITIONAL SIMULATIONS 190

We consider two additional simulation examples to inspect the robustness of our method
and its adaptivity to block missing values. The settings are similar as in Example A, except
that we change the distribution of X or introduce missing values. In Example D, the data fol-
low a heavy-tailed distribution. That is, X | Y = 0 ∼ t3(0,Σ), and X | Y = 1 ∼ µ1 + t3(0,Σ),
where t3(0,Σ) is the multivariate t-distribution with 3 degrees of freedom and the scale pa- 195

rameter Σ. For this example, we add the robust integrative linear discriminant analysis into the
comparison. In Example E, the data follow a normal distribution. However, one data type has
probability 0·25 to be entirely missing. The missing of different types are assumed independent.
For this example, we compare two ways to utilize the data as discussed in Section 6 of the main
document, i.e., the effective way and the complete case analysis. Table S1 reports the average 200

criteria, and standard errors in parentheses, all in percentages, over 100 data replications. In Ex-
ample D, the robust integrative linear discriminant analysis further improves the performance of
the non-robust counterpart. In Example E, the effective integrative linear discriminative analysis
handles the missing data better than only using the complete data.

In addition, we conduct a simulation study with an increasing M . The setting is the same 205

as in Example A, with n = 50, p = 100, except that we choose β∗jm = 0·5 (j = 1, . . . , 5;m =
1, . . . ,M) and the rest equal to zero. We use M = 2, 4, and 6. Table S2 reports the average
classification error of our method and the corresponding Bayes error over 100 replications. It is
observed that, as M increases, both errors decrease, meanwhile the difference between the two
errors increases. This observation agrees with Theorem 1, since asM increases, the convergence 210

rate of the integrative classifier relative to the Bayes error can become slower. This is essentially
due to the fact that more unknown parameters need to be estimated, which in turn induces a
larger estimation error. However, if the additional discriminative information brought by the extra
variables exceeds the estimation error they bring, the error rate Rn is guaranteed to decrease, as
we show in Theorem 2. 215
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Table S1: Classification and variable selection accuracy (%)

Example D
n = 50, p = 100, π = 1 n = 50, p = 100, π = 0·5

iLDA-r iLDA m-vote sLDA iLDA-r iLDA m-vote sLDA
error rate 8(4) 12(9) 15(5) 24(7) 12(8) 14(14) 26(10) 32(10)
sensitivity 92(11) 68(25) 54(23) 54(14) 79(22) 59(33) 18(23) 42(20)
specificity 74(22) 78(23) 99(1) 95(2) 66(33) 64(35) 99(1) 96(3)

n = 100, p = 200, π = 1 n = 100, p = 200, π = 0·5
iLDA-r iLDA m-vote sLDA iLDA-r iLDA m-vote sLDA

error rate 14(5) 15(7) 18(4) 27(5) 19(8) 20(12) 31(9) 36(8)
sensitivity 97(6) 80(15) 72(21) 65(15) 88(15) 68(30) 24(25) 53(24)
specificity 92(11) 94(15) 100(0) 99(1) 90(16) 90(20) 100(0) 99(1)

Example E
n = 50, p = 100, π = 1 n = 50, p = 100, π = 0·5

iLDA-e iLDA-c m-vote sLDA iLDA-e iLDA-c m-vote sLDA
error rate 22(9) 25(7) 30(6) 32(6) 36(10) 38(7) 43(7) 42(7)
sensitivity 66(20) 55(25) 62(21) 57(11) 56(35) 51(27) 21(23) 45(21)
specificity 91(27) 72(36) 100(0) 98(2) 81(37) 69(33) 100(0) 98(1)

n = 100, p = 200, π = 1 n = 100, p = 200, π = 0·5
iLDA-e iLDA-c m-vote sLDA iLDA-e iLDA-c m-vote sLDA

error rate 21(8) 24(6) 30(5) 33(6) 37(10) 39(9) 43(8) 43(7)
sensitivity 61(21) 47(25) 57(25) 55(14) 53(31) 52(26) 21(22) 44(19)
specificity 98(14) 92(13) 100(0) 98(1) 85(35) 79(16) 100(0) 98(1)

iLDA, the integrative linear discriminant analysis classifier with the composite penalty; iLDA-r, the robust integrative
linear discriminant analysis classifier; iLDA-e, the integrative linear discriminant analysis classifier that effectively
using all the observations; iLDA-c, the integrative linear discriminant analysis classifier using the complete data only;
sLDA, the linear discriminant analysis classifier applied to each individual type separately; m-vote, a majority vote
based on the class assigned by sLDA.
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