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SUMMARY

This supplementary file contains proofs of the theoretical results in the main paper, comple-
mentary discussions of different technical aspects of our theory, and an additional plot for our

real-data example.

S1. PROOFS

Proof of Proposition 1. We adapt the arguments of Lemma 3 in Bubeck et al. (2013) to our

setting. Without loss of generality, we assume £(X ) = 0 and construct the distribution pr as

pr(X1,X1,=0)=1— alt, pr(X1,X10 =1/a) = ol

for some o € (0, 1). Itis easy to check that o, = F(X,X,) = a” and E(| X, X, — o}, |1 ™7
2. Let n = 2~ e~ /(49 p=7/(147) and take o = (2nn) L. If € < 1/2, we have 0%, = o
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2 M. AVELLA-MEDINA, H. BATTEY, J. FAN, AND Q. L1

(2nn)~7 < n, which implies 1/a = 2nn > n(n + o},). This leads to the bound
pr(‘a—uv - O-’ZU‘ > 77) P pr{&uv - 0—’:(;,’[) > 77}

pr(ﬂi € [n] : XiuXin > n(n+ Ufw))

pr(EIz' € [n]: XiuXip = 1/a)

1

=1-(1- a1+7)n

=1 —exp[nlog{l - (2m71)1+7H

Z
Z

1
> 1= el
> 1
o (2n)t

Proof of Theorem 1. Once the critical condition (1) is satisfied by the pilot estimator, the proof
follows similar arguments as in the proof of Theorem 1 in Rothman et al. (2009) and the proof
of Theorem 2 in Cai & Liu (2011). For ease of reference, the complete argument is given here.

Consider the event &, =E;NEy={|Gu —0},| < Ay forall u,v} N {Guudu, <
20% 0% forallu,v}. We first show that on the event &, |27 — X%z <
Coso(p){(logp)/n}1=9/2, where Cy is a constant depending only on ¢ and \. We then
show that pr(&,,) > 1 — e, for €, , a positive deterministic sequence converging to zero when
(logp)/n — 0.

Under conditions (ii) and (iii) on 7y,

P p p
Z ‘Tkuv(‘}uv) - Ufw‘ = Z ‘Tkuu(éuv) - UZu}]l(|5uv| 2 Aw) + Z |02u|]1(|5uv‘ < Awv)
v=1 v=1 v=1
p p
< 22)\uv]1(|02v| 2 Auw) + Z ‘Tkuv(5uv) - U;v‘]l(|&uv| 2 Auvs [0 < Auw)
v=1 v=1
p
+ Z ’UZU‘]I(M—UU’ < )\uv)
v=1
=T+ 15+ T5s.

On the event Ey, Th <2370, [0y, [1(|o},| < Auw) and T3 < 3°0_, |op, [1(|og,| < 2Muw),
where the first inequality uses condition (i) on 7, and the second uses the reversed triangle
inequality. Therefore, combining the above inequalities and using the fact that A\, 1(|o},| >
Auw) < )\}Jq|07’jv|q, on the event E5 we have
P P
D P (Gue) = ol < (44279 Y Ao, |
v=1

v=1

lo (1-q)/2
< C'oSo@)( §p> .

Since ||All2 < ||Al|; for any symmetric matrix A, it remains to bound from below the probability
of the event &,,. Notice that

Fuulvw = OOy + (Cuu — Oy ) Tvv + (Gov — 044)Fun — (Fuu — 0y) (Tow — 03)- (S1)
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It therefore follows from Condition 1 that for large n, s

pr(&uu&w 272/2f0rallu,v:1,...,p) ;1—6’;74’, (S2)

Then we have

|Tuw — 0| logp) />
pr max~71{v2 = A < pr
u,v (Uuuavv) / n

9-1~2] 1/2
< pr{maxm —onl > (T RER) Ty S
u,v n 4

max|Gy, — o
u,v

- 1/2
S )\{ M1y, (Uuuavv> lng} ]

|
uvl =
n

< 5’;’”, (S3)

where the second inequality follows from (S2) and the last one from Condition 1. Since Condi-
tion 1 and (S1) imply that for n large enough, pr(Ez) > 1 — ¢, /2, it follows from (S3) that

pr(gn) P pr(gn‘EQ) pr(EQ) >1- Enyp

for large enough n. O s

Proof of Theorem 2. The proof makes use of the following lemmas from Cai et al. (2016).
LEMMA S1. Let A be a symmetric matrix. Then || A||2 < ||Allw < ||A|l1 forall 1 < w < oc.

LEMMA S2. Let Q be any estimator of Q* and set t,, = ||Q — Q*Hmax. Then on the event

Wyllt < ||wi|l1for1 < v < we have ||Q — Q*||1 < 12¢p ot ¢ where ¢y, is the sequence
{llow |l v ph » » q
in Condition 4. 55

The same argument as provided in equation (5) of the main paper shows that > * achieves the
same rate of convergence as >.. By Lemma S1, it suffices to prove that

1nf pr{HQ Q|1 < CoM,} e (loip)(l(I)/?} 21 —epp.

n,p Cn,p

To this end, consider HQ — Q|| max- Since 1/M; < Apin(2°) < Amax(2*) < M, we have
max, (o}, ) max,(w},) < MZ. Therefore, by Condition 3 the following bound holds with prob-
ability at least 1 — &, 60

2 = 2l = I(QEF = B)AD + (8 = 550D e

SIOQET = L) a2V 1 + 6p max s, maxal) Q||

. 1 1/2 ,
< C||Q(1)||1< ng) + 26[|27][ max o7, max ol )< ng)
n n

§ 1 1/2 O 1/2
< CHQ(l)H1( 0§p> + 26]|2*||1 max o7, max wj, (max 2 ) ( ng)

1/2

v w'l)'U n
1 1/2 gv) 1 1/2
< I (L) 2ot (e Z20) (1E2 5
(%Y

for some positive constant C. By construction and Condition 4, [|QM|; < [Q*]; <
Cn,p Maxy (|wyyx|17) and max, wyy/ Miny Wiy, < Amax (27) /Amin (27) < M?%. Provided @,y =

O(1), with probability at least 1 — &, , [|2 — Q*||1 < KM, ,{(logp)/n}'/? for some constant
K, where M, ;, is as in Condition 4.
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4 M. AVELLA-MEDINA, H. BATTEY, J. FAN, AND Q. L1

By Condition 3, 2* belongs to the feasible set (9) on an event of probability at least 1 — €, j,.
Thus, by an analogous argument to that appearing in (S4), we obtain that on the same event, |2 —
O [|lmax < CMnp{(logp)/ n}1/2. It follows from Lemma S2 that on an event of probability at

least 1 — ey, [ — Q*[|1 < CoMyplen p{(logp)/n}1~9/2, where ¢, , is as in Condition 4.0

Proof of Proposition 2. The proof relies on the following lemmas due to Liu et al. (2012,
Theorem 4.2) and Serfling & Mazumder (2009, Theorem 1).

LEMMA S3. Let X4,...,X, be independent and identically distributed copies of the ellip-
tically distributed random vector X with covariance matrix var(X) = ¥X* = D*R*D*, and let
R* = (r},) and R = (Tyy) be as defined in §4-1 of the main paper. For any § € (0, 1),

2log 51\ /2
pr{max\ﬁw — 1| = 37T<Og) } <4
u,v 5n

LEMMA S4. Let Gy, be the median absolute deviation estimator of o7, defined in §4-1 of the
main paper. Then, for § = Ce for every e > 0 and C = 1/F~1(3/4),

pr(\&uu — oyl > 5) < Gexp(—2nA§,n),

where A5, = min(ay,, by, ¢, dr) with

ay = [Fu(vu +6/2) = {[(n+1)/2] = 1}/n]
bZ:KnJrl)/?J/n— u(vu —0/2),
= {Fu(vu+ 04y +6/2) = Fu(vu — oy, —6/2) = [(n+1)/2] /n}
d}i:L(er)/?J/n—[ w(Vu + 00y = 0/2) = Fy(vu — oy, +6/2)].
Here F, is the distribution function of X, and v, = F;1(1/2).

We now prove Proposition 2. Denote the components of Sk by Yr = = (E ). Then we have

1/2 0,*1/2"7,1“)”01/2 0,;1)/2‘) +2max(’0,1/2 *1/2HTU’U’U*1 2)

max |68 — o | < max(!a
u,v

+ max( 2| F — 1 \0*1/2).
u,v

Thus, with ¢ = max,, aﬁ/ 2 and noting that 7, € [—1, 1], we have

1/2 *1/2 1/2 *1/2‘2

| + ¢? max |Tuw — o | + max\a iy

2 max |G, o

mu%x ‘651) - uv‘
b

We hence obtain, by the Bonferroni inequality,
- t _ t
pr(max |5 — ok, | > t) < pr(max 6L/2 — 5*1/2) > ) + pr(rnax |Tuw — 7oy > —)
u,v 6¢ u,v 3¢2
1/2 _

t
—I—pr(maxla orl/2)2 §) =P+ P+ P

Taking t = C{(logp)/n}'/? with C' = mw\/2/s? ensures P» < p~' by Lemma S3. For P,
through a first-order Taylor series expansion with Lagrange remainder, we obtain

maux|<71/2 e <2maxQ V2160 — ok,
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~1/2

*1/2
where ), lies on a line segment between &, and oy, /

.So
_ t _ _
P < pr<2maxQ;1/2\&uu - a;ju\ > = lrnauxQ;l/2 < U) —I—pr(rnauXQ;l/2 > U)
U S U u

< pr(mth|5uu — ol > 20« ) —|—pr<maXQ LS U)
= P11 + Pio.

We have Pi; < 6p exp(—2nA§7n) by the Bonferroni inequality and Lemma S4, where ¢ =

Ci{(logp)/n}/? with Cf = 7/2/(4Us) and As,, is defined in Lemma S4. Let m, be
the population median of the uth variable and let f, be the corresponding density function.
Then b} of Lemma S4 satisfies b, = f, ()0 + O(n™'), where 1, lies on a line segment
between m, and m, + J. Since f, is continuous in a neighbourhood of the median and
fu(m) >0 by the elliptical assumption, for (logp)/n sufficiently small we have f,(m) =
C1 > 0. Then b% > C1Cg{(logp)/n}'/?. Similar calculations for a, ¢ and d’ show that
Aey 2> C’lCO{(logp)/n}l/2 and so Py, < 6p' L for L = C1Cj, which is greater than 1 for
C§ sufficiently large. This entails U < C174/2/(4s). For the control over P;2, we have

P < pr(mgx@zjl/z > U, mgx\&uu — ol < §> + pr(mgx |Gun — Oy > §)
= Pio1 + Pi2a.

By Bonferroni’s inequality and Lemma S4, Pjg2 < 6p exp(—2nA§,n). Therefore, by similar

arguments to those given for P;;, Pj2s can be bounded by a term of order pt by taking
¢ > Co{(logp)/ n}l/ 2 for Oy a sufficiently large constant depending only on U and <. For Pa1,

max Q% < max [{min(6,, o71/%)} /%) = max {max(&,,"*, o7}

But on the event {max,(|Gyy, — 05,|) < &}, 0fy — € < Ouu < 05y, + € for all w € [p]. There-
fore

Pig1 < pr{maX(Uzu - > U} = pr{(minaiiu &> U} =0
u u
because min, o, > ¢ + U~* by assumption. O

Proof of Proposition 3. We use the following lemma in the proof.

LEMMA S5 (THEOREM 5 IN FAN ET AL., 2017). Let Zl, ..y Zy be real-valued indepen-
dent identically distributed random variables with EZ, = j* and var(Z,) = o*. Let § € (0,1)
be such that n 'logd=1 < 1/8 and H = {(nv?)/logd~ 1}1/2, where v > o*. Then Huber’s

M-estimator [i"! satisfies
log 6~ 1\ /2
pr{|nH—m>4v<0g ) }@5,
n

If (24 L)(logp)/n < 1/8, Lemma S5 and the union bound guarantee that

pr|max |fiff — pig] > K{(logp)/n}'/2| < 2p~(1+P) (S5)
and

pr [rgggx gy — tg| = K{(logp)/n}l/ﬂ <2t (S6)
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6 M. AVELLA-MEDINA, H. BATTEY, J. FAN, AND Q. L1

From (S5) we have, with probability at least 1 — op~(+L)

max |7y fiy! — piy | < 2K max |y {(log p) /n}! 2 + K2 (log p) /. (S7)

Combining (S6) and (S7), for large n we have
pr|max |52, — o7, | > C{(log p) /n} /2

< pr|max |ff, - jug, | + max Al ll — pips] > C{(logp) fn} V2]

<2 F1+p7h. O

Proof of Proposition 4. We will start by stating and proving three auxiliary results. Lemma S6
extends a large deviation result of Petrov (1995) to random variables satisfying Cramér’s con-
dition only in a shrinking neighbourhood of zero. Lemma S7 shows that the weights associated
with Huber’s estimator are uniformly close to 1/n for large n and for all entries of the pilot
covariance estimator. Lemma S8 shows that a truncated empirical covariance matrix estimator
satisfies Condition 3. More specifically, it considers the truncated empirical mean pilot estima-
tor g = (5lf,) where 61, = n~ 37, 1(| X3 Xiy| < H) XiuXiy and H = K(n/logp)'/? for
some positive constant /. Finally, we show that the difference between 5 and Yy is suffi-
ciently small. Thus, the proposition is proved.

LEMMA S6. Let X1 be a zero-mean random variable with finite variance o? and let
E{exp(tX1)} < oo in the interval |t| < H, where H = O(n™%) and a € (0,1/2). If x >0
and x = o(n'/?/logn), then

e oG EHe) e
s ool (et} o

where Fy(z) = pr(31_, X; < n'/20z). Here \(t) = S22, ckt’ is a power series which will
be defined in (S13).

Proof. We adapt the arguments of Theorem 5.23 in Petrov (1995) to account for a vanishing
constant H. Let h be an arbitrary number in the interval (—H, H) so that E{exp(hX;)} < oo.
Denoting the distribution function of X; by V' (z), we introduce the sequence of random variables
X, ..., X,, with common distribution function defined as

dV(z) = exp(hz) dV (x),

( )
where R(h) = E{exp(hX1)} = [%_exp(ha)dV (z). Write
m=E(X1), o*=var(X1), Sp=Y Xj, Fu(z)=rpr(S, — nim < zan'/?).

j=1

For sufficiently small h, we have

- Tv v
log{R(h)} = _ 7",
v=1 "
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7

where 7, is the cumulant of order v of the random variable X, so 41 = 0 and vo = o2. By

Petrov (1995, pp. 179-80), choosing & as the unique real root of

(S10)

(S11)

ot = m(h)
for a sufficiently small ¢, the following expansion of this root & in a power series in ¢ holds:
t 73 2 2
h=—— "t t2).
o 20t +o(#%)

Then we obtain
)
5 +log{R(h)} — hin = t3(t),
where
At = B M =B
=4+ ——" o(t).
603 24056
Furthermore, by equation (5.78) in Petrov (1995),

1 — E,(mo'n'/?) = exp [nlog{R(h)} — nhm]| /OOO exp(—hyan'/?) dE,(y).

We now show that
/ exp(—hy6n1/2) dF,(y) = (277)*1/21&(7710*1711/2){1 + O(h log n) },
0

where () is the Mills ratio

wio) = g = expla®2) [ expl-s?/2) dy

Writing Q,,(y) = Fu(y) — ®(y),
| exp(chyont’) dFu(y) = 202 [ exp(-nant’y - 2 2) dy
0 0
+ /Oo exp(—h6n1/2y) dQn ()
0

= (271’)_1/211 + Is.

(S12)

(S13)

(S14)

(S15)

For some universal positive constant A and n > 3, Theorem 5.12 in Petrov (1995) gives the

bound
An~Y%logn

Q)] < s

It follows that

1| = ]an) + [~ ) dexp(—hanmy)'

1/2

dexp(—han'’“y)

< An"Y2logn + An~?log(n) / 5
0

1+y
= O(n*1/2 log n)

140
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8 M. AVELLA-MEDINA, H. BATTEY, J. FAN, AND Q. L1

Substituting u = hanl/ 2y into /7, we obtain

L = (hanl/Z)l/ exp{—u — u*/(2h*5*n)} du
0

and

h6n1/2I1 < / exp(—u)du =1, h&n1/2[1 > / exp{—u — u2/(6202)}du7
0 0

where the last inequality follows from hn'!/?

fore, hn'/2I; < 1 and

> cfor large n and some positive constant c. There-

/ exp(—hyan'/?) dF,(y)
0
1
= (2m)7V2L + O(Tfl/2 logn) = (2#)1/211{1 + I—l()(rfl/2 log n)}
= (27) Y21 {1 + O(hlogn)}.

By substituting into this last expression I; = ¥(mo~'n/2){1 + O(h)}, which holds by equa-
tion (5.85) in Petrov (1995), we establish (S15).
It follows from equations (S14) and (S15) that

1 — F,(mo'nl/?)

= (2m) Y2 exp [nlog{R(h)} — hnm]y(mo™~ 1nl/z){l + O(hlog n)}
-2

= exp % +nlog{R(h)} — hnm]w(ma 2 {1 — &(mo~ 1n1/2)}{1 +O(h logn)}.

Choosing t = zn /2 in equation (S10), we have = = mo~'n!/2,

h/(t/o) — 1, we finally obtain that for large n,

1— Fp(z) = {1 (a:)}exp{(&)%(rf/?)}%+o(”ﬁin)}.

This proves (S8). The same arguments also imply (S9). O

Taking into account (S11) and

LEMMA S7. Assume (6 + L)(logp)/n < 1/8 and the conditions of Proposition 3. Let W}’ =
min(1, H/| XXy — 61|) for u,v =1,...,pand i = 1,...,n, and write a, < by, if a, =
Oy (by) and b, = Op(ay) as n — co. Then, for some fixed t > 0, if H = K (n/logp)*/?,

n 1/2
maxpr[‘n—zw,?” < {(2+L)10gp} ] > 1—O{p_(2+L)}.

n
=1

Proof. 1t suffices to show that

n 2
pr <n - Zv?/;“’ < t) > [1 - exp{—n; + 0(1)} — O{p_(4+L)}} , (S16)
i=1
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since if we choose t? = (4 + L)(log p) /n, Bonferroni’s inequality would then give

n n
pr<n—2v~v}“’ <t Yu,v= 1,...,p> > 1—Zpr<n—2v~v}w > t) 160
i=1 =1

uU=v

p(pz_l)maxpr<n — ZW?U > t)
" i=1

>1-p exp{—%” ro()} —0(p )

>1-—0{p @,

21—

To prove (S16), first observe that
n
pr <n — ZXX’ZW < t) 165
i=1
_ 1 . ~ UV > 1 t
= pr (n ; Wil > /n)

1< 1 G| XX — 6| > H)H
= pri — 10X X, _5,H <H)+ = Y uv~
P {n; (| XiuXiv uv| ) n; ‘XiuXiU_O—UU’

21—75/71}
1 & H
=prdl—=Y 1(|X;uXiv—c2|>H)(1- ——— ) >1-1¢
pr{ n; (| iu<riv qu‘ )( ‘XiuXiu—55;> /n}
n

1 N
> pr{n D (| XXy — 60| > H) < t/n}.
=1

Further, the arguments of Proposition 3 under the assumption (6 + L)(log p)/n < 1/8 imply that o
max, , |61 — o | < C{(logp)/n}'/? with probability at least 1 — O{p{~**1)}. Combining
this max norm bound with Hoeffding’s inequality, we obtain

1o .
pr{n Z 1(| X Xiw — 65 > H) < t/n} (S17)
=1
1 - * ~H *
> pri — Z]l(]Xwa — oy, > H—max|6,, —o.,]) <t/n

> o I 00X~ ol > 1w <oy {1 - 0o}
=1
> [1 - exp{—W}] [1 - O{p_(4+L)}} : (S18)

where 7 > C{(logp)/n}"/? and 6y = E{1(|X:wXs» — 0%,| < H —n)}. From Markov’s in-
equality, ;7 = O[{(logp)/n}'/?]. Then (S17) and simple manipulations establish (S16). O

LEMMA S8. Let Xpy = (6HYy=n=t Yo 1(| X Xio| < H) X0 Xio. Under the conditions s
of Proposition 4, for large n.and H = K (n/ logp)'/? with K > 0 and C > 0,

pr | max| (S5 Q" = )| < CLllogp) /n} ] > 1= 2,
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where €, , < Co(logp)~ 12p=L for positive constants Cy and L.

Proof. Let vy, = E{Zzzl 1(| X Xir| < H)XjuXipwi, }s  then  ||[EgQ* — I|jnax =
O[{(log p)/n}'/?] implies

vuy — 1(u = v)| = O[{(log p) /n}"/?]. (S19)

1s0  Note also that

~H
ukwltv - ]l(u = 'U) uu*ov

> )\ (O'* W )1/2}

n

ﬂ(’qusz’ < H)quszw;:-U — Ny

uu~Tvv

> ()2 — L (u = v) —uwr}

i
=
1=

p
Z ]1 |qusz:| < H)quszw]tv — NMVyw
1 k=1

> 8(o%ety log p) /2 0{<1ogp>1/2}] -

(S20)

SP [n1/2

.
Il

Since |1 (| Xiu Xix| < H) X3 Xi| < K(n/logp)*/? and max lwy,| < M for some M > 0, we

15 have
p p
Z 1(| X Xk < H) XiuXipwfy| < K(n/logp)'/? msz Wi |
- k;1
< K(n/logp)'/? maxz |wi, |19
R -

< K(n/ logp)l/Qcm,
= 0{n=9/2 /(log p)4~9/2}

Therefore Elexp{t §_; 1(| XiuXir| < H) X0 Xipwi, }] < oo as long as we choose [t <
O{(log p)4=9/2 /n(2=9/2} = O(n=(1-9/3). Thus, taking |t| < Cn~(1=9/3 for some suffi-
ciently large positive constant C', applying Lemma S6 to (S20) yields

p
pr
k=1

0 <il+ 0(1)}PY{IN(0a Dl > 5(10gp)1/2} < C(logp) ™ /2p /2.

~H
ukwlt:v - ]l(’LL = U)

> <ouuww>1/2}

Taking 0 < 2, the last inequality and an application of Bonferroni’s inequality complete the
proof. O

We now prove Proposition 4. The strategy is to rewrite the Huber estimator as a weighted mean
that behaves essentially like a truncated mean with a diverging level of truncation as n goes to
e infinity. Writing w4 = min(1, H/| X;uXsp — 6L |) for u,v =1,...,pand i = 1,...,n, it is
easy to see that
i _ i Vit X Xin

ot =
uv n ~uv
Zz 1 Wy
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Hence, letting WY = (W, ..., ;)T and ny, = Y 1 q Wi

i/, it follows from Lemma S7 and
Proposition 3 that

uuUTvU

> A (J* Wk )1/2}

uu~Tvv

p ~
Z ﬁquszwkv —1(u =v)| = A(o),ws )1/2} .
k=

i=1 k=1 4~2J=1"]

nop
Z Zx?vkamXikw};U —1(u=v)

uu~Tvv

> nn (0 W )1/2}+O{p_(2+L)}. (S21)

n p
2 2 W X Xai,
1 k=
n p
> { (1 XiuXir — Gor| < H)Xju Xipwi, (S22)
i=1 k=1
<k T k
n p b
D (XX — 5| < H) Xiu Xawi,
i=1 k=1
+ 1(| X Xip — 0| > H XiuX
;; (| u<Niv qu‘ )(qusz—55€) ( ik T uk)wkv

For the second term in (S22), note first that

210

[Xa" = I[max = (X — X°)Q|max = I%%X

ZE{]I(‘Xlquk‘ > H)Xlquk}pr
k=1
= O[{(logp)/n}""?].

Also observe that by Proposition 3 and Hoeffding’s inequality,

1< i
EZ]I(]XWXM e > H) < Z]I\Xlek ol > H —1n)

10g(p2+L) 1/2
2n }

~of(22)")

< (H = n) "Bl X1uXup — 0l + {
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with probability at least 1 — 2p~(+L) wheren > C {(logp)/ ”}1/ 2and C' > 0. Thus, with prob-
ability at least 1 — 2p~ (L),

n p
Zn(;xmxwf L > H) (X X, — G0p)why
1 k=1

n p ~H\2 2
i (XiwXir — Gpp,)° — H SH x
+ Z Z:: |XluXw - o-uv‘ > H) H(quszu_ 5{5@)2 (Xlquk - Uuk)wkv

n

< O{(nlogp)"/?} + nH! Z [ Z]l (| XX — 600 > H)| Xiu X — &52}] |wi, |
=1

1 n
< 1/2 —2nrq - Y. 1—q
< O{(nlogp)"2} +nH M ; E > 1o ) > ) (i Xos 1) b
< O{(n 10gp)1/2} + Cq,HnH_2Cn,p
< O{(nlogp)'?} + o{ (nlogp)'/*}. (S24)

Similar arguments to those used in (S24) can also be used to show that the first term in (S22)
satisfies

n p
< IS (X X, — okl < H)XiuXanwy,| + O{(nlogp)/?}  (825)

=1 k=1

with probability at least 1 — 4p~(2+L) because for some constant 7 > C{(logp)/n}'/?,

) {00 XXk — G55 < H) = 101X Xar — 00| < H) | Xou Xipsoi,
i=1 k=1

\anZ{

=1

Wi{ it

=1

(| XX — 7] < H) — 1(1Xeu Xt — 0] < H)\\mem}rwszl-q

L(| XX — o] > H) ]rxmxzk\—nuxmxm ~uk|>H>}rwkU|1 ‘

L(| X X — ol > H — \|wam|}rwm|1 0

In addition, consider the term vy, = E{> %_; 1(|XiuXix — 0})| < H)X;uXipwy,}; then
IZH2* = Illmax = O[{(log p) /n}'/?] implies

v — 1(u = v)| = O[{(log p) /n}"/?]. (S26)



Robust estimation of high-dimensional covariance and precision matrices 13

Therefore, upon combining (S21)—(S26) we see that

Z wkv_ UZ’U)

2 )\ (Uuuw:v)l/Q} 235

n p
<p Z D X Xintoy = o) + 0 — L = 0){1 = 0o(1)}] > mn(o,05,) {1 - o<1>}}
Ll i=1 k=1
+ O{ (2+L) }
- n P
<pr || D00 Xn Xik — 0| < H) Xiw Xty — vw| > nhn(0,05,) % = O{(n logp>1/2}]
- i=1 k=1
+ O{p7(2+L)}.
The proof follows from the last inequality and the arguments of Lemma S8. O 20

Remark 1. Unlike the proof of Lemma 1 in Cai et al. (2016), we cannot compute explicitly the
mean and variance constants required to standardize Y 7 _; 1(| X, X — 07| < H) X0 Xigpwp, -

Proof of Proposition 5. The following auxiliary lemma is a simplified version of Proposition 1
in Lerasle & Oliveira (2011).

LEMMA S9. Let Zy,...,7Z, be independent identically distributed random variables with 24
E(Zy) = p* and var(Z,) = (¢)% Let 6 € (0,1) and M < n/2, and let By, . .., By be a reg-
ular partition of [n). Then if M > log(6~"), we have that for some constant K < 2(6e)'/?,

pr{ﬂM —ut > K<U*210g5_1>1/2} <.
n
By Lemma S9 we have that for all u, v € [p],
e[| — | > Ko, (logp) /n} /2] < 2p~ 2D
and
pr[[il — piu| > K{8;,(log p) /n}'/2] < 25740, (s27)
where 6, = var(X,X,). Hence, with probability at least 1 — 2p~(1+5), 250
mac [ — ppes| < 2K max s (o, log p) fn} ' + K max o, (logp) /. (528)
Combining (S27) and (S28), it follows from the union bound that
pr|max|a)} - ol | > C{(logp)/n}'/?
< pr|max il — |+ max )i — pit] > O{(ogp) /n}!/?
<2 ta+ph. O
Proof of Proposition 6. It is easy to check that for any p/ and p” such that 1/ — p’ > 0,
U (Zi —w) —¥u(Zi — ") 2 (W' = 1)WZ; — " < H,Z; — ' > —H),
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where 7 (+) is defined in (11). We consider the cases p > il and i > pin turn. If g > g,

we obtain

?

H 1 & R i 1|1

w i < 'nﬁH >~ = i > >‘ = G| i
(S29)

where pff =n=15°"  1(Z; — i¥ < H, Z; — p > —H) and the last equality follows from

the definition of fff. If i >y, we obtain a similar expression to (S29) but with

P =nt3" W(Z —p< H, Z — ! > —H). With both definitions of pf, p >1—

n~t3"%  1(|Z; — p| = H). Hence, by Bernstein’s inequality followed by Markov’s inequal-

ity, with probability at least 1 — 6 /2,

~ 21og(26~1 log(26~1
pH>1—pr(!Zi—m>H)—{ Bl )}— B(207)

n 3n
2log(2071) log(26~1)
= ]_ — ZZ - L+e > o - o
pr{| I log(20—1) n 3n
~1 -1
Jq_ Aog(267h) {210g(25 )}_ (S30)
3n n

It remains to bound n=1 Y1 | ¥y (Z; — p). Note that

E{¢n(Zi — )} = E{(Zi — W)1(|Zi — pl < H)} + HE{sgn(Z; — p)1(1Z; — p| > H)}
< E{(Zi —)U(|Z; — p| > H)} + E{|Zi — pl1(|Z; — p| > H)}
<2E(|Zi — p['"H™)

2
He

N
E

Therefore, by Bernstein’s inequality, with probability at least 1 — /2,

1—¢ -1 -1
20 20H ¢ log(206 )} N Hlog(26 ) (S31)

1 n
- Zi —u) < —
n;w}[( 2 H5+{ n 3n

Combining (S29)—(S31) and Bonferroni’s inequality, with probability at least 1 — &,

g 4log(2671) 2log(26~ 1) 2 =1rgy 20H¢log(2071) 1/2 Hlog(2671)
A=< |l — — —+ +—"
3n n H n
[ 4log(207)  f2log(26- )\ ¥ 7+ 2 J1/(14e) {log(25_1)}5/(1+€)
3n n 3 n '

(S32)

Finally, it follows from n > 121log(20~!) that 41log(26~")/(3n) — {2log(26~1)/n}/2 < 1/3
and therefore (S32) gives

il =< T+v2 vl/(1+s){log(25‘1)}5/(1+a)

= 2 n

with probability at least 1 — 4. O
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Proof of Theorem 3. Using Corollary 1 and the arguments of Proposition 3, we obtain the
elementwise max norm bound

pr [mﬁx |Gun — 0| < K{(logp)/"}s/(zﬁ)} >1-0@pb).

The proof is completed by inspection of the arguments given for the proof of Theorem 1. O

Proof of Theorem 4. Using Corollary 1 and the arguments of Proposition 4, we obtain the
elementwise max norm bound

pr [mu%X\(iHQ* — Ip)u| < K{(logp)/n}f/@“)] >1-0@pL)

The proof is completed by inspection of the arguments given for the proof of Theorem 2. O

S2. DISCUSSION

We first discuss Theorems 1 and 2 by emphasizing the consequences of the technical condi-
tions we impose on the paramater spaces. We then justify a technical condition required in the
proof of Proposition 4. Finally, we show that pilot estimators meeting Condition 1 but not Condi-
tion 3 lead to consistent estimation of the precision matrix with suboptimal rates of convergence.

S2-1.  Technical conditions of Theorems 1 and 2

In Theorems 1 and 2, we assume that the diagonal elements of ¥* and 2* are bounded away
from zero and infinity. In this work, we prioritize the relaxation of sub-Gaussian assumptions as
we believe they are unrealistic in high-dimensional settings.

Our assumption min, (o) = > 0, in Theorem 1, is very similar to the one appearing in
equation (14) of Cai & Liu (2011). In that paper min,, , var(X,X,) > 7 > 0 is assumed, even
when X is multivariate normal. Note that our assumptions on min,, o, and max,, o, are also
implied by 0 < ¢ < Apin(X*) < Amax(X*) < C < oo. The latter is arguably a rather mild reg-
ularity condition, which has appeared in many papers (e.g., Bickel & Levina, 2008; Rothman
et al., 2009; Fan et al., 2013).

S2-2.  Bounding the max-norm error of the partial population covariance matrix
In Proposition 4 we verified that the Huber estimator satisfies Condition 3 under the assump-
tion that || X g Q* — I||max = O[{(log p)/n}/?]. The following lemma gives three sufficient con-
ditions that guarantee this max-norm error bound.

LEMMA S10. Assuming E(X) = 0 and log p = o(n), under either of the following scenar-
ios we have that || S — I||max = O[{(logp)/n}'/?] for H = K (n/logp)*/?, where K is a
large enough constant.

(1) For any v € RP, X" is sub-Gaussian with parameter /i(%”l/ 2, ie, E{exp(tX™)} <
E{exp(t?k3||v||3/2)} for any t € R. Furthermore, logp = O(n®) and M,,, = O(n") for
some o € [0,1) and T > 0.

(i) Forallu=1,...,p, E(X2}) < oo and M, , = O(1).

(iii)) For all u,v=1,...,p and €€ (0,1), we have E(|X,X,|*"®) <oo and M,, =
O{(n/log p)*/?}.
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Proof. First note that

(CH)uw —L(u=v)| = [(¢)Tw* — 1(u =)

p
Z |O-1I;§cwl§v - ]l(u = U)
k=1

p
=Y B{XuXp 1(|XuXi| < H)}wjs, — L(u = v)
k=1

E{X, Xy 1(|XuXk| > H)}ojy

310 —

M@

i

1

p
< max B{| X, Xp| 1(1 X0, X > H)}>  Jwi,|
k=1
< My pmax E{| Xy Xe| 1(|XuXe| > H)J. (S33)

We will complete the proof by separately showing that the right-hand side of the last inequality
is o(1) under the three different settings of the lemma.

sis (1) First we rewrite X, X, as a quadratic form X, X}, = X" BX, where B is ap X p matrix with
B, = By = 1 and zeros in all other components. Exploiting the sub-Gaussian tails of X
and Theorem 2.1 of Hsu et al. (2012), we see that for t > 2,

pr{|Xu Xy — E(XuXz)| > 265t} < exp(—t). (S34)
Applying the Cauchy—Schwarz inequality followed by the triangle inequality and (S34), we
obtain
320 E{’XuXk’ ]1(‘XuXk’ > H)}
<A{B(XuXi) P {pr(| XXy > H) P2
<A{B(XuXi) P2 {pr(| XXy — E(XuXp)| > H — |E(X X)) }/?
<A{E(XuX3)? /2 (exp[—{H — | E(X, Xy)[}/ (265)]) "/
= O exp{—c(n/logp)'/*}]
a5 = O{exp(—nl_a)}

for some constant ¢ > 0. Combining this exponential tail decay bound with (S33), we see that
the claimed result holds as long as M,, , = O(n") where 7 > 0.
(i) Applying the Cauchy—Schwarz, triangle and Chebychev’s inequalities gives

E{|Xu Xy 1(1XuXy| > H)}
(BUXX0 P pr( XX > H)P2
{E(XuXk)Q}l/Q{pl"UXuXk — E(X Xy)| > H— |E(XuXk;)‘}1/2

{B(XuXg) 2}/ {var(X, X) }1/2
|H — |E(X.X)]

ol

Using this result and M,, , = O(1) in (S33) establishes the second claim.

330

<
<

N
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(iii) Applying the Cauchy—Schwarz inequality yields

B{IX., X4 1( X, X,| > H)}

= F{| X, Xk| 1(| XX > H)1(| X, Xi| > H)}

< [B{(XuXp)? 1(| Xu Xk > H) Y {pr(| X, Xy| > H)}Y2 (835)

Furthermore,
E{(X,Xp)? 1(| X, Xy| > H)} = B{| X0 Xe [>T X0 X3¢ 1(| X Xy > H)}
< B(IXuXp**)H*

e/2
n

and by the triangle inequality followed by Markov’s inequality we obtain
pr(]XuXk\ > H) < pr{\XuXk — E(XuXk)‘ > H — ’E(XuXk)’}
= pr[|XuXp — E(XuXp)[2** > |H - |E(XX3)| |77
_ B{Xu X — B(X, X))
2
|H — | B(X, Xy

1+e/2
:0{ (1057”) } (S37)

From (S35), (S36) and (S37) we see that
1o (1+e)/2
B 10X > 0) = of (E2) .

which, combined with M,, , = O{(n/log p)*/?} and (S33), verifies the third claim. O

Scenarios (i) and (ii) of the above lemma are benchmark settings under which other pilot
estimators satisfy Condition 3. More specifically, on the one hand, (i) assumes sub-Gaussian tails
and is therefore a scenario where the sample covariance leads to optimal rates of convergence
(Cai et al., 2016); on the other hand, (ii) entails that M, ;, is bounded, and, as mentioned in § 3 of
the main paper, in this case the three robust pilot estimators presented in the paper can be shown
to satisfy Condition 3 while the sample covariance fails as shown in Proposition 1. Scenario (iii)
is the most interesting as it allows for both heavy tails and a diverging M,, .

S2.3.  Convergence rate of pilot estimators that satisfy Condition 1 but not Condition 3

The following proposition shows that pilot estimators satisfying Condition 1 but not Condi-
tion 3 can still lead to consistent precision matrix estimators but with a slower rate.

PROPOSITION S1. Suppose that Conditions 1 and 4 are satisfied. Under the scaling condition
logp = o(n) we have, for a constant Cy > 0,

. ~ X _ log p\ (1-q)/2
ot pr{ 190 - @ < Cantz e, (2 o

where ey, ;, is a deterministic sequence that decreases to zero as n,p — oo and Q is the robust
adaptively constrained {1-minimization estimator described in (7)—(10) of the main paper with

Mnp = MM, ,{(logp)/n}'/? and \ > 0.
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5o QQ Plot of Sample Data versus Standard Normal
T T T T T T T T T

Quantiles of Input Sample
\

IS
IS
T

Fig. S1. QQ-plots for the three genes ME1, IRF3 and ACSLI1.

Proof. We only sketch the arguments since they are essentially the same as those for The-
orem 2. Following (S4) and the subsequent arguments but using the weaker bound ||XQ* —
I||lmax = O(M,, ,{(log p)/n}'/?), we can show that with probability 1 — &, ,

~ 1/2
”Q_Q*Hmax<CM,sp(logp) /
’ n

for some constant C' > 0. Then it follows from Lemma S2 that on an event of probability at least
L= npe Q= Q2 < | — Q1 < CoM2, e (log p/n) 1=9/2, O

S3. ADDITIONAL PLOT FOR THE REAL-DATA EXAMPLE

Figure S1 shows a QQ-plot of the three genes (ME1, IRF3 and ACSL1) whose expression
contains outliers.
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