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SUMMARY 15

Generalized linear models often have a high-dimensional nuisance parameters, as seen in applications
such as testing gene-environment interactions or gene-gene interactions. In these scenarios, it is essential
to test the significance of a high-dimensional sub-vector of the model’s coefficients. Although some ex-
isting methods can tackle this problem, they often rely on the bootstrap to approximate the asymptotic
distribution of the test statistic, and thus are computationally expensive. Here, we propose a computation- 20

ally efficient test with a closed-form limiting distribution, which allows the parameter being tested to be
either sparse or dense. We show that under certain regularity conditions, the type I error of the proposed
method is asymptotically correct, and we establish its power under high-dimensional alternatives. Exten-
sive simulations demonstrate the good performance of the proposed test and its robustness when certain
sparsity assumptions are violated. We also apply the proposed method to Chinese famine sample data in 25

order to show its performance when testing the significance of gene-environment interactions.

Some key words: Dense parameter; U-statistics; Model misspecification.

1. INTRODUCTION

Testing hypotheses for high-dimensional generalized linear models is a basic task of statistical infer-
ence. It is especially important to accurately and efficiently test the significance of a high-dimensional 30

sub-vector of the model coefficients when the nuisance parameter is also high-dimensional. One appli-
cation of this problem is testing the significance of interaction terms in a high-dimensional generalized
linear model–for example, in studies of gene-environment or gene-gene interactions, which contribute to
many complex diseases and traits in addition to their own primary effects.

In statistics, a strong heredity condition means that an interaction is significant only if both of the main 35

effects are important (Hamada & Wu, 1992). A naive two-stage application of the strong heredity con-
dition first selects covariates with significant main effects, and then examines the significance of their
interactions (Wu et al., 2009). The heredity condition is important in some methods dealing with inter-
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action screening in a high-dimensional setting (Bien et al., 2013; Hao & Zhang, 2014). However, the
heredity condition might not be realistic in practice: there are many variables that are not important in40

main effects, but whose interactions affect outcomes and must be accounted for. In many genetic studies,
the focus is on testing the interaction between a set of high-dimensional single-nucleotide polymorphisms
(SNPs) and an environmental variable; in this scenario, we must include all SNPs in this set into the model
as nuisance effects (Barnett et al., 2017). The model under the null hypothesis is thus high-dimensional
when the interest is in testing the gene-environment or gene-gene interactions. The method in this paper45

is suited for this task.
There are a number of approaches in the recent literature dealing with testing parameters in the high-

dimensional generalized linear model. This related scholarship can be classified into three categories
depending on the dimensions of the testing and nuisance parameters.

Category 1: testing a low-dimensional parameter with a high-dimensional nuisance parameter. For this50

type of inference, Zhang & Zhang (2014) and van de Geer et al. (2014) proposed desparsified lasso
approaches, and Ning & Liu (2017) developed a decorrelated score test. Shi et al. (2019) proposed partial
penalized likelihood ratio, score, and Wald tests for testing some low-dimensional linear combinations of
parameters for high-dimensional generalized linear models and showed that these tests are asymptotically
equivalent. Sun & Zhang (2020) proposed a modified profile likelihood test, where the test statistic was55

constructed by penalizing only the high-dimensional nuisance parameter. Sur & Candes (2019) considered
the maximum likelihood estimate of the logistic regression in which sample and variable sizes become
increasingly large in a fixed ratio; they show that the classical maximum likelihood estimate theories no
longer work in this regime and develop a theory for high-dimensional logistic regression models.

Category 2: testing a high-dimensional parameter with a low-dimensional nuisance parameter. For this60

type of inference, Geoman et al. (2011) proposed a scoring procedure that is applicable to testing general-
ized linear models with canonical link. This approach was modified by Guo & Chen (2016), who retained
the power of the original test while obtaining a simpler asymptotic distribution for the test statistic and ac-
commodating a wide range of link functions. Zhang & Cheng (2017) proposed simultaneous inference on
a high-dimensional sparse linear model, which requires a desparsified lasso estimator for the full model to65

construct the test statistics. Barnett et al. (2017) proposed a generalized higher criticism method for testing
associations between sets of SNPs and particular disease outcomes under generalized linear models. Ma
et al. (2019) considered global and simultaneous hypothesis tests for high-dimensional logistic regression
models. In general, the methods in this second category apply only to the case where the model under the
null hypothesis is low-dimensional.70

Category 3: testing a high-dimensional parameter with a high-dimensional nuisance parameter. This
inference, which is the inference of interest here, can be addressed by extending some existing meth-
ods. For example, the test developed by Zhu & Bradic (2018) can be used for this type of inference by
choosing appropriate loading vectors, although this method only applies to linear regression models. For
generalized linear models, an extension of the decorrelated score test by Ning & Liu (2017) can be used,75

but there are two limitations for this approach. First, it is computationally expensive, as it needs to utilize
the multiplier bootstrap procedure (Chernozhukov et al., 2013) to approximate the limiting distribution.
Second, it requires the testing parameters to be sparse. Based on our simulation studies in Section 4, these
limitations potentially lead to inflation of type I error and loss of power in high-dimensional generalized
linear models. Wu et al. (2020) proposed an adaptive interaction sum of powered score test. To main-80

tain high statistical power across a wide range of alternatives, this approach depends on a good choice
of power index, but in practice, the optimal choice is unknown and requires computationally expensive
ad-hoc methods to find it. In addition, their approach only allows the dimension of testing parameters to
be in a polynomial order of the sample size.

For the generalized linear model, there are very few works on testing a high-dimensional parameter with85

a high-dimensional nuisance parameter. To efficiently fulfill this important inferential task, we propose a
new approach that extends the methods proposed by Geoman et al. (2011) and Guo & Chen (2016). Our
approach computes the test statistic using estimates from the model under the null hypothesis instead
of the full model, which allows the nuisance parameter to be in high dimension. Unlike many existing
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methods, our method does not require a sparsity assumption on the testing parameter. This relaxation 90

makes the proposed method applicable to many practical problems where the sparsity assumption may
not be reasonable. Importantly, the limiting distribution of our test statistic has a closed form, which is
computationally attractive.

The proposed approach has some important applications. For example, it can be used to test whether
complex models are necessary, or whether simple models with linear terms only will give accurate results. 95

High-dimensional models, such as partial linear additive models (Lian et al., 2011; Maidman & Wang,
2018) and quadratic regression models (Hao et al., 2018), sometimes require terms in addition to the linear
terms; for example, partial linear additive models may require spline functions, and quadratic regression
models may require quadratic and interaction terms. However, these additional terms require extra efforts
in estimation, and the increased estimation errors may offset the improvement in prediction. Thus, it is 100

crucial to first examine if these additional terms are needed. Our method provides an inferential tool for
answering this important question. In other words, the proposed test can serve as a goodness-of-fit test to
compare two high-dimensional nested models in practical applications.

However, the proposed method does have some limitations. First, under the alternative hypothesis, the
proposed method must perform its estimation for a pseudo parameter that comes from the misspecified 105

model. This pseudo parameter is not the parameter in the true model, but the estimator must still converge
to this pseudo parameter. Therefore, an additional assumption on the convergence of the estimator to
the pseudo parameter is needed; see Assumption 6. This assumption is empirically difficult to verify for
an arbitrary generalized linear model in practical applications. Second, in order for the proposed test to
have non-trivial power asymptotically, the dimension of the testing parameter is only allowed to grow 110

polynomially with the sample size. For more details, please see the discussion after Theorem 3.
The following notations will be used in this paper. X denotes a random variable or a vector of ran-

dom variables, X is the design matrix, and x is a observation of X . A p dimensional random vector
X is sub-Gaussian with variance proxy σ2, if for any v ∈ Rp such that ‖v‖2 = 1, P (|vTX| > t) ≤
2 exp(−t2/2σ2) for every t ≥ 0. The smallest and largest eigenvalue of matrix A are λmin(A) and 115

λmax(A) respectively. For β = (β1, . . . , βp)
T ∈ Rpβ , we define ||β||d = (

∑pβ
i=1 |βi|d)1/d for 1 ≤ d <

∞. ||β||0 represents the number of nonzero coordinates of β. For a matrix A = [aij ], its maximum
norm is ‖A‖∞ = maxij |aij |. We denote an � bn if an = o(bn); an � bn if bn = o(an); an = O(bn), if
an ≤ Cbn for some C > 0; and an � bn if an = O(bn) and bn = O(an). For a given likelihood function
l(θ) of θ = (γT , βT )T , we define the gradient 5θl(θ) = ∂l(θ)/∂θ with partitions 5γ l(θ) and 5βl(θ), 120

and the Hessian matrix Iθ = E{∂2l(θ)/∂θ2}, where Iγβ and Iββ are the corresponding partitions of Iθ.

2. METHODS

Assume the random scalar Y is from an exponential family with the probability density function taking
the canonical form fY (y; η) = exp{yη − b(η) + c(y)} for known functions b(·) and c(·), and canonical
parameter η. The dispersion parameter is not considered because we only need to model the mean regres- 125

sion and estimate regression coefficients. However, the results in this paper are still valid if the dispersion
parameter is considered (McCullagh & Nelder, 1989). We are interested in the class of generalized linear
models:

g(µ) = zT γ + wTβ, (1)

where µ = E(Y | Z = z,W = w) = b′{η(z, w)}, g(·) is the link function, Z and W are vectors of ran-
dom variable, and γ ∈ Rpγ and β ∈ Rpβ are corresponding vectors of coefficients respectively. 130

We aim to have simultaneous inference on parameter β, and treat γ as a nuisance parameter. Without
the loss of generality, the hypothesis to be tested is:

H0 : β = 0 versus Ha : β 6= 0. (2)

It is straightforward to extend the method to test H0 : β = βø for other specific hypothesized values βø.
In this article, the subscript ø stands for the model under the null hypothesis. As discussed in Introduction
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Section, when the dimension of γ grows with the sample size, there lacks statistical methods to test a high-135

dimensional β. Consequently, we concentrate on that both γ and β in model (1) are high-dimensional in
this paper.

Suppose {(zi, wi, yi), i = 1, . . . , n} are independent and identically distributed copies of (Z,W, Y ).
The classical score test is not applicable for testing hypothesis (2) in the high-dimensional setting be-
cause the limiting distribution of the Hessian matrix is intractable. To address this issue, Geoman et al.140

(2011) proposed a standardized score function in quadratic form to test high-dimensional β with low-
dimensional γ. Under model (1), the specific form of the test statistics of Geoman et al. (2011) is
[1/n

∑n
i=1

∑n
j=1{(yi − µøi)(yj − µøj)w

T
i wj}]/[1/n

∑n
i=1{(yi − µøi)

2wTi wi}], where µøi is the con-
ditional expectation E(Y | Z = zi) under the null hypothesis. Later, this test statistic was modified by
Guo & Chen (2016) to be 1/n

∑n
i6=j{(yi − µøi)(yj − µøj)w

T
i wj}, to improve the performance of the145

test for diverging pβ . It also allows for a wide range of link functions.
The methods by Geoman et al. (2011) and Guo & Chen (2016) were designed for testing hypothesis

(2) for a low-dimensional γ. We extend their works for the case that γ is high-dimensional. We propose
an asymptotic α-level test that rejects H0 if |Ûn|/

√
2R̂n > z1−α/2 where

Ûn =
1

n

n∑
i6=j

{(yi − µ̂øi)(yj − µ̂øj)w
T
i wj}, R̂n =

1

n(n− 1)

n∑
i6=j

{(yi − µ̂øi)
2(yj − µ̂øj)

2(wTi wj)
2},

µ̂øi = g−1(zTi γ̂ø), and γ̂ø is the estimate from the model under the null hypothesis g(µ) = zT γ.150

Compared with some existing works, the proposed approach has certain advantages. Using a similar
spirit to the profile score function in a low-dimensional setting, Ning & Liu (2017) developed a decorre-
lated score function to test hypothesis (2) by projecting the score function with respect to β to the linear
span of the score function with respect to γ, which has the form S(β) = 5βl(γ, β)− {IβγI−1

γγ } 5γ
l(γ, β), where l(γ, β) is a general loss function. In their work, they need a consistent estimator for (γ, β)155

with fast convergence rate. Thus, their method needs to impose a sparsity condition on β. Moreover,
the methods by Ning & Liu (2017) and Sun & Zhang (2020) also need to estimate IβγI−1

γγ to construct
the test statistics. Similarly, the works involving desparsified Lasso approach (Zhang & Zhang, 2014;
van de Geer et al., 2014; Zhang & Cheng, 2017) require estimating I−1

(γ,β). They proposed to solve a
column-wise penalized optimization problem to obtain an estimator for the Hessian matrix, which could160

be computationally demanding in high-dimensional setting. For example, when pγ = pβ = 1000, a to-
tal of 1000 minimization problems has to be solved, each of which estimates one column of IβγI−1

γγ .
For each optimization problem, it also needs to search for the optimal tuning parameter. In addition, to
test the high-dimensional parameter, the method by Ning & Liu (2017) and Zhang & Cheng (2017) re-
quires a multiplier bootstrap to approximate the limiting distribution of the test statistic. In contrast, our165

method does not have any constraint on β since we only need to estimate γ from the model under the
null hypothesis. Moreover, our approach is computationally more efficient, as it only needs a single fitting
for the model including nuisance parameter only, and the limiting distribution of the test statistics has a
closed-form.

In comparison with Geoman et al. (2011) and Guo & Chen (2016), a crucial difference is that they170

only allow the nuisance parameter γ to be low-dimensional, but we allow its dimension to diverge. Thus,
different from their approaches, we need to estimate γ in high dimension to construct the test statistics.
We obtain the estimate γ̂ø by solving a penalized likelihood problem

γ̂ø = argmin
γ

(
− 1

n

n∑
i=1

[
yiη(zTi γ)− b{η(zTi γ)}

]
+ ζ||γ||1

)
, (3)

where we impose an L1-penalty on γ in order to have a sparse solution, and ζ is the tuning parameter. The
optimization (3) can be achieved by standard coordinate gradient descent algorithms, which have been175

shown to be numerically stable and efficient (Friedman et al., 2010). Additionally, there are several other
approaches can be used to obtain γ̂ø, including the Dantzig selector (Candes & Tao, 2012), square-root
lasso (Belloni et al., 2011), or scaled lasso (Sun & Zhang, 2012). For all these methods, an important job in
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practice is to select the optimal value for the tuning parameter, which impacts the convergence rate of the
estimates. There are various methods for tuning parameter selection, such as K-fold cross validation and 180

Bayesian information criteria, among many others. We use K-fold cross validation to choose the optimal
value for ζ.

The high dimensionality in the nuisance parameter poses great challenges in understanding the theoret-
ical properties of the test. The theories established in Geoman et al. (2011) and Guo & Chen (2016) are
not directly applicable. We will elucidate this in the following section. 185

3. ASYMPTOTIC PROPERTIES

In this section, we will first build the asymptotic type I error rate of the proposed test, explore the
consequence of model misspecification in high-dimensional setting, and then examine the power of the
test. Denote θ = (γT , βT )T as the true model parameters, such that ||γ||0 = sγ and ||β||0 = sβ . Let X =
(ZT ,WT )T and ωγ = ∂g−1(zT γ)/∂(zT γ). To build the asymptotic properties of the test, we need the 190

following assumptions.

Assumption 1. Assume that Z and W are sub-Gaussian vectors, and ε = Y − ZT γ −WTβ is a sub-
Gaussian variable.

Assumption 2. The inverse link function g−1(·) is continuously differentiable.

Assumption 3. Under H0, there exist positive constants c1 and C1 such that 0 < c1 ≤ 195

infγ∗∈B(γ,r) λmin{E(ωγ∗XXT )} ≤ supγ∗∈B(γ,r) λmax{E(ωγ∗XXT )} ≤ C1 <∞, where B(γ, r) is a
ball centered at γ with radius r = C2sγ log pγ/n for a constant C2.

Assumption 4. Under H0, it holds that ||γ̂ø − γ||2 = OP {(sγ log pγ/n)1/2} and sγ log pγ/n = o(1).

Assumption 5. Under H0, with probability close to 1, ‖γ̆Jc0 ‖1 ≤ C3‖γ̆J0‖1, for a positive constant C3,
where γ̆ = γ̂ø − γ, J0 is the set of nonzero coefficients of γ, and γ̆J0 and γ̆J

c
0 are sub-vectors of γ̆ with 200

indices in J0 and Jc0 respectively.

The sub-Gaussian condition in Assumption 1 is widely used in the literature (Fan et al., 2017; Lugosi
& Mendelison, 2019). Assumptions 2 is an ordinary regularity condition for generalized linear model. In
particular, Assumption 3 requires that the eigenvalues of the expected Hessian matrix to be bounded away
from zero and infinity when γ∗ varies within a small neighborhood of γ. When sγ log pγ/n→ 0, this 205

assumption is mild since it is often assumed that c < λmin{E(ωγXX
T )} ≤ λmax{E(ωγXX

T )} < C
for some positive constants c and C (van de Geer et al., 2014; Ning & Liu, 2017; Zhu & Bradic, 2018).
Assumption 4 requires the estimation error of γ̂ø in the order of OP {(sγ log pγ/n)1/2}. With a suitable
choice of the tuning parameter, Bickel et al. (2009) and Buhlmann & Van de Geer (2011) have proved that
the proposed estimate in (3) satisfies Assumption 4. As shown in the literature, such a convergence rate 210

can also be achieved by Dantzig selector (Candes & Tao, 2012; Castro, 2013), square-root lasso (Belloni
et al., 2011), or scaled lasso (Sun & Zhang, 2012; Lederer et al., 2019). Thus, any of these methods can be
applied to obtain γ̂ø. The inequality shown in Assumption 5 is general and leads to restricted eigenvalue
condition and compatibility condition in high-dimensional literature (Bickel et al., 2009; Buhlmann &
Van de Geer, 2011). Under these conditions, we are able to prove that the size of the proposed test is 215

asymptotically at the nominal level. Define ΛεW = tr[E{var(ε)WWT }2], we have the following Theorem
for the asymptotic size of the proposed test.

THEOREM 1. UnderH0, if Assumptions 1–5 hold, sγ log pγ/
√

2ΛεW = o(1), and sγ log pβ/n = o(1),
then

lim
n→∞

sup
‖γ‖2=O(1)

P

(
|Ûn|/

√
2R̂n > z1−α/2

)
= α.

The result of Theorem 1 is impacted by the dimension pβ through the two conditions: 220

sγ log pγ/
√

2ΛεW = o(1) and sγ log pβ/n = o(1). Let’s assume a simple condition that ΛεW =
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C4p
a
β with a ∈ [1, 2) for a positive constant C4, to understand the role of pβ in the condition

sγ log pγ/
√

2ΛεW = o(1). The constant a is related to the dependence structure among W , e.g., as-
sume a = 1 if all components of W are uncorrelated with each other. A larger value of a is needed
if correlations among W are stronger. It can be seen that the dimension pβ has to diverge to meet225

the condition sγ log pγ/
√

2ΛεW = o(1). The sparsity of the nuisance parameter is constrained by three
conditions: sγ log pγ/n = o(1), sγ log pγ/

√
2ΛεW = o(1), and sγ log pβ/n = o(1). The correct asymp-

totic type I error for the testing method by Zhang & Cheng (2017) requires ultra-sparsity assump-
tion: s�

√
n/ log p. Instead, our proposed test is general and still has the correct type I error when√

n/ log pγ � sγ � n/ log pγ and pβ ≥ C5n
2/a for a positive constantC5. But it may not be the case for230

the Zhang and Cheng’s method. Under the ultra-sparsity, sγ log pγ/
√
n = o(1), we have correct asymp-

totic type I error when pβ ≥ C5n
1/a. The condition sγ log pβ/n = o(1) define the relationship between

the sparsity of nuisance parameter and the dimension of testing parameter: smaller sγ allows larger pβ . For
example, pβ = O{exp(

√
n)} is allowed under the ultra-sparsity, sγ log pγ/

√
n = o(1). In summary, the

condition sγ log pγ/
√

2ΛεW = o(1) implies a lower bound, and the condition sγ log pβ/n = o(1) implies235

a upper bound for pβ .
Theorem 1 implies that the validity of the proposed test does not beg for selection consistency or a “beta-

min” condition on the minimal signal strength. Although the focus of this paper is the high-dimensional γ,
Theorem 1 still applies when the dimension of γ is fixed. The classical approaches for fixed dimensional
generalized linear model can be applied to obtain γ̂ø, and it is natural to assume ||γ̂ø − γ||22 = OP (1/n).240

In this special case, the problem is similar to the one considered by Guo & Chen (2016). However, the
related asympotic behavior of the test statistics in this article does not automatically reduce to that by Guo
& Chen (2016), because there are differences in model specifications and assumptions between this article
and Guo & Chen (2016).

The rest of this section examines the asymptotic power of the proposed test. We first introduce some245

notations and assumptions. Let γø be the minimizer of the Kullback-Leibler divergence defined asE{L0 −
Lø(γ)}, where L0 is the log-likelihood function for the true model under the alternative hypothesis and
Lø(γ) is the log-likelihood function for a working model that only uses Z to predict Y . Under Assumption
2, Theorem 5 in Lv & Liu (2014) shows that γø also minimizes E{−Lø(γ)}. We propose to use the M -
estimator γ̂ø defined in (3) to estimate γø. Denote θø = (γTø , 0

T )T , θ̃ = θ − θø = (γT − γTø , βT )T , ωθ =250

∂g−1(xT θ)/∂(xT θ), and ω∗θ = {g−1(xT θ)− g−1(xT θø)}/xT θ̃. We consider the following assumptions.

Assumption 6. Under Ha, the estimate γ̂ø satisfies ||γ̂ø − γø||2 = OP {(sø
γ log pγ/n)1/2} and

sø
γ log pγ/n = o(1), where sø

γ = ||γø||0.

Assumption 7. ||Xθ0||∞ = O(1) and ||Zγø||∞ = O(1), where X and Z are the n× p and n× pγ design
matrices.255

Assumption 8. Under Ha, there exist constants c6 and C6 such that 0 < c6 ≤ λmin{E(ωθXX
T )} ≤

λmax{E(ωθXX
T )} ≤ C6 <∞, 0 < c6 ≤ λmin{E(ωγø

XXT )} ≤ λmax{E(ωγø
XXT )} ≤ C6 <∞,

and 0 < c6 ≤ λmin{E(ω∗θXX
T )}.

Assumption 9. UnderHa, with probability close to 1, ‖γ̈J0
ø
c

‖1 ≤ C7‖γ̈J
0
ø ‖1, for a positive constantC7,

where γ̈ = γ̂ø − γø, and J0
ø is the set of nonzero elements of γø.260

Assumption 6 is an important assumption for deriving the power of the proposed test. It requires γ̂ø to
converge to the pseudo parameter γø. In Assumption 6, we assume γø is exactly sparse. It can be further
relaxed to a weak sparsity assumption as to be discussed below Theorem 2. We acknowledge that this
assumption is unusual, since most sparsity assumptions are imposed on the true parameter γ. For that
reason, we quantify their difference γ̃ = γ − γø in Theorem 2. Assumptions 7 and 8 are some regularity265

conditions. Assumption 9 is analogous to Assumption 5 to ensure γ̈ belongs to a cone when the alternative
hypothesis holds.

THEOREM 2. For generalized linear model (1), suppose E{L0 − Lø(γ)} = O(1) under Ha,
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(a) If Assumption 2 holds and E(ω∗θZZ
T ) is invertible, then γ̃ = γ − γø =

{E(ω∗θZZ
T )}−1E(ω∗θZW

T )β; 270

(b) If Assumptions 2 and 8 hold, then ||γ̃||2 = O(||β||2).

Despite the recent advances in high-dimensional statistics, few works (Buhlmann & Van de Geer ,
2015) have studied the consequence of model missepecification for high-dimensional models. Theorem 2
can be viewed as an exploration in this direction. Theorem 2(a) shows the functional relationship between
γ̃ and β. It requires a mild condition that E(ω∗θZZ

T ) is invertible. It provides insights about Assumption 275

6. Theorem 2(b) shows that ||γ̃||2 is bounded by O(||β||2). Thus, when ||β||2 is small, γø is still close to
the true γ under Ha. It also implies that γø could be weakly sparse, if not exactly sparse, in the sense that
many of its elements are small. Based on Negahban et al. (2012), in Supplementary Materials, we show
that under the weak sparsity assumption, we have ||γ̂ø − γø||2 = OP

{√
Rq(log pγ/n)1/2−q/4} = oP (1)

for some q ∈ [0, 1], where Rq is a weak sparsity measurement. Even though this convergence rate is 280

different from the one in Assumption 6, we are still able to establish the power of our test as long as
||γ̂ø − γø||2 = oP (1); see Lemma S2 in Supplementary Materials. Next, we give the asymptotic power of
the proposed test.

THEOREM 3. Under Ha, if Assumptions 1, 2, 6, 7, 8, 9 hold, and sø
γ log pβ/n = o(1),

lim
n→∞

inf
||θ||2=O(1)

P

(
|Ûn|√
2R̂n

> z1−α/2

)
=


α if

n‖β‖22√
2ΛεW

= o(1), ‖β‖2 = o(1), and
søγ log pγ√

2ΛεW
= o(1);

1 if
n‖β‖22√

2ΛεW
→∞ and

√
n‖β‖22√
2ΛεW

= O(1).

Theorem 3 indicates the power of the test is determined by the magnitude of three quanti- 285

ties: n‖β‖22/
√

2ΛεW ,
√
n‖β‖22/

√
2ΛεW , and sø

γ log pγ/
√

2ΛεW . In principal, the power goes to 1 if
n‖β‖22/

√
2ΛεW diverges and

√
n‖β‖22/

√
2ΛεW is bounded. The power is equal to α if ‖β‖2 decays in

a rate such that n‖β‖22/
√

2ΛεW vanishes when sø
γ log pγ/

√
2ΛεW = o(1). To simplify the discussion, let

us assume ΛεW � paβ with a ∈ [1, 2). Under a reasonable assumption that ||β||2 � 1, Theorem 3 implies
that our method has non-trivial power when pβ � nb, where 1/a ≤ b < 2/a. However, when β is exactly 290

sparse, our proposed test requires stronger conditions than the maximum type tests (Chernozhukov et al.,
2013; Zhang & Cheng, 2017) to have nontrivial power.

The exact sparsity in Assumption 6 provides theoretical advantages to examine the power behavior of
the proposed test. Moreover, if the pseudo parameter γø is not exactly sparse, the weak sparsity assumption
would still enable us to build the asymptotic power as long as the associated convergence rate vanishes as 295

the sample size grows, see Lemma S.2 in Supplementary Materials for the details.
It is known that a confidence set for regression parameter can be constructed by inverting the accep-

tance regions of hypothesis tests. Thus our testing procedure can also be used to construct confidence set
for a high-dimensional parameter in generalized linear model. The desparsified lasso approach (Zhang &
Zhang, 2014; van de Geer et al., 2014) provided confidence interval for an individual element of regres- 300

sion parameter. However, for a simultaneous inference on the multi-dimensional regression parameter, the
width of confidence interval by desparsified lasso approach tends to be wide due to adjusting for multiple
comparison. To achieve the asymptotical efficiency, the methods by Zhang & Zhang (2014), van de Geer
et al. (2014), Zhang & Cheng (2017), and Ning & Liu (2017), require ultra-sparsity on all model parame-
ters. If the regression parameter is dense, obtaining an unbiased estimator through these methods increase 305

significantly the variance. Thus, an important implication of Theorems 1 and 3 is that: our proposed test
is particularly useful for the case that the parameter β is dense and γ is in high dimension.

4. SIMULATIONS

We assess the performance of our method using simulations from a linear model, Y = ZT γ +WTβ +
ε where ε ∼ N(0, 1), and a logistic regression, logit{p(Y = 1)} = ZT γ +WTβ. For each model, we 310

generate two scenarios for γ: sparse γ in Scenario 1, and dense γ in Scenario 2. Because the proposed
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method only requires sparsity assumption on γ, Scenario 1 is used to assess the type I error and the local
power of the proposed method when the sparsity assumption is satisfied, and Scenario 2 is designed to
evaluate the robustness of our method when the sparsity assumption is violated.

In Scenario 1, we choose pγ = pβ , and generate X = (ZT ,WT )T from a multivariate Gaussian distri-315

bution N(0,Σ), where the covariance matrix follows the Toeplitz design Σjk = 0.6|j−k|. We let the first
5% elements of γ to be 0.5 and 1 for linear and logistic models respectively, and the rest be zeros. There
are three choices for the values of β: Setting 1 (assessing type I error): all values of β are zeros; Setting
2 (assessing power with spare alternative): the first 5% elements of β has value 0.5 and 1 for linear and
logistic models respectively, and the rest are zeros; Setting 3 (assessing power with dense alternative): all320

elements of β are equal such that ||β||2 = ||γ||2. In each setting, we generate datasets for n = 200 and
p ∈ {400, 4000, 8000}, where p = pγ + pβ . For each combination of n and p, 500 datasets are generated.
We fit the data simulated from Scenario 1 using two approaches: (1). the proposed method; (2). the multi-
plier bootstrap extension of the decorrelated score test by Ning & Liu (2017). We choose γ = 0.05 in all
tests. The empirical type I error and power are shown in Figures 1 and 2.325

In the second scenario, the nuisance parameter is dense with a small proportion of covariates have
relatively strong signal while the rest are weak. Moreover, there are sparse interactions. Specifically, γ is
dense with 10% of elements equal to 1, the rest equal to 0.1, and Zi ∼ N(0, 1) for i ∈ {1, . . . , pγ}. The
vector W is pγ(pγ − 1)/2 dimensional including all pairwise interaction terms derived from components
in Z. To assessing the power of the test, we randomly assign 2% elements in β to be 1, and the rest to330

be 0. That is, the data structure does not follow the strong heredity condition in interactions. The goal
is to apply the proposed method to test the existence of interactions with null hypothesis H0 : β = 0.
The sample size is 200. The number of covariates are pγ ∈ {50, 100, 200}, which results in a very high
dimension in interaction terms to be tested compared to the sample size, i.e., pβ ∈ {1225, 4950, 19900}
respectively. We generate 500 datasets for each value of pγ , and only fit data simulated from Scenario 2335

using the proposed method. The empirical type I error and power are summarized in Figure 3.
It can be seen from Figures 1 and 2 that the proposed method performs reasonably well in terms of

the empirical type I error rate even the dimension of β is very high. It agrees with Theorem 1. The
empirical power of the test shown in Figures 1 and 2 agrees with Theorem 3 in the following points:
first, the power decreases when the dimension of pβ increases; 2. there is no significant difference in340

power between sparse and dense alternatives as long as ||β||2 stay the same. It can be seen that our
method performs better than the method by Ning & Liu (2017), which is not surprising. An explanation
is that the decorrelated test was originally designed for testing low-dimensional parameter with high-
dimensional nuisance parameter by Ning & Liu (2017). It can be extended to simultaneous inference on
high-dimensional parameter with high-dimensional nuisance utilizing the multiplier bootstrap procedure345

(Chernozhukov et al., 2013). However, this extension is prone to type I error inflation and loss of power.
The power of method by Ning & Liu (2017) deteriorates sharply if the testing parameter is dense, while
our method works adequately for testing dense parameter. In addition, as shown in Figure 3, the proposed
method is robust to the violation of the sparsity assumption for parameter under null space, in terms of
both the type I error rates and the power.350

5. CHINESE FAMINE SAMPLE DATA: GENE-ENVIRONMENT INTERACTION

Schizophrenia is a severe psychiatric disorder with a global life-time risk around 1% and a typical onset
in late adolescence and early adulthood. In collaboration with the University of Changchun in China,
Boks et al. (2018) included schizophrenia patients and healthy controls that had been exposed to famine
within the first 3 months of gestation based on a birth date between January 1960 and September 1961.355

A total of 74 schizophrenia patients and 79 healthy controls were assessed. Boks et al. (2018) focused on
examining the role of changes in DNA methylation in the increased risk to develop schizophrenia after
in utero exposure to famine. Data from this study have been deposited in the Gene Expression Omnibus
repository under the accession number GSE116379. We are interested in utilizing this data to demonstrate
the application of our method to identify gene-environment interactions.360
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Fig. 1: Testing Results for Data Simulated from Linear Regression in Scenario 1. Solid Circle: results for
the proposed method; Solid Triangle: results for the method by Ning and Liu (2017).
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Fig. 2: Testing Results for Data Simulated from Logistic Regression in Scenario 1. Solid Circle: results
for the proposed method propose; Solid Triangle: results for the method by Ning and Liu (2017).
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regression; Solid Triangle: results for logistic regression.
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Table 1: The Number of Significant Gene-environment Interactions using Chinese Famine Sample Data
Set. The significance is under Bonferroni adjustment: p-value< 2.34× 10−5

Interaction Total Number of Significant Interactions
DNA methylation sets × famine status 8
DNA methylation sets × gender 414
DNA methylation sets × city 12
DNA methylation sets × age 220

The phenotype variable is a binary indicator of schizophrenia. For DNA methylation, beta values (the
ratio between methylated and unmethylated probe intensities as a measure of methylation percentage)
were used in analysis. There are four environmental variables: famine (yes: 48; no: 105), gender (male: 76;
female: 77), city (city: 119; rural: 34), and age (44-51). We evenly divide the total of 427291 methylations
into 2137 sets, where each of 2136 sets has 200 methylations, and one set has 91 methylations. For each365

set, we are interested in testing if it has interaction with an environmental variable. Specifically, the model
for the kth methylation set has the form:

logit{prob(schizophrenia)}) = Zeγek + ZTgkγgk + Ze × Zgk
Tβk,

where Ze is the environmental variable, Zgk is the vector for the kth set, Ze × Zgk denotes the interaction
between the kth set and the environment variable, (γek , γ

T
gk
, βTk )T is the vector of coefficients, and k ∈

{1, . . . , 2137}. The null hypothesis of interests is H0 : βk = 0. Taking the gene-famine interactions as370

an example, we conduct a total of 2137 tests of interactions between DNA methylation sets and famine
status. This process is repeated for other three environmental variables.

We apply the proposed method to test the interactions between each DNA methylation set and each
of the four environmental variables. Figure 3 shows the distributions of the p-values for each environ-
mental variable. As shown in Table 1, among the 2137 tests, we identified that the 8, 414, 12, and 220375

DNA methylation sets have significant interactions with famine status, gender, city/rural status, and age
respectively after Bonferroni adjustment (i.e., p-value< 2.34× 10−5).
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APPENDIX

Proof of Theorem 1

We decompose Ûn as

Ûn =
1

n

n∑
i 6=j

{(yi − µi)(yj − µj)wTi wj}︸ ︷︷ ︸
IÛn

+
1

n

n∑
i 6=j

{(µi − µ̂øi)(µ0j − µ̂øj)w
T
i wj}︸ ︷︷ ︸

IIÛn

+ 2
1

n

n∑
i 6=j

{(yi − µi)(µj − µ̂øj)w
T
i wj}︸ ︷︷ ︸

IIIÛn

.

Let’s first examine the term IIÛn :

IIÛn
n

=

[
1

n

n∑
i=1

{(µi − µ̂øi)w
T
i }

][
1

n

n∑
i=1

{wi(µi − µ̂øi)}

]
− 1

n2

n∑
i=1

{(µi − µ̂øi)
2wTi wi}

390

= (γ̂ø − γ)T

[
1

n

n∑
i=1

{ziωγ∗
iw

T
i }

][
1

n

n∑
i=1

{wiωγ∗
iz
T
i }

]
(γ̂ø − γ)︸ ︷︷ ︸

II1

− 1

n2

n∑
i=1

{(µi − µ̂øi)
2wTi wi}︸ ︷︷ ︸

II2

.

Let Σ̂zωw = 1/n
∑n
i=1{ziωγ∗

iw
T
i } and Σzωw = E(Zωγ∗WT ). For each k ∈ {1, . . . , p}, Xk is sub-

gaussian by Assumption 1. ωγ∗ is bounded by Assumption 2. It indicates that ωγ∗Xk is also sub-gaussian.
It is not difficulty to see that Xkωγ∗Xj is sub-exponential for k, j ∈ {1, . . . , p} because a product of two
sub-gaussian variables is sub-exponential. From here, following the example 14.1 (page 491) and problem
14.3 (page 535) in Buhlmann & Van de Geer (2011), we can derive 395

‖Σ̂zωw − Σzωw‖∞ = τ = OP

[√
{log max(pγ , pβ)}/n

]
. (A1)

Let b be a vector of size pβ not orthogonal to γ̆T Σ̂zωw satisfying d1 ≤ ‖b‖1 ≤ D1 and d1 ≤ ‖b‖∞ ≤
D1 for constants d1 and D1, we have

γ̆T Σ̂zωwb

‖γ̆‖2‖b‖2
=
γ̆TΣzωwb

‖γ̆‖2‖b‖2
+
γ̆T (Σ̂zωw − Σzωw)b

‖γ̆‖2‖b‖2
≤ γ̆TΣzωwb

‖γ̆‖2‖b‖2
+ τ
‖γ̆‖1‖b‖1
‖γ̆‖2‖b‖2

≤ D2 + τ
‖γ̆‖1‖b‖1
‖γ̆‖2‖b‖∞

≤ D2 +D3τ
(1 + C3)‖γ̆J0‖1
‖γ̆J0‖2

≤ D2 +D4

√
sγ{log max(pγ , pβ)}

n
= D2 + o(1),

(A2)

for a positive constant D2 by Assumptions 3 and 5 and bound in (A1). Then we can derive

D2
2 ≥

γ̆T Σ̂zωwbb
T Σ̂Tzωwγ̆

‖γ̆‖22‖b‖22
=
λmax(bbT )γ̆T Σ̂zωwΣ̂Tzωwγ̆

‖γ̆‖22‖b‖22
=
γ̆T Σ̂zωwΣ̂Tzωwγ̆

‖γ̆‖22
,

which implies |II1| = OP (‖γ̆‖22) = OP (sγ log pγ/n).
Let µ = (µ1, . . . , µn) and µ̂ø = (µ̂ø1, . . . , µ̂øn). We have 400

nII2 ≤ ‖µ− µ̂ø‖2∞
1

n

n∑
i=1

(wTi wi).
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Next, we will prove that ‖µ− µ̂ø‖∞ = oP (1). Let ξn = D5sγ log pγ/n for a positive constant D5, for
t > 0, we can derive

P (‖µ− µ̂ø‖∞ > t) = P (‖µ− µ̂ø‖∞ > t, ‖γ̆‖22 ≤ ξn) + P (‖µ− µ̂ø‖∞ > t, ‖γ̆‖22 > ξn)

= P (‖µ− µ̂ø‖∞ > t | ‖γ̆‖22 ≤ ξn)P (‖γ̆‖22 ≤ ξn) + P (‖µ− µ̂ø‖∞ > t | ‖γ̆‖22 > ξn)P (‖γ̆‖22 > ξn)

≤ P (‖µ− µ̂ø‖∞ > t | ‖γ̆‖22 ≤ ξn) + P (‖γ̆‖22 > ξn)

≤
n∑
i=1

P (|µi − µ̂øi| > t | ‖γ̆‖22 ≤ ξn) + P (‖γ̆‖22 > ξn)

= nP{|g−1(ZT γ)− g−1(ZT γ̂ø)| > t | ‖γ̆‖22 ≤ ξn}+ P (‖γ̆‖22 > ξn)

≤ nP
(
|γ̆TZ| > D−1

6 t | ‖γ̆‖22 ≤ ξn
)

+ P
(
‖γ̆‖22 > ξn

)
≤ 2n exp

(
− t2

2D2
6σ

2‖γ̆‖22

)
+ P

(
‖γ̆‖22 > ξn

)
≤ 2n exp

(
− t2

2D2
6σ

2ξn

)
+ P

(
‖γ̆‖22 > ξn

)
= 2n exp

(
− nt2

2D2
6D5σ2sγ log pγ

)
+ P

(
‖γ̆‖22 > ξn

)
→ 0,

because n/(sγ log pγ)→∞ and P (‖γ̆‖22 > ξn) = o(1) by Assumption 4. Then, we conclude ‖µ−
µ̂ø‖∞ = oP (1). Since n−1

∑n
i=1(wTi wi) = OP (

√
2ΛεW ), it follows that nII2 = oP (

√
2ΛεW ). Combin-

ing the bounds of II1 and II2, we conclude that IIÛn = oP
(√

2ΛεW
)

when sγ log pγ/
√

2ΛεW = o(1).405

Then, we examine the term IIIÛn :

IIIÛn
n

=

[
1

n

n∑
i=1

{(µi − µ̂øi)w
T
i }

][
1

n

n∑
i=1

{wi(yi − µi)}

]
− 1

n2

n∑
i=1

{(yi − µi)(µi − µ̂øi)w
T
i wi}

= (γ̂ø − γ)T

[
1

n

n∑
i=1

{ziωγ∗
iw

T
i }

][
1

n

n∑
i=1

{wi(yi − µi)}

]
︸ ︷︷ ︸

III1

− 1

n2

n∑
i=1

{(yi − µi)(µi − µ̂øi)w
T
i wi}︸ ︷︷ ︸

III2

.

Denote ς = 1
n

∑n
i=1{wi(yi − µi)}, it can be seen ‖ς‖22 = OP (n−1

√
2ΛεW ) because ‖ς‖22 =

n−1[IÛn + 1/n
∑n
i=1{(yi − µi)2wTi wi}], IÛn = OP (

√
2ΛεW ), and 1/n

∑n
i=1{(yi − µi)2wTi wi} =

OP (
√

2ΛεW ). Following the same argument as (A2) and applying Cauchy-Schwarz inequality, we have

|III1| = |γ̆T Σ̂zωwς| ≤ ‖γ̆T Σ̂zωw‖2‖ς‖2 ≤ D7‖γ̆‖2‖ς‖2

for a positive constant D7, which implies III1 = OP (n−1
√
sγ log pγ 4

√
2ΛεW ). For III2, let y =410

(yi, · · · , yn), we have

nIII2 ≤
1

n

n∑
i=1

{|(yi − µi)(µi − µ̂øi)|wTi wi} ≤ ‖y − µ‖∞‖µ− µ̂ø‖∞
1

n

n∑
i=1

(wTi wi) = oP (
√

2ΛεW ),

since ‖y − µ‖∞ = OP (1) and ‖µ− µ̂ø‖∞ = oP (1). In summary, combining the bounds of III1 and
III2, we have IIIÛn = oP (

√
2ΛεW ) when sγ log pγ/

√
2ΛεW = o(1).

Following proof of Theorem 3 in Guo and Chen (2016), it can be seen

IÛn/
√

2ΛεW
d−→ N(0, 1) as n→ ∞.
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More detailed proof of this result can be found in Lemma S.1 in the Supplementary Materials. Then, it 415

follows that:

P

(
|Ûn|√
2ΛεW

> z1−α/2

)
= P

[{
|IÛn |√
2ΛεW

+ op(1)

}
> z1−α/2

]
→ α

For R̂n, it can be seen

R̂n =
1

n(n− 1)

n∑
i 6=j

{(yi − µi + µi − µ̂øi)
2(yj − µj + µj − µ̂øj)

2(wT
i wj)

2}

=
1

n(n− 1)

n∑
i 6=j

{(yi − µi)2(yj − µj)2(wT
i wj)

2}︸ ︷︷ ︸
I
R̂n

+4
1

n(n− 1)

n∑
i6=j

{(yi − µi)2(yj − µj)(µj − µ̂øj)(w
T
i wj)

2}︸ ︷︷ ︸
II
R̂n

+ 2
1

n(n− 1)

n∑
i 6=j

{(yi − µi)2(µj − µ̂øj)
2(wT

i wj)
2}︸ ︷︷ ︸

III
R̂n

+4
1

n(n− 1)

n∑
i 6=j

{(yi − µi)(µi − µ̂øi)(µj − µ̂øj)
2(wT

i wj)
2}︸ ︷︷ ︸

IV
R̂n

+ 4
1

n(n− 1)

n∑
i6=j

{(yi − µi)(µi − µ̂øi)(yj − µj)(µj − µ̂øj)(w
T
i wj)

2}︸ ︷︷ ︸
V
R̂n

+
1

n(n− 1)

n∑
i6=j

{(µi − µ̂øi)
2(µj − µ̂øj)

2(wT
i wj)

2}︸ ︷︷ ︸
V I
R̂n

.

We first examine the term VR̂n and derive

|VR̂n | ≤ 4
1

n(n− 1)

n∑
i 6=j

{|(yi − µi)(µi − µ̂øi)(yj − µj)(µj − µ̂øj)|(wTi wj)2}

≤ 4‖y − µ‖2∞‖µ− µ̂ø‖2∞
1

n(n− 1)

n∑
i 6=j

{(wTi wj)2}︸ ︷︷ ︸
ṼR̂n

,

which implies |VR̂n | = oP (|ṼR̂n |) because ‖y − µ‖∞ = OP (1) and ‖µ− µ̂ø‖∞ = oP (1).
The term ṼR̂n is a U-statistic. Define HṼR̂n

(W1,W2) = (wT1 w2)2. It is not difficult to see that 420

E(ṼR̂n) = O(ΛεW ). Following Hoeffding decomposition in the variance evaluation of U-statistic (Ho-
effding, 1948), we have

H1ṼR̂n
= E{HṼR̂n

(W1,W2)|W1} = tr{w1w
T
1 E(WWT )},

and

Var(ṼR̂n) =
4(n− 2)

n(n− 1)
Var(H1ṼR̂n

) +
2

n(n− 1)
Var{HṼR̂n

(W1,W2)} = O[n−1tr2{E(WWT )2}].

It implies that ṼR̂n = OP (ΛεW ), and we concludes VR̂n/Λ
ε
W

p−→ 0 when n→∞.

Similarly, we can found IIR̂n/Λ
ε
W

p−→ 0, IIIR̂n/Λ
ε
W

p−→ 0, IVR̂n/Λ
ε
W

p−→ 0, V IR̂n/Λ
ε
W

p−→ 0 when 425

n→ ∞.
In summary, we conclude that: R̂n/ΛεW

p−→ 1 as n→ ∞.
By Slutsky’s Theorem, we have Ûn/

√
2R̂n converge in distribution to Ûn/

√
2ΛεW . It implies, as n→

∞, we have

P

(
|Ûn|/

√
2R̂n > z1−α/2

)
→ α.
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The proof is valid for any point γ ∈ H0 as long as ‖γ‖22 = O(1), the uniform convergence of type I430

error rate follows.

Proof of Theorem 2

For generalized linear model with canonical link, the population score equations lead to
E{Zg−1(XT θ0)} = 0 and E{Zg−1(XT θ0

ø)} = 0. That is E{Zg−1(XT θ0)} − E{Zg−1(XT θ0
ø)} = 0.

By Assumption 2, the function f(θ) = E{Zg−1(XT θ)} : θ → Rpγ is continuously differentiable. By the435

mean value theorem on vector valued functions (Rudin, 1976), we derive

f(θ0)− f(θ0
ø) =

[∫ 1

0

{
Df(θ) |θ=θ0

ø+tθ̃

}
dt

]
θ̃ =

{∫ 1

0

Df(θ0
ø + tθ̃)dt

}
θ̃ = 0

where Df denote the Jacobin matrix of f that the integral is componentwise. The component in the kth
row and lth column of Df is

Dfkl(θ
0
ø + tθ̃) = E

[
ZkXl

dg−1{XT (θ0
ø + tθ̃)}

d{XT (θ0
ø + tθ̃)}

]
.

We have∫ 1

0

Dfkl(θ
0
ø + tθ̃)dt = E

[
ZkXl

g−1{XT (θ0
ø + tθ̃)}

XT θ̃

]∣∣∣∣∣
1

0

= E

{
ZkXl

g−1(XT θ0)− g−1(XT θ0
ø)

XT θ̃

}
.

That is E
{
ZXTω∗θ

}
θ̃ = 0, which implies440

E(ω∗θZZ
T )γ̃ = E(ω∗θZW

T )β0. (A3)

The singular matrix decomposition of a l ×m matrix A is the factorization of A into the product form
A = UDV T . The l × l matrix U and m×m matrix V have orthonormal columns, and absolute value 1
eigenvalues. The matrix D is diagonal with positive real entries. The diagonal entries of D are known as
singular values of A. By Assumption 8, the eigenvalues of E0(ω∗θZZ

T ) and E0(ω∗θWWT ) are bounded
becauseE0(ω∗θZZ

T ) andE0(wθ∗WWT ) are principal sub-matrices ofE0(ω∗θXX
T ). Applying Hölder’s445

inequality, we can derive that the largest singular value for E(ω∗θZW
T ) is also bounded. We conclude

||γ̃||22 = O(||β0||22) for generalized linear model based on equation (A3).
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