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PROOF OF THEOREM 3 15

When the true model is under H,, we disassemble Un as
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The term T2 is a U-statistic. Let Hrz, (W1, Wa) = (g1 — p1) (ko2 — p2)w{ wy and EHrg,
E{HTQU (W1, W3)}. By the independence of terms in Hra, (W1, Wa), it can be seen that
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E(T2;) = (n — ) E{Hrz, (Wi,Wa)} = (n—){7" E(Zw;WT)E(Ww; ZT)7
+ 27T E(ZwgW ) EWwyWh)B + STEWwyW ) E(Ww; W8} =< (n —1)||5]13

by Assumption 8 and Theorem 2.
Let Hlpy, = E{Hrps, (Wi, W2)[W1} = (pg1 — p1)w] E{(ps2 — p2)W}. Based on the sub-
Gaussian property of X and Assumptlon 2, we have

_ —1 T _ -1 XT nT 2
16112 101]2 1012 2Dgo

and further
67 X | 1 t*
P D; "Dt ] <2 —_
(Ilf)’llz T e Tnt) = 2P Tapze

because [|0]|3 = D1ol|3||3 for a constant Dy, by Theorem 2. It means for any & > 0, there exists a M > 0

such that
P(Iug—ul >M) <e
15]]2

Thus, by definition, |y — | = Op(||8]]2). It implies
E{(H1rz, )*} = 0T E(XWT)E{(1o — p)*WWTIEWXT)8 = O(|I8]3)-

Following Hoeffding decomposition in the variance evaluation of U-statistic (Hoeffding, 1948), we
have

Var(T2Un) = 4(n%)(n_1)\/VEJI,I‘(IJITQIA]”) + MV&I‘{HTQI% (Wl, Wg)}
A=Y (pi(y, ) - B, |+ 2 (B, (VW) - B, .

where E[{ Hro, (W1, W2)}?] = O[||8|[5tr{ E(WW™)?}]. Then, we conclude that
B(T2g,) = (n—1)||Bl13 and Var(T25 ) = O(maxn||8]l3, ||Bl[2te{E(WWT)?}]).  (SD)

Let’s examine the term T'3y; . Utilizing similar steps to the derivation in (A2), we have ||fjfww7||§ =

Op([I713)- _ _
It can be seen that [|073,,,[|3 = Op{n~'max(n||B|3, |8]131/2A5,)} because |67 L,0ul3 =

_1[T2 + 1/”2? 1{(”% :um) w; wl}] and 1/”27 1{(Mz N@z) w; wz} = OP ||6H \/ 2A6

Applylng Cauchy-Schwarz inequality, it can be seen that |07 %,,, 2% 5| < 1675 0w]|2 ||Ezww7||2.
Following the disassembly of the term /11, in the proof of Theorem 1, we can derive

T35 = op{max(n||B|l2, vn|Bll2v/2A%,, \/2A%,)} (S2)

Let b be a vector of size pg not orthogonal to 573, 0w, and satisfying diq < II6ll1 < Dq1 and dyq <
Ibllco < D11 for some positive constants dy; and Dq;. Utilizing similar steps to the derivation in (A2),
we have
[5112[[]|2
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It indicates that

d1z < |77 E.wwbl/(1F]2]Ibll2) < D12 (S3)
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for some positive constants d12 and D12, and further implies that dyo < |7T2zww2zww’y|/||f'ﬂ|§ < Dqs.
Following the disassembly of the term Iy in the proof of Theorem 1, by Assumption 6, (S3) implies 4
that

T4y, = max{O,(s] logpy), 0p(v/2A5)}). (S4)

We then examine the term T5Un’ which is a U-statistic. Let HT5U (W1, Wa) = (pg1 — ul)egwlng,
EHT5 = E{HT5 (Wl, Wg)} and H1T5 = E{HT5 (Wl, Wg)‘Wl} (/J,@l — ,lt1)w1 E(&‘W)
By the 1ndependence of terms in Hrs, (W1, Wg) it can be seen that E (T55 ) = 0.

Following Hoeffding decomposmon in the variance evaluation of U-statistic (Hoeffding, 1948), we 45
have

M[ E[{Hrs, (W1, W2)}?] - EH%%W,]'

4(n —2)(n —

1
Var(T5; ) = ) [E{(Hlngn)2} - EH:2F50", +

The dominating term in Var(T5y, ) is %E[{HT%H (W1, W2)}?] and E[{HTSUn (W1, Wa)}?] =
O(|18[13A3), we have

E(T5; ) =0 and Var(T5; ) = O(||B|[3A5). (S5)
For the term TGU,, , We have:

T6y,

n [ Z{ Hoi — Floi ) W; }] [ Z{wz Yi — M ] w2 Z{ )(tgi — ﬂm)w?wi}
= (Js — '7@)T [Tll Z{Zzwv*lsz}‘| [ Z{wz Yi — M ] % Z{(yz — i) (fhoi — /Aﬁszsi)w;'pwi}'
=1

i=1

T61 T62

Denote ¢ = 13" {w;(y; — i)}, it can be seen [[|3 =O0p(n~'\/2A%,) because |3 = s
n iy +1/n 300 {(i — pa)?wlwil], Iy = O0p(\/2A5,), and 1/n Y7 {(yi — pi)*wfwi} =
Op (/245 ). Following the same argument as (A2) and applying Cauchy-Schwarz inequality, we have

IT61] = 157 Zz0uws] < 157 swwll2llsllz < DislFllzlsll2

for a positive constant D;3, which implies 76; = Op(n~!, /88 log p 3/2A5;,) by Assumption 6. For
T64, we have

n

N N 1
nT6; < Z{I )(toi = fios) [ wi wi} < lly — plloollpr, — fislloo Y (wfw) = op(y/245,),

i=1

since ||y — plloo = Op(1) and H&D — fig|lc = op(1). In summary, combining the bounds of 76; and s
T62, we have

T6p, = max{Op(y/s5log py /2A5y), 0p(v/2A5,)} (S6)

Based on (S1), (S2), (S4), (S5), (S6), we can see that the dominating terms in U, is T2 or T4y
depending on the magnitude of n||3]|3 and 2 log p,.
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We can also disassemble R,, as
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oo which means the terms Tl , 125 , T4y , TTp , T13p , and T'165 determines the magnitude of
R,.

Furthermore, utilizing similar derivations used for Theorem 1, it can be found that the dominating terms
in Ry, are T1; and T'16; depending on the magnitude of || 3|[2. That is

A Ry =T1; (1+0(D)} if [[8]l2=o(1)
Ro= (Tl +T165 ){Du+o(1)} if ||8]lo=1

for a positive constant D14. It is straight to see that

E(Tan) = A}, and Var(TlR") = O(n_ltr[E{var(E)WWT}4]),



and
E(T165 ) = tr[E{(n — 1) >WWT}2) and Var(T'165 ) = O(n~r[E{ (1 — po)*WWTI),

which implies

{ L 21 i (18]]2 = o(1)
R, P . _
DralA, ¥ B{(p—pio PWWTZ] " Lif [|Bllz2 =1

It can be seen that E{(u — u ) WWT}2 = O(A%,) when [|8]]2 < 1.
When n||5[15/1/2A5, = o(1), [|Bll2 = o(1), and 57 log p, //2A5, = o(1), the terms T2;; /\/2A5;,

T35 /205, T4y /,/2A6 ,T5 /\/2A5y,, and T6y; /1/2A5, vanish. When nl|Bl15/ 2/\6 — 00
and /n|| 8|13/ /2A5 ), the term T2 /+/2A5, has a diverging mean and bounded variance.
In summary, combmlng results (S1), (S2) (S4) (SS) (S6), and (S7), we have
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LEMMA S.1
LEMMA S1. Under Assumptions 1, 2, and 3,
% Z;J{(yv — i) (yj — pj)wlw;}
2A5,

Proof: Denote /Afy, =0, Sup = = {> 0y Sy (iejwlwy) + 35y p(enejwlw))}. It can be
seen that {Spki, Pkt (1 <k <n,1<Ii< k:)} is a martingale. The martmgale difference is: Ry =

Snkl — Sn k-1 = (€k€zwgwl)/(na).
We first build

— N(0,1) asn — oo.

foralls >0, Y > " E{R2yI(|Rur| > <)} — 0, (S8)

k i<k

because

ZZE{anI |Ruki| > <)} ZZ Ryy) and

k I<k k I<k
1 _
S E(Ryy) = vy S O>  EB{(eraiwiw)*t = 0(n7?).
k I<k k i<k

It is also straight to see that
S>> R, —1 (S9)
k 1<k

Combining (S8) and (S9), following martingale central limit theorem (Hall & Heyde, 1980), we concludes
the asymptotic normality.

LEMMA S.2

Considering an L,-ball of radius R, given by

P~
S SRq}7
=1

B, (R,) = {% € R
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6 J. CHEN, Q. L1 AND H.Y. CHEN
where ¢ € [0, 1] controls the relative “sparsifiability” of ~,, with larger values corresponding to lesser

sparsity. In a special case that ¢ = 0, this set corresponds to an exact sparsity constraint. For a threshold
n > 0, define the thresholded subset S, = {jj||75;| > 1}, and denote s,, the number of elements in S,,.

Assumption S1. Under H,, the estimate 4, satisfies ||95 — Vo||2 = Op{Ré/2 (log p.,/n)'/2=9/4}, and
Ry*(log ., /n)Y/2=9/4 = o(1).

. se }
1 < 3[1557l1 + 4|74 "[l1, where % =

Assumption S2. Under H,, with probability close to 1, |55
Yo — Yo-

LEMMA S2. Under H,, if Assumptions 1,2, 7, 8, S1, and S2 hold, and Ry (log p)~9/*n®/?=!log pg =
o(1), then

o b

o 1-a/2,a/2
=o0(1),[|B]l2 = o(1) and Rq(logpy)

V2A%,

Sm

|U | o if el
2 QRH 1 \/Tiiv%ooan W— ()

Proof: Negahban & Ravikumar (2010) and Negahban et al. (2012) provided a unified framework to es-
tablish consistency and convergence rates for regularized high-dimensional M-estimators, which paved
the way to build the convergence rate for the generalized linear model under the weak sparsity. Based
on their works, we will show that the estimate 7, under H, satisfies the rate in Assumption S1:

. 1/2 _
Fo = ll2 = Op{Rq/*(log py /m)"/>~0/4}. .

We have [S,;| < Rn~9 for >0 because Ry >3 57, [v5;]7 > ZjESn 170,19 > 0% Sy

, and

H%?n 1= ngs; |’7¢j|q|’7¢j|1’q < Ryn'~% Combining these results with Assumption S2, we have

s . _ /21~ _
LA 1 < /1Sy lIF N2 + 4R ™ < 4/ Ryn~ 2|32 + 4Rgn' T (S10)

151l < 415

The expression (3) can be represented as:
Yo = argmin [L{v; (Y, Z)} + Cl|vI[1]
¥

where Y is the vector of response and Z is n X p., design matrix. By the first-order Taylor series expansion
at 7, and in the direction A, we define

OL(AY) = L{7s + A; (Y, 2)} = L{vs; (Y, 2)} = (VL5 (Y, 2)}, A),

where (-, -) is the Euclidean inner product and 57 £ is the gradient.
By Proposition 2 in Negahban & Ravikumar (2010) and Assumption 3, it can be seen that there exists
positive constants D15 and D14 such that:

n

lo
P {55@7%) > Dis||All2 <||A||2 — Doy 22 ||A||1> } — 1 for [[All; < 1.

Letn = (/D15 and { = Dq7+/logp./n for a positive constant D17. If A satisfies Assumption S2, we
can derive from (S10) that

lo
SL(A, %) = Disl|All3 = DisDis\| =22 [ Alla(4y/Byn /2| All2 + 4Ryn' ™)

lo _ lo _
= <D15 — 4D15D16 gnp“/ \/an Q/2> ||AH% — 4D15D16 ip'y Rq’l]l qHA”Q

1—-q/2 1-q/2
lo lo 4
Dis 4D} DigDyr /T, (wi“) IAIE - 4Dt DraDir () e
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It implies the restricted strong convexity condition (Definition 2 in Negahban et al. (2012)) is satisfied
when (log p, /n)'~%/?R, < 1.
Based on Lemma 6 in Negahban et al. (2012), Assumptions 2, 3, and 7 implies

P 7 L{7; (Y, Z)}H|oo > D18\/W:| —0, (S11)

for a positive constant D1g.

In summary, by the restricted strong convexity condition and the bound in (S11), and with
the choice of ¢ = Di7+/logp,/n, the estimate 4, has the convergence rate of ||Y, —Ypll2 =
Op{Ré/Q(log p-,/n)'/279/4} based on Theorem 1 in Negahban et al. (2012).

Let b be a vector of size pg not orthogonal to &Tizww, not orthogonal to éTmew, and satisfying di9 <
16]l1 < D1g and dig < ||b]|oc < D19 for constants dig and D1g. Assuming [s,{log max(p,,pg)}]/n =
o(1), we have

SC
Allve "1l

. . Sy
Fllalibll 405l + 4l "l
155712

T < - < < 0(1) + Daor/Ryn™ 2 = 0(1),
[51121[0]]2 1557 |2 !

o)+

for a constant Dy, because ||’y5 " 1 < Ryn*~7 and the rate R, (logp,/n)'~%/? is minimax-optimal over
L,-balls (Raskutti et al., 2011; Negahban et al., 2012). We further derive

;}./Tzzwwb _7_”'7”1”[7”1 ;}./Tizwwb '&Tzzwwb ”7”1”()”1
[%112116]l2 1l200lle = | lIFll2llollz | = TI4ll2l0]l2 (2Pt IPX
which indicates
..TX’\: b
doy < | =22 | < Dy, (S12)
1512010012

for constants do; and Ds;. Equation (S12) here agrees with equation (S3) used for proving Theorem 3.
Under the weakly sparsity assumption on 7,4, (S4) can be represented as

T4y = maX{Op(Rq(long)1_‘1/2nQ/2), op(v/2A%,)}. (S13)

The rest proof follows the same argument as in the proof of Theorem 3. We omit the details here.

COMPARISON WITH THE METHOD IN THE LITERATURE

Wau et al. (2020) proposed the adaptive interaction sum of powered score test for the model setting as
ours. To maintain high statistical power across a wide range of alternatives, their approach largely depends
on a good choice of the power index. However, in practice, the optimal choice is unknown and often relies
on some ad-hoc method to find it. To compare this method with ours, we apply it to Scenario 1 of our sim-
ulation studies. We implement their method by using their code shared at https://github.com/ChongWu-
Biostat/aispu. We followed their recommendation of the choice of power index: “In summary, we recom-
mend use I' = {1,2,...,6,00} as our default setting” stated on page 10 of their paper. The results are
shown in Figure S1 and S2 in below. In the linear regression setting, our method produced higher power,
while the method of Wu et al. (2020) provided higher power in the logistic regression setting. However,
the method of Wu et al. paid with price of severely inflating type I error to achieve a good performance
in power. In both linear and logistic regressions, for choosing o = 0.05, the empirical type I error rates
of the method of Wu et al. (2020) are larger than 0.25. In contrast, the empirical type I error rates of our
method are close to the theoretical value of 0.05.

In addition, the proposed method has computational advantage over the method by Wu et al. (2020).
For example, for 10 random data sets generated from linear regression (n=200 and p=2000) in simulation
Scenario 1, the average running time was 5.69 seconds for the proposed method, and increased to 3.75
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Type | Error Power (Sparse Alternative) Power (Dense Alternative)
™
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Fig. S1: Testing Results for Data Simulated from Linear Regression in Scenario 1. Solid Circle: results
for the proposed method; Solid Triangle: results for the method by Wu et al. (2020).

Type | Error Power (Sparse Alternative) Power (Dense Alternative)
i S A A

0.3

0.2

0.05

T T T T T T
400 4000 8000 400 4000 8000 400 4000 8000
p p p

Fig. S2: Testing Results for Data Simulated from Logistic Regression in Scenario 1. Solid Circle: results
for the proposed method; Solid Triangle: results for the method by Wu et al. (2020).

minutes for the method of Wu et al. (Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz 3.50 GHz and 32.0
GB RAM).
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