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Additional Regularity Conditions

(iv) {uy, f; }1>1 are 1.i.d. sub-Gaussian random variables over t.

(v) There exist constants ¢; and ¢y that 0 < ¢; < A\pin(Ty) < Anax(Zw) < 2 < 00,
|X.]|1 < c2 and min;<, j<, Var(u;ug) > cq;

(vi) There exists an M > 0 such that ||B||max < M;

(vii) There exists an M > 0 such that for any s < T and ¢t < T, Elp~"?(u.3,'u, —
Eu.3,'w,)|* < M and E||p~/?B'S, 'u||* < M;

(viii) For each t < T, E||(pT)" 2 L, £, (0., v, — E(0, 3, 'w,))||> = O(1);

(ix) For each i < p, E||(pT)~'/2 Zthl ?:1 d;(ujrui — Eujeuy)|| = O(1), where d; is the
jth column of B'Y

(x) For each i < K, E[[(p7) "2 X7, S| dyugefull = O(1).

Condition (iv) is a standard assumption in order to establish the exponential type of
concentration inequality for the elements in u; and f;. Condition (v) requires ¥, to be
well-conditioned. In particular, we need a lower bound on the eigen-values of ¥,. This
assumption guarantees that 3, is asymptotically non-singular so that f); ! will not perform
badly in the weighted least-squares problem described in (6). These conditions were also
assumed in Fan et al. (2013). Conditions (vii)-(x) are some moment conditions needed to
establish the central limit theorem for the WPC estimator E They are standard in the
factor model literature, e.g. Stock and Watson (2002) and Bai (2003).

Proofs of Results in Sections 2 and 4

Proof of Proposition 1. Let g = Vo logh(ys—0g,ysc—60sc) and go = Vg, log hs(ys—
0s), where hg is the marginal density of yg. Firstly, we show that go = E(g|ys). In fact,
for any bounded function ¢(ys), by Fubini Theorem and condition (3),

E(giolys)) = — / / (V. log hlys — 85, v — B5:))hlys — B, yse — Os:)o(ys)dysdys:
= — //(Vysh(YS —05,ysc — 05¢))p(ys)dysdyse
= —/ (Vys /h(YS —0s,y5 — esc)dySc) o(ys)dys
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= —/VyshS(YS —05)p(ys)dys

_ / (Vys log his(ys — 05)) hs(ys — 05)o(ys)dys

= E(g200(ys))-
Then, by definition, go = E(g1]ys). Therefore,

{1,(0)}s = E(g1g1) = E[(g2 + 81 — 82)(82 + 81 — 82)]
= E[gog] + Elga(g1 — 82)'] + El(g1 — 82)85) + El(g1 — 22)(81 — 82)']
= Is(0s) + E[(g1 — g2)(g1 — g2)']
= 15(0s),

where the last equality follows from E[ga(g; — g2)'] = E[E[g2(g1 — 82)'|ys]] = 0, since
g = E(g1]ys)- O

Proof of Example 2. Without loss of generality, we assume @ = 0 so that the density
of y is proportional to g(y'Qy), where Q = 3. Then,

IVysh(ys,yse)| = 219" (y'Qy)(Q2y)s] < 2[9'(y'Qy)| [Qsys + Qs 5y 5
< 2¢|Qsys + Nsseyse| g(y'Qy).

Note that

/ (/ |Qsys + Qg 5y se

g(y/QY)dySc> dys < E (|Q2sys + Qs 5cy5|)

< E(|Q2sys| + [Qs,5cyse

< Q.

)

Therefore for a.e. any ys, [ |Qsys + Qsscyse| g(y'Qy) is integrable. By Example 1.8 of
Shao (2003), differentiation and integration are interchangeable, hence (3) holds. O

Proof of Proposition 2. For simplicity, let 2 = I,,(0) and partition it as

Qs Qg SC)
Q= I
(QSC’S QSC
Then, the Fisher information I(f) of f contained in all data is given by
[(f) =B'OB = BISQSBS -+ BfgcQSqSBS + B‘/gﬂgﬂchSc + BgCQScBSc. (Al)

If Qg g. =0, we have

I(f) = Bs2sBs + B QseBse = B5{I,(0)}sBs + Bs.Qs-Bs:
= BiyI5(05)Bs + B Qs Bge = Byls(05)Bs = Is(f),

where the first inequality follows from Proposition 1 and the last inequality follows from
that BlcQg.Bge is positive semi-definite. This completes the proof. O
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Proof of Proposition 3. For any general Q € RI*F B, € REXK and B € R we

have
E(B7QBg) = [Z ZQI rbleRr

=1 r=1

where ¢, is the (I,7)-th element of Q, b’ ; is the Ith row of By, and b, is the rth row of

Bpgr. Therefore,
E(B%.Qs sBs) = [Z Zwlrbsclbs,,] :

1eSC res

where wy,. is the (I,7)-th element of Q. By the i.i.d assumption, for [ € S and r € S,
E(bseby,) = E(bs:;)E(bg,) = 0. Hence, E(Bg.Qs:sBs) = 0. Similarly, it can be
shown that E(B4Qgs-Bge) = 0. By Proposition 1, B4xQsBg > Ig(f), which implies that
E(B5QsBg) = E(Is(f)).

E(BsQs:Bse) =E | > ) "wi,brby ] —E [Z wubL,lb/L,l] = tr(Qse)E(bb’) = 0
lese rese lese
Using (A.1) and the above results, we have E[I(f)] = E[Is(f)]. O

Proof of Lemma 1. Smce we assume all conditions hold for both s and p, we prove the
result for p, i.e. max,<r|[f” — Hofy|| = Op (7Y% + T4 /p=1/2). The result for s can be

proved similarly. For simplicity, we write E@) as ft and Hy as H.
By (A.1) of Bai and Liao (2013), f; — Hf; has the following expansion,

T
R (1 1 1
ft — Hft = V_l (T Z f,uizulut/p + T Z fz/r/zt + T Z f291t> s

where 7;; = fi’B’i;lut/p, 0, = f{B’i;lui/p, and V is the diagonal matrix of the K largest
eigenvalues of Y'f];lY/T. Let n; = £/B’'S, 'u,/p and 6 = £/B'S, 'u;/p. Then, we have

T T
= S 1 A el _ ~
1T, — HE| < [V (Hfoiu;(Eu —Eul)ut/pH+H Zf (WE 1y, — Eu Sy, /pH
T N - 1 T N
+HTZfE ‘12 Uy /pH‘f‘H ;fi(nit_nit) +HT;fﬂ7it

H i? O — 01) +H—Zﬁ-ed ) (A.2)
i=1 =1

Denote the jth summand inside the parenthesis as Gjq.

By Lemma A.2 of Bai and Liao (2013), ||<\/—*1|| = Op (1). By Lemma A.6(iv) of Bai and
Liao (2013),

max Gy = Op (12, = =%, - =2 +1/vp+ Vogp)/T} )
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By Proposition 4.1 of Bai and Liao (2013),
1 - . _ _
15, = =211 = op (min {7714, p7 /4 \/T/(plogp) }) (A3)

therefore, ||f);1 - <||§~];1 - +1/ P+ \/(logp)/T> = o(T~Y2 + p~1/2). Hence,

~1/2 —1/2
r?geg(GltZOP(T 24 p /).

By Lemma A.8(ii) of Bai and Liao (2013), maxi<r G, = Op (T"/*p~'/?). By Lemma
A.10(i) of Bai and Liao (2013), maxi<r G3 = Op (T"'/?). By Lemma A.6(vi) of Bai and
Liao (2013),

max G, = Op (I, = {12, = =7+ 1/vB+ 1/VT ) +or (1/VB) = op (1/VP).

By Lemma A.8(iii) of Bai and Liao (2013), max<r G5 = Op (T"/*p~"/?). By Lemma
A.6(v) of Bai and Liao (2013) and (A.3),

~ _1 _ ~
max Go, = Op (12, = =2 I{IE." = =2 +1/vB+ Vg )T} ) = or (1)
By Lemma A.6(iii) of Bai and Liao (2013) and (A.3),
max Gr = Op (I, = 572/ vB+1/p+ 1/v/pT) = 0p (1//p) .

Then, by (A.2), we have

~ 1 T4
w5l = 0r (G + )

Proof of Lemma 2. For Method 1, we have the following decomposition

b - ZHftuw Zyn )~ Hify) + Hy (o thf’—IK i

J (.
-~ -~

11 12 Id

where b; is the true factor loading of the ith subject as defined in (1).
For I;, we have

max
1<s

K 1 T 9
< [[HL [} max > <T2fktuit) :

1 t=1

1 T
‘f Z H,fu;
t=1

e
Il

It follows from Lemma C.3(iii) of Fan et al. (2013) that, max;<, \/Zle(% ST Freig)?
= Op ( (log s)/T). From Lemma A.2, ||H;|| = Op (1), therefore I, = Op ( (log s)/T).

4



As for I, by conditions (v) and (vi),
max By = max{E(b{f,)”* + Euj,} < max]|b;||* + max Var(u;) = O(1).

i<s

By condition (iv), yZ is sub-exponential, therefore by the union bound and sub-exponential
=Op < (log s)/T). Then,

tail bound, max;<, ’% Zthl y2 — Ey2

EyiQt

IIM’%

max— E Vi < max
1<s <s

+max Eyj = Op (1). (A.4)

By Cauchy-Schwartz inequality,

‘—Zyzt —H ft)

S
N

max
1<s

1/2
1 1 -~
< o (sz?t‘fzﬂft( na)

=1 t=1

1/2
1 .
= Or (? ;Hff” - HlftH2>
1 1
= O _— + RN ,
i (ﬁ f)
where the last equality follows from Lemma A.5. So, I, = Op <1/\/_ + 1/\/_>

Finally, it follows from Lemma C.3(i) of Fan et al. (2013) that || B =TIk =
Op (T~'/%). This together with |[H;|| = Op (1) and condition (vi) show that 13 Op (T712).

Hence,
~ 1 1
m?XHbgl) —Hibi|| = Op (— + Ogs) :

S

NG T

Using the same arguments and the results of /f\t(Q) in Lemma 1, we can show that
~ 1 1
max|[b\” — Hyb;|| = Op (— + Ogs) .
i<s \/]3 T

When the common factor f; is known, for the oracle estimator of the loading matrix, we
have

max||gf — b;|| < max
i<s 1<s

1 <& 1 &

_thuit +HTthft’—IK
t=1 t=1

— Op (,/loﬁ %)

-0 (V).



Proof of Lemma 3. By Theorem A.1 of Fan et al. (2013) (cited as Lemma A.7 in this
document), it suffices to show

T

1 1 1  logs (1
r?ixle(uit —ugt))2 =0Op (E+T> and max “it—uz('t)| =op(1).
t=

For Method 1, we have
~1) _ vy (7D NN / () ey
Uit — Uy = bz‘Hl(ft - Hlft) + {(bz ) - biHl}ft + bi(H1H1 - IK)ft-

Using (a + b+ ¢)? < 4a® + 40? + 4¢?, we have

T

T
1 ~(1 1 (1
max o ;_f% —@y))* < dmax|[Hyb|* §Hj||f£ )~ HL £

T
(1 1 21
+ | —Hub 7 3 IR
t=
1 T
+ A H — Tl a7 3G
t=

Since, max;|[Hb;|| < | Hyl| max;|[bil| = Op (1), + S, [£V]2 = Op (1), and £ 37 ||£:]
= Op (1), it follows from Lemma 1, 2, A.3 and A.5 that

T

1 (1 1  logs
I?%XT;(U“ — ugt)>2 =Op (g + T ) ) (A.5)

On the other hand, by Lemma A.1,

~ NON ] T4
b~ 1 s (B w1 = 0 coer 2 2204 T2) ot

Then, the result follows from Theorem A.1 of Fan et al. (2013).
In analogous, a similar result can be proved for Method 2. For the oracle estimator,

uf, = yir — (bY)'f,. Therefore,

d log s

T
1 o 1 A~
max - Z(u,t —u)? < r?gxﬂbf — bi||2f ;HftHQ =0Op (@gx”bf — bi||2) =0Op (T) )

1<s
t=1

~ |
max [u;, — 5| = max|(b7)'f; — bifi| = Op <<log ) %) = or(l).

It then follows from Theorem A.1 of Fan et al. (2013) that

log s
T

12,5 = Busll = O (ms ) = 129" = Z 5l



Proof of Theorem 1. (1) For Method 1, 2(91) — BB + ES)S Therefore,

<) = 5 ()
125" = Tslg, <2 (IBiB) - BBl + 125 — Susly,)
< 2 (IBs(H{H, — To)BY| 3, + 2| BsHIC) 3, + 1C1C I3,
S
1S5 — Zusllz,)

where C; = ]§1 — BgH/. Then, it follows from Lemma A.4 that

a1 1 1
HE(S) — 3sl%, =Op (ﬁ Tt wi + swi + miw%) = Op (swi + m2uy).
Similarly, ||3g" — Xs|l5, = Op (swy + miwy).
In the oracle case, we have

156 - slg, <2 (IB,B, - BsBillg, + 1505 — Susly,)

<2(JI(B, = Bs)(B, — Bs)|I3, +2|(Bo - Bo)Bj I3, + [Z0s — Suslly, )-

I 1o I3

Since all eigenvalues of ¥ g are bounded away from zero, for any matrix A € R***, [|A|3;, =
sTYZV2PAS 2|2 = Op (s7'||A||%). Then, by Lemma 2, we have

I = Op (s7'IB, ~ Bll}) = Op (sul).

where the last equality follows that ||]§O — Bs||% < s(maxigsﬂgf — b;||)> = Op (sw?). For
15, we have
I, = s 'tr((B, — Bg)'S5' (B, — Bs)B,X5'Bg)
< sHZ5IBo — Bs| 7 Bs=5'Bs|
= OP (wg) .
For I3, Lemma 3 implies that

Iy = Op (571805 = Susl}) = Or (1105 — Zusll?) = Op (m2w?)

Therefore, Hflzs — B sz, = Op (sw, + m2w?).
(2) For Method 1,

e Y , e
125 — Sl < [BiB — BBl + 5405 — Sl -
X 4

For I;, we have

I, = max|(b{")'b{" — bb,|

ij



< max (|(b{" — Hiby) (b} — Hib,)| + 2/b/H (B" — Hib,)| + [b{(H,H} - Lo)b, )
< (max([b{" — Hyby]|)” + 2max|[bf — Hyby | [Hyb; | + L — T (max|bi))°
= Op (w1),

where the last identity follows from Lemmas 2 and A.3.

For Iy, let 0,4, be the (4, j)-th entry of ¥, ¢ and 7,,;; = % Zthl Ui, where U are the
estimator of u; from Method 1 as described in Section 4. Then,

Max [0yij — Ou,ijl
ij

T
1
+ Hll?X )T Z Uit Ujp — E(uitujt)

T T
+2max‘ g Uip — Wit) Wt —i—max)—g wiptjr — B(uipugy)
t=1 =1

1/2 ) T 1/2 | T 1/2 . T 1/2
(ﬂit - Uit)2> (T Z(ajt - ujt)2> + 2 max (T Z Uit — Uit 2) (T ZU?t)
— t=1

= UitWjt — E(uitujt)

= Op (w?) + Op (wy) + Op ( (log ) /T) :

where the last equality follows from (A.5), Lemma C.3 (ii) of Fan et al. (2013) and

max — E ujt =0p(1

7<s

as similarly shown in (A.4). Hence, max;; [0y, — 0u,ij| = Op (w1). After the thresholding,
max |5 (Guij) = Ouil < WA |4j(Gui) = Fuigl + |Tuis = Tuij]
< meax 15ij(Cuij) — Ousijl + Op (w1)
= Op (wy) .

where s;;(-) is the hard thresholding at the level defined in step ii. of Method 1. Hence,

S o S2)
12,5 — Zusllmax = Op(wr1). Similarly, |3, 5 — X sllmax = Op (w2). For the oracle

estimator,
IB.BY, — BBl = max (I(b¢ — by)/(bi — bi)| +2/(B} — bi)'b|)
(5]
~ 2 ~
< ((max|by — Hibi) "+ 2max|[b¢ - byl b,
% 17
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= OP (wo) )

where the last equality follows from condition (vi) and Lemma 2. Using similar arguments
as in the above, max;; [0, ij — 0u45] = Op(wy). Hence, ||ZZ7S — 3.5 |lmax = Op (w,).
(3) For Method 1, let S = BsH'H,B + X, 5. We have

1 <)
IZs)7 =5 < (Zs

~ ~ ~ Al
Since ¥ = BB/ + E( ) , by Sherman-Morrison-Woodbury formula,
S 1 u,S

1 et =1 -
)= [+ IIEs - E51

Sy =ik + zggBSH’ G 'H,Bs%, L,

) (1)

RPN (1)
()7 = (S0 + (S15) BIGB(S,

$) 7

where G = Ix + H;B{X sBsH’ and G = I + B (E ) 1]31 Therefore, ||(§gl))_1 B
2;1” < Z?:1 I;, where

L=(2.9)7" — 205l
o (1)
L= {5 " =BG BI(Z,6) 7,
oM _ _ _
I ={(Z,5) " - S, 6}BIG'BIZ ],

)

I = |2, 5(B: - BsH)G B, 4.
= |£,5(B) - BsH})G'HBLZ, |
Iy = |2, sBsH{G ™' — G JHBGE, 4.

From Lemma 3, I} = Op (msw;). For Iy, we have

NN
Se) " = S IBG B ()

I, < |(
By Lemma 3 and condition (v), ||(2 uS) Y = Op (1). Lemma A.6(ii) implies that ||(A;*1|| =
Op (s71). Therefore, |B;G'B}|| = Op (1) and I = Op (mgw:). Similarly, Iy = Op (mgw; ).
For I, condition (v) implies that ||E;}9|| = O(1). Next, ||(B; — BsH})G'B/| is bounded
by

|(B, — BsH;)G'B|| < [(B, — BsH})G (B, — BsH,)'||V?|B,G 1By ||

Since |G| = Op(s™ ) by Lemma A.6(ii) and |[B, — BgH}||2 = Op (sw?) by Lemma
A A4(i), we have ||(B,—BgH},)G ' (B;—BgH},)'|| = Op (w?). This together with ||B;G B/
= Op (1) imply that Iy = Op (wy). Similarly, I5 = Op (w;). For I, we have

I < |2, sBsHIHBSE 5 |G - G|



Condition (iiA), (v) and ||H;|| = Op (1) imply that ||E;1SB5H'1H1BQE;IS|| = Op (s). Next,
we bound ||G™! — G7!||. Note that,

~— — —1/ ~— N~ CO R = I\ — /
|G =G = |GG~ @G| = Op (72 Bi(£,,9)'Bi - (BsH} T BsH )

= Op (s 'msuwy),
because by Lemma A.6 (i) and (i), ||G™|| = O (s7%), ||G™Y|| = Op (s!), and

T O _
1B} (2,,5)""B1 — (BsH))'S, sBsH, |

- NP - N
< (B, — BsHY(S14) 7 (B) — BoHY)| +2)(B, — BsHy)(S! %) ' BsH|
S - _
+I(BsH){(X,5) " — 2, 5}BsHy||
=0Op (swf) + Op (swy) + Op (smswy)
= Op (smgwy) . (A.6)
Therefore, Is = Op (msw;). Summing the six terms, we have H(is)s)_l — i;lH =

Op (mswy). Next, we bound Hf);l -
By using Sherman-Morrison-Woodbury formula again,

~ 71 _ _ _ _ _ _ _ _
155" = 5" = |oABs{ () " + By 4By ! - [Lc + BeE 4Bs] '} BT,k

u,

= O(s)||[(H{Hy) " + B3, sBs] ' — [Ix + B4X, (Bs] ™
=Op (s7") |(H{H;) ™" — Ix||

= op (Mmswy) .

Therefore, || (iilzg)_l — 3! = Op (mswy). A similar result can be shown that |’<§];2;)_1 —
551 = Op (). N
For the oracle estimator, by Sherman-Morrison-Woodbury formula, ||[(Z¢)~! — 25! <

S0 | I, where

L=|(8,9)" - =05,

I = {(8,9)7" = 5B B(E, )7

Iy = [{(Z,9)7" = 5B BE )

I = |2.5(B, - B)T ' B2 4

Iy = |2, (B, - B)J 'BsZ 4,

Iy = |2, 5Bs{T " = IIBE 4,

0

that J = Ix + B,(Z, ) 'B, and J = I + B4X; i Bs.
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By Lemma 3, I} = Op (msw,). For Iy, Lemma A.6(ii) implies that ||j*1|| = Op(s7!).
This together with condition (ii) imply that |B,J™'B/|| = Op (1). Moreover, it follows
from Lemma 3 and condition (v) that H(E;S)AH = Op (1). Therefore,

L < I(Z5) " = SSIIBI B s) "l = Op (myw,).

Similarly, I; = Op (myw,). For I, we have I, < [|(B, — Bg)J 'Bj]|[|Z;%]|>. We bound
(B, — Bs)J'Bj]| by

I(B, — Bs)J "By < [|(B, — Bs)T (B, — Bs)'||"*|BsJ 'Bj|'>.

Since ||(B, — BS)(B - BS) | < |IB, — BS||F < s(maXSHBg’ — by]|)? = Op (sw?). This

together with |[J7Y| = Op (s7!) and |B,J'B,|| = Op (1) imply that I, = Op (w,).
Similarly, Is = Op (w,). For Ig, we have I < [|[J=' — J~1||||=5 5P HBSB H By conditions
(ii) and (iv), we have ||Z;}g|| = O(1) and |BsBY|| = O(s). As for ||J T — J71|, we have

370 =37 =131 = 3)37 = Op (57 2B, iBs — BLS, sBo|l) = Op (s~ maw)

where the last equation follows from that

~ ~—1 ~ ~
IB,E, sBo — BsZ, sBs|| < [|(B, — Bs)’Eus(B ~ Bg)| +2/(B, - Bs)'S, ¢Bs|

+ IBS{(Z,s) " — 2.5} Bsll
= Op (sw? ) + Op (sw,) + Op (smsw,)
= Op (smsw,) .

Therefore, I = Op (msw,). After summing up, H(ig)_l — 3 = Op (maw,). O

Convergence Rates of X in Section 5

Let H= M"! 27]\:{:1 Hy,,, where Hp,) = T_n F’ F..B. E Bm/T, V,, is the diagonal

matrix of the K largest eigenvalues of Y/, E Y,./T, B, and F,, are the loadings and
the factors in the mth group.

According to the proof of Theorem 1, the key is to show that max;<;<r|/f; — Hf;|
has the same rate as maxlgtSTH/f;(z) — Huf|| and max;<,||b; — Hb;|| has the same rate as
maxlgigsﬂgf) — HgblH B B

To give the rate of max;<i<r||fi — Hf;||, since M is fixed, p/M is in the same order as
p. Then, it follows from Lemma 1 that for any 1 < m < M, maXlgtﬁTH/fm,t — Hyyfi|| =
Op(a,r), where a,r = T—Y/% + TV4p~1/2. By definition, there exists a positive constant
Cin.e such that

P (max ||fmt Hp,, £ > C’m7€ap7T> <e€/M.

1<t<
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Let C = maxi<m<m Cm7e. We have

> CCLp’T)

M

Sp (max [£e — Hipf|| > cap,T)
— 1<t<T
€.

M
_ _ 1 -~
P (f?fg%”ft — Hf || > Cap,T) =P (1@&}%‘ HM Z_l(fm,t - H[m]ft)

IA

IA

By definition, max;<;<7||f; — Hf;|| = Op (a,r), which is the same as maXlStSTH/ft(z) — Hof,||
shown in Lemma 1.

Next, we show that max;<,||b; — Hb;|| = Op(wsy). For any 1 < m < M, similarly as
in Lemma A.2, we have ||Hp,|| = Op (1). By the same union bound argument, we have
|IH|| = Op (1). Then, it follows from the same proof of Lemma 2 that max;<||b; — Hb;|| =
Op (wg)

As M is fixed, the results in Lemma 3 and Theorem 1 for each individual group hold.
Repeatedly using the above union bound argument, g is shown to have the same conver-

a2
gence rate as Zé).

Additional Lemmas

Lemma A.1. Under conditions of Lemma 1, it holds that

i<s,t<T T S

N o 1 T1/4
max [|(b{")EY — bifi| = Op | (log7)"/* /=== + —> ,

bPVF logs T4
@YED _pig | = 1/2 g
max [[(B)E? —bifi]| = Op ( (logT) £e p>’

i<st<T T

- 1
max [|(b2)f, — blf|| = Op | (log T)/2y/ =2 3) .

Proof of Lemma A.1. Under condition (i), it follows from the union bound argument

that
max|f| = Op (ViogT)

Then, for Method 1, it follows from Lemmas 1, 2, A.2, and condition (vi) that, uniformly
in 7 and ¢,

IBMYEY — bif|| < [bY — Hyb,|||[£" — HL || + | Hb,|||[£" — H.£|
+ b — by || [HLE | + (||| ]| HL — L]

[logs T4
_ 1/2
Op ((logT) T —|—\/§ :
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For Method 2, similar arguments give

T logs TY4

In the oracle setting, where the factors are known, we have

mass [[(B¢)'F, — b = mas B2 = bil ] = Or (\/logTrgngIIB?—bill)

1<s,t<T
1
o (aog e, /g) |

Lemma A.2. Let Hy = V{'FOFB,S, (Bg/T and Hy = V;'FOFB'S, 'B/T, where
{\/1 s the diagonal matrixz of the largest K eigenvalues of Ygf]:gYS/T and \A/'Q 18 the

[]

diagonal matriz of the largest K eigenvalues of Y’f];lY/T. Under conditions of Lemma
1, [Hy|| = Op (1) and [[Ha|| = Op (1).

Proof of Lemma A.2. Since X, ¢ is a submatrix of 3, it follows from condition (v)
that Amin(2, ) > ¢;'. By Proposition 4.1 of Bai and Liao (2013), Hi;g =3, 5l =op (1)
Therefore, with probability tending to 1, ||§~J;g|| > 1/(2¢3). Then,

T Y4, s Ys =T Y5(E, 5 — (1/26)D)Ys + 1/(26,T) Y5 Y.

Under the pervasive condition (i), it follows from Lemma C.4 of Fan et al. (2013) that the

K'th largest eigenvalue of T7'Y4 Y is larger than Ms. Since T~ 1YS(EU’E — (1/2¢2))Y s
is semi-positive definite, it follows from Weyl’s inequality that

Mc(TYEE,5Y ) > Ae(1/(26T)Y5Ys) > Ms/(2¢5).

Hence ||\A/'_1|| = Op( . Also Amax(||F'F]|) = )\max(||ZtT:1 f.f]|) = Op (T'). In addition,

max(||ZT f (1)( ) ) = Op (T ), where the last equation follows from the constraint in
(6). Then [(FOYF| < [|(FOYFO|Y2|F'F||'/2 = Op (T). These results together with
| B u,SBS” = O(s) imply that ||H;|| = Op (1). Similarly, |Hs|| = Op (1). O
Lemma A.3. (i) |[H,H, — Ic|r = Op ( 1 ) (ii) |HoH, — I = Op (\/% + ﬁ).

(ii1) |[H{H, — Ik r = Op (\f \[) (v) |[HHy — Ik||r = Op (\F + f)
Proof of Lemma A.3. Let cov(Hif;) = %ZtT:l(Hlft)(Hlft)’. Then,

IHH) — Ix||lr < |[H/H) — cov(Hify)||p + ||cov(Hufy) — Ix|F .

~~ ~~
I Ip)
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For I;, we have I, < |H;|]?|[Ix — cov(fy)||r, where cov(f;) = %Zthl f,f/. It follows
from Lemma C.3(1) of Fan et al. (2013) that |[Ix — cov(£)|[r = Op (1/ﬁ). Then,

= Op (1/\/T>, since ||H;|| = Op(1). For Iy, by the identifiability constraint in (6),
%Zle/f;(l)/f\t(l), = Ix. Therefore,

1 T T
IQZIT;HftHlft - Z
1 T
< =S @ —tV)m.8) H EVED —Hf
_\TH(U Lt + Z £
1 « 1 S 1 « 2
< TZIIHlft—fE”HQ-TZ\IHlft!P) +(TZHHJt—ff”HQ-TZHfF’HQ)
t=1 t=1 t=1

1
11
(7 )
where the last equality follows from Lemma A.5 and that |[H f|| < ||H.||||f|| = Op (1)
and [[£7] = Op (1). Similarly, |[HoH, — Li||r = O (% + %).
(iii) Since |[H,H| — Ix|[r = Op (f + 7) and ||H, | = Op (1), we have |[H,H/H, —
H|r=Op (L + —). Since Hy! = Hy!(Ix — H,H| + H,H/), it follows Lemma A.3(i)
that |HY| < |HT 1|yop(f+ f) + |HY||. Hence, |H;Y|| = Op (1). Left multiplying
H,H'H, — H; by H; ' gives |H/H, —Ix||r = Op ( Similarly, |HYH, —Ix||F =

7t )
0P<f+f> 0

Lemma A.4. Let C, = ]§1 — BsH) and C, = ]§2 — BsHY,, where ]§1, ]§2, and Bg are
defined in Section 4.
(i) Hclil% = Op (swi), |Cs[[ = Op (Sw(g)); IC1CY 1%, = Op (sw), [C2Cyll5; = Op (swy).
e (2

(it) 5,5 — Zuslls, = Op (miwi); |2, 5 — Busls, = Op (miws).
(iti) | BsH{ Ci[5; = Op (wf); [[BsHYC |5, = Op (w3).
(iv) | Bs(HHy — Lo)By |3, = Op (35 + 4); [ Bs(HH, — LB |3, = Op (4 + L),
Proof of Lemma A.J4. (i) We have ||Cy||2 < s(max;<,||b{") — Hby||)? = Op (sw?). By
the general result that for any matrix A, [|A]%, = s '|Z5 P AX 2|2 = Op (s V| A13),
we have ||CICy|l3, = Op(s7'|Ci||z) = Op (sw}). Similarly, ||Cylz = Op (sw3) and
IC2Cy 3, = O (su).

(ii) By Lemma 3,

~(1) (1) (1)
1205 = Busly, = O (57180 = Buslt) = Op (1805 — Susl?) = Op (miuf).
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Similar results can be shown for ||§1(LQ)S —Xusllss-
(iii) By adapt the proof of Theorem 2 in Fan et al. (2008), we have that | B5X5'Bg|| =

O(1). Hence,
|IBsHCl |3, = s 'tr(H{C|X5'C;H, B35 ' Bg)
< s HHL P BsXs Bl 25 | ICL 1%
= 0p (s7|C1[[}) = Op ().

Similarly, [|BsH,Ch||ss = Op (w3).
(iv) We have

IBs(H{H, — Ix)BY[5, = s~ 'tr(H{H; — Ix)ByE; ' Bs(H H, — I5)BsX;'By)

- _ 1 1
s H, — I 3BLS5 Bs|? = 05 (_T i _> |

Similarly, |Bs(H,H; — Ix)Bgll3, = Op (% + S_lp) -

Lemma A.5. Under conditions of Lemma 1,

T

1 ~

7 2B —Hg P = Op (1/s + 1/T).
t=1

T

1 ~

=D IEY — FLfl = 0p (1/p + 1/T).
t=1

Proof of Lemma A 5. Without loss of generality, we only prove the result for general
p. Again, we write f as f;, Hy as H and V, as V for notational simplicity. By (A.2),

—Zuft HE||? < |V~ 1HZ ZGW

where ¢ is a positive constant and G; is the jth summand on the right hand side of (A.2).
By Lemma A.6 (iv) of Bai and Liao (2013), + Zszl G?, = op (1/p +1/T). By Lemma A.10
(i) and (iii) of Bai and Liao (2013), £ >/ G2, = Op (1 /T) and £ 3" G2, = Op (1/T). By
Lemma A.6 (iii), (v) and (vi) of Bai and Liao (2013), & ST G4t =op(1/p), %Zthl G% =
op(1/p) and %thl G2, = op(1/p). Finally, by Lemma A.11 (ii) of Bai and Liao (2013),
%Zthl G2, = Op(1/p). Therefore, the dominating terms are Goy, G3; and Gy, which
together give the rate of Op (1/p+ 1/T). O

Lemma A.6. With probability tending to 1,

(i) Amin(Ix + (BsH))'Z, sBsH)) > s, Aun(Ix + (BsH,)'S, \BsH)) > cs, Amin(Ix +
BX, sBs) > cs;

(1) Amin (I + B, (z D1By) > es, A (Lic+ B (2 1)1By) > ¢5, Amn (I + B! (=, 5)'B,)
> cS;

(iii) Amin((H’lﬂl)*l + B5E, 5Bs) > cs, Auin(HyHs) ™' + B5E, iBg) > cs.
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Proof of Lemma A.6. By Lemma A.3, with probability tending to one, A, (H;HY) is
bounded away from 0. Therefore,

Amin(Ix + (BsHY)'S, sBsH) > Apin(Hi B33, BsH))
Z >\min(E;}S‘))\min(Bg’BS))\min(HlHll) Z CSs.
Similar results hold for the other two statements. The results in (ii) follow from (i) and

(A.6). The statement (iii) follows from a similar argument as HiH) and HoH/, are positive
semi-definite. ]

Lemma A.7. [Theorem A.1 of Fan et al. (2013)] Let uy be defined as in step ii. of
Method 1 in Section 4. Under conditions (iv), (v), if there is a sequence ar = o(1) so
that max;<,, 7 Zthl luy — Uyl|* = Op(a%) and maxi<pi<7 |uiy — Uy| = op (1), then the
adaptive thresholding estimator 3, with w(p) = \/(logp)/T +ar satisfies that | S, — || =
Op (my[w(®)]*9). If further my[w(p)]*=® = o(1), then 3 is invertible with probability
approaching one, and Hi?;l — 3 = Op (mylw(®)]9).
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