# Supplementary materials of "Embracing the Blessing of Dimensionality in Factor Models" 

Quefeng Li, Guang Cheng, Jianqin Fan, and Yuyan Wang

## Additional Regularity Conditions

(iv) $\left\{\mathbf{u}_{t}, \mathbf{f}_{t}\right\}_{t \geq 1}$ are i.i.d. sub-Gaussian random variables over $t$.
(v) There exist constants $c_{1}$ and $c_{2}$ that $0<c_{1} \leq \lambda_{\min }\left(\boldsymbol{\Sigma}_{u}\right) \leq \lambda_{\max }\left(\boldsymbol{\Sigma}_{u}\right) \leq c_{2}<\infty$, $\left\|\boldsymbol{\Sigma}_{u}\right\|_{1}<c_{2}$ and $\min _{i \leq p, j \leq p} \operatorname{Var}\left(u_{i t} u_{j t}\right)>c_{1} ;$
(vi) There exists an $M>0$ such that $\|\mathbf{B}\|_{\text {max }}<M$;
(vii) There exists an $M>0$ such that for any $s \leq T$ and $t \leq T, \mathrm{E} \mid p^{-1 / 2}\left(\mathbf{u}_{s}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}-\right.$ $\left.\mathrm{Eu}_{s}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}\right)\left.\right|^{4}<M$ and $\mathrm{E}\left\|p^{-1 / 2} \mathbf{B}^{\prime} \boldsymbol{\Sigma}_{u_{i}}^{-1} \mathbf{u}_{t}\right\|^{4}<M$;
(viii) For each $t \leq T, \mathrm{E}\left\|(p T)^{-1 / 2} \sum_{s=1}^{T} \mathbf{f}_{s}\left(\mathbf{u}_{s}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}-\mathrm{E}\left(\mathbf{u}_{s}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}\right)\right)\right\|^{2}=O(1)$;
(ix) For each $i \leq p, \mathrm{E}\left\|(p T)^{-1 / 2} \sum_{t=1}^{T} \sum_{j=1}^{p} \mathbf{d}_{j}\left(u_{j t} u_{i t}-\mathrm{E} u_{j t} u_{i t}\right)\right\|=O(1)$, where $\mathbf{d}_{j}$ is the $j$ th column of $\mathbf{B}^{\prime} \boldsymbol{\Sigma}_{u}^{-1}$;
(x) For each $i \leq K$, $E\left\|(p T)^{-1 / 2} \sum_{t=1}^{T} \sum_{j=1}^{N} \mathbf{d}_{j} u_{j t} f_{i t}\right\|=O(1)$.

Condition (iv) is a standard assumption in order to establish the exponential type of concentration inequality for the elements in $\mathbf{u}_{t}$ and $\mathbf{f}_{t}$. Condition (v) requires $\boldsymbol{\Sigma}_{u}$ to be well-conditioned. In particular, we need a lower bound on the eigen-values of $\boldsymbol{\Sigma}_{u}$. This assumption guarantees that $\tilde{\boldsymbol{\Sigma}}_{u}$ is asymptotically non-singular so that $\tilde{\boldsymbol{\Sigma}}_{u}^{-1}$ will not perform badly in the weighted least-squares problem described in (6). These conditions were also assumed in Fan et al. (2013). Conditions (vii)-(x) are some moment conditions needed to establish the central limit theorem for the WPC estimator $\widehat{\mathrm{f}}_{t}$. They are standard in the factor model literature, e.g. Stock and Watson (2002) and Bai (2003).

## Proofs of Results in Sections 2 and 4

Proof of Proposition 1. Let $\mathbf{g}_{1}=\nabla_{\boldsymbol{\theta}_{S}} \log h\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}, \mathbf{y}_{S^{c}}-\boldsymbol{\theta}_{S^{c}}\right)$ and $\mathbf{g}_{2}=\nabla_{\boldsymbol{\theta}_{S}} \log h_{S}\left(\mathbf{y}_{S_{S}}\right.$ $\left.\boldsymbol{\theta}_{S}\right)$, where $h_{S}$ is the marginal density of $\mathbf{y}_{S}$. Firstly, we show that $\mathbf{g}_{2}=\mathrm{E}\left(\mathbf{g}_{1} \mid \mathbf{y}_{S}\right)$. In fact, for any bounded function $\varphi\left(\mathbf{y}_{S}\right)$, by Fubini Theorem and condition (3),

$$
\begin{aligned}
\mathrm{E}\left(\mathbf{g}_{1} \varphi\left(\mathbf{y}_{S}\right)\right) & =-\iint\left(\nabla_{\mathbf{y}_{S}} \log h\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}, \mathbf{y}_{S^{c}}-\boldsymbol{\theta}_{S^{c}}\right)\right) h\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}, \mathbf{y}_{S^{c}}-\boldsymbol{\theta}_{S^{c}}\right) \varphi\left(\mathbf{y}_{S}\right) \mathrm{d} \mathbf{y}_{S} \mathrm{~d} \mathbf{y}_{S^{c}} \\
& =-\iint\left(\nabla_{\mathbf{y}_{S}} h\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}, \mathbf{y}_{S^{c}}-\boldsymbol{\theta}_{S^{c}}\right)\right) \varphi\left(\mathbf{y}_{S}\right) \mathrm{d} \mathbf{y}_{S} \mathrm{~d} \mathbf{y}_{S^{c}} \\
& =-\int\left(\nabla_{\mathbf{y}_{S}} \int h\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}, \mathbf{y}_{S^{c}}-\boldsymbol{\theta}_{S^{c}}\right) \mathrm{d} \mathbf{y}_{S^{c}}\right) \varphi\left(\mathbf{y}_{S}\right) \mathrm{d} \mathbf{y}_{S}
\end{aligned}
$$

$$
\begin{aligned}
& =-\int \nabla_{\mathbf{y}_{S}} h_{S}\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}\right) \varphi\left(\mathbf{y}_{S}\right) \mathrm{d} \mathbf{y}_{S} \\
& =\int\left(\nabla_{\mathbf{y}_{S}} \log h_{S}\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}\right)\right) h_{S}\left(\mathbf{y}_{S}-\boldsymbol{\theta}_{S}\right) \varphi\left(\mathbf{y}_{S}\right) \mathrm{d} \mathbf{y}_{S} \\
& =\mathrm{E}\left(\mathbf{g}_{2} \varphi\left(\mathbf{y}_{S}\right)\right) .
\end{aligned}
$$

Then, by definition, $\mathbf{g}_{2}=\mathrm{E}\left(\mathbf{g}_{1} \mid \mathbf{y}_{S}\right)$. Therefore,

$$
\begin{aligned}
\left\{I_{p}(\boldsymbol{\theta})\right\}_{S} & =\mathrm{E}\left(\mathbf{g}_{1} \mathbf{g}_{1}^{\prime}\right)=\mathrm{E}\left[\left(\mathbf{g}_{2}+\mathbf{g}_{1}-\mathbf{g}_{2}\right)\left(\mathbf{g}_{2}+\mathbf{g}_{1}-\mathbf{g}_{2}\right)^{\prime}\right] \\
& =\mathrm{E}\left[\mathbf{g}_{2} \mathbf{g}_{2}^{\prime}\right]+\mathrm{E}\left[\mathbf{g}_{2}\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)^{\prime}\right]+\mathrm{E}\left[\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right) \mathbf{g}_{2}^{\prime}\right]+\mathrm{E}\left[\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)^{\prime}\right] \\
& =I_{S}\left(\boldsymbol{\theta}_{S}\right)+\mathrm{E}\left[\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)^{\prime}\right] \\
& \succeq I_{S}\left(\boldsymbol{\theta}_{S}\right),
\end{aligned}
$$

where the last equality follows from $\mathrm{E}\left[\mathbf{g}_{2}\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)^{\prime}\right]=\mathrm{E}\left[\mathrm{E}\left[\mathbf{g}_{2}\left(\mathbf{g}_{1}-\mathbf{g}_{2}\right)^{\prime} \mid \mathbf{y}_{S}\right]\right]=0$, since $\mathbf{g}_{2}=\mathrm{E}\left(\mathbf{g}_{1} \mid \mathbf{y}_{S}\right)$.

Proof of Example 2. Without loss of generality, we assume $\boldsymbol{\theta}=\mathbf{0}$ so that the density of $\mathbf{y}$ is proportional to $g\left(\mathbf{y}^{\prime} \boldsymbol{\Omega} \mathbf{y}\right)$, where $\boldsymbol{\Omega}=\boldsymbol{\Sigma}^{-1}$. Then,

$$
\begin{aligned}
\left|\nabla_{\mathbf{y}_{S}} h\left(\mathbf{y}_{S}, \mathbf{y}_{S^{c}}\right)\right| & =2\left|g^{\prime}\left(\mathbf{y}^{\prime} \boldsymbol{\Omega} \mathbf{y}\right)(\boldsymbol{\Omega} \mathbf{y})_{S}\right| \leq 2\left|g^{\prime}\left(\mathbf{y}^{\prime} \boldsymbol{\Omega} \mathbf{y}\right)\right|\left|\boldsymbol{\Omega}_{S} \mathbf{y}_{S}+\boldsymbol{\Omega}_{S, S^{c}} \mathbf{y}_{S^{c}}\right| \\
& \leq 2 c\left|\boldsymbol{\Omega}_{S} \mathbf{y}_{S}+\boldsymbol{\Omega}_{S, S^{c}} \mathbf{y}_{S^{c}}\right| g\left(\mathbf{y}^{\prime} \boldsymbol{\Omega} \mathbf{y}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
\int\left(\int\left|\boldsymbol{\Omega}_{S} \mathbf{y}_{S}+\boldsymbol{\Omega}_{S, S^{c}} \mathbf{y}_{S^{c}}\right| g\left(\mathbf{y}^{\prime} \boldsymbol{\Omega} \mathbf{y}\right) d \mathbf{y}_{S^{c}}\right) d \mathbf{y}_{S} & \propto \mathrm{E}\left(\left|\boldsymbol{\Omega}_{S} \mathbf{y}_{S}+\boldsymbol{\Omega}_{S, S^{c}} \mathbf{y}_{S^{c}}\right|\right) \\
& \leq \mathrm{E}\left(\left|\boldsymbol{\Omega}_{S} \mathbf{y}_{S}\right|+\left|\boldsymbol{\Omega}_{S, S^{c}} \mathbf{y}_{S^{c}}\right|\right) \\
& <\infty
\end{aligned}
$$

Therefore for a.e. any $\mathbf{y}_{S}, \int\left|\boldsymbol{\Omega}_{S} \mathbf{y}_{S}+\boldsymbol{\Omega}_{S, S^{c}} \mathbf{y}_{S^{c}}\right| g\left(\mathbf{y}^{\prime} \boldsymbol{\Omega} \mathbf{y}\right)$ is integrable. By Example 1.8 of Shao (2003), differentiation and integration are interchangeable, hence (3) holds.

Proof of Proposition 2. For simplicity, let $\boldsymbol{\Omega}=I_{p}(\boldsymbol{\theta})$ and partition it as

$$
\boldsymbol{\Omega}=\left(\begin{array}{cc}
\boldsymbol{\Omega}_{S} & \boldsymbol{\Omega}_{S, S^{c}} \\
\boldsymbol{\Omega}_{S^{c}, S} & \boldsymbol{\Omega}_{S^{c}}
\end{array}\right)
$$

Then, the Fisher information $I(\mathbf{f})$ of $\mathbf{f}$ contained in all data is given by

$$
\begin{equation*}
I(\mathbf{f})=\mathbf{B}^{\prime} \boldsymbol{\Omega} \mathbf{B}=\mathbf{B}_{S}^{\prime} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}+\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}, S} \mathbf{B}_{S}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Omega}_{S, S^{c}} \mathbf{B}_{S^{c}}+\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}} \mathbf{B}_{S^{c}} \tag{A.1}
\end{equation*}
$$

If $\boldsymbol{\Omega}_{S, S^{c}}=\mathbf{0}$, we have

$$
\begin{aligned}
I(\mathbf{f}) & =\mathbf{B}_{S}^{\prime} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}+\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}} \mathbf{B}_{S^{c}}=\mathbf{B}_{S}^{\prime}\left\{I_{p}(\boldsymbol{\theta})\right\}_{S} \mathbf{B}_{S}+\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}} \mathbf{B}_{S^{c}} \\
& \succeq \mathbf{B}_{S}^{\prime} I_{S}\left(\boldsymbol{\theta}_{S}\right) \mathbf{B}_{S}+\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}} \mathbf{B}_{S^{c}} \succeq \mathbf{B}_{S}^{\prime} I_{S}\left(\boldsymbol{\theta}_{S}\right) \mathbf{B}_{S}=I_{S}(\mathbf{f}),
\end{aligned}
$$

where the first inequality follows from Proposition 1 and the last inequality follows from that $\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}} \mathbf{B}_{S^{c}}$ is positive semi-definite. This completes the proof.

Proof of Proposition 3. For any general $\mathbf{Q} \in \mathbb{R}^{L \times R}, \mathbf{B}_{L} \in \mathbb{R}^{L \times K}$, and $\mathbf{B}_{R} \in \mathbb{R}^{R \times K}$, we have

$$
\mathrm{E}\left(\mathbf{B}_{L}^{\prime} \mathbf{Q} \mathbf{B}_{R}\right)=\mathrm{E}\left[\sum_{l=1}^{L} \sum_{r=1}^{R} q_{l, r} \mathbf{b}_{L, l} \mathbf{b}_{R, r}^{\prime}\right] .
$$

where $q_{l, r}$ is the $(l, r)$-th element of $\mathbf{Q}, \mathbf{b}_{L, l}^{\prime}$ is the $l$ th row of $\mathbf{B}_{L}$ and $\mathbf{b}_{R, r}^{\prime}$ is the $r$ th row of $\mathbf{B}_{R}$. Therefore,

$$
\mathrm{E}\left(\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}, S} \mathbf{B}_{S}\right)=\mathrm{E}\left[\sum_{l \in S^{c}} \sum_{r \in S} \omega_{l, r} \mathbf{b}_{S^{c}, l} \mathbf{b}_{S, r}^{\prime}\right]
$$

where $\omega_{l, r}$ is the $(l, r)$-th element of $\boldsymbol{\Omega}$. By the i.i.d assumption, for $l \in S^{C}$ and $r \in S$, $\mathrm{E}\left(\mathbf{b}_{S^{c}, l} \mathbf{b}_{S, r}^{\prime}\right)=\mathrm{E}\left(\mathbf{b}_{S^{c}, l}\right) \mathrm{E}\left(\mathbf{b}_{S, r}^{\prime}\right)=\mathbf{0}$. Hence, $\mathrm{E}\left(\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}, S} \mathbf{B}_{S}\right)=\mathbf{0}$. Similarly, it can be shown that $\mathrm{E}\left(\mathbf{B}_{S}^{\prime} \boldsymbol{\Omega}_{S, S^{c}} \mathbf{B}_{S^{c}}\right)=\mathbf{0}$. By Proposition $1, \mathbf{B}_{S}^{\prime} \boldsymbol{\Omega}_{S} \mathbf{B}_{S} \succeq \mathbf{I}_{S}(\mathbf{f})$, which implies that $\mathrm{E}\left(\mathbf{B}_{S}^{\prime} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}\right) \succeq \mathrm{E}\left(\mathbf{I}_{S}(\mathbf{f})\right)$.

$$
\mathrm{E}\left(\mathbf{B}_{S^{c}}^{\prime} \boldsymbol{\Omega}_{S^{c}} \mathbf{B}_{S^{c}}\right)=\mathrm{E}\left[\sum_{l \in S^{c}} \sum_{r \in S^{c}} \omega_{l, r} \mathbf{b}_{L, l} \mathbf{b}_{R, r}^{\prime}\right]=\mathrm{E}\left[\sum_{l \in S^{c}} \omega_{l, l} \mathbf{b}_{L, l} \mathbf{b}_{L, l}^{\prime}\right]=\operatorname{tr}\left(\boldsymbol{\Omega}_{S^{c}}\right) \mathrm{E}\left(\mathbf{b} \mathbf{b}^{\prime}\right) \succeq \mathbf{0}
$$

Using (A.1) and the above results, we have $\mathrm{E}[I(\mathbf{f})] \succeq \mathrm{E}\left[I_{S}(\mathbf{f})\right]$.
Proof of Lemma 1. Since we assume all conditions hold for both $s$ and $p$, we prove the result for $p$, i.e. $\max _{t \leq T}\left\|\widehat{\mathbf{f}}_{t}^{(2)}-\mathbf{H}_{2} \mathbf{f}_{t}\right\|=O_{P}\left(T^{-1 / 2}+T^{1 / 4} / p^{-1 / 2}\right)$. The result for $s$ can be proved similarly. For simplicity, we write $\widehat{\mathbf{f}}_{t}^{(2)}$ as $\widehat{\mathbf{f}}_{t}$ and $\mathbf{H}_{2}$ as $\mathbf{H}$.

By (A.1) of Bai and Liao (2013), $\widehat{\mathbf{f}}_{t}-\mathbf{H f}_{t}$ has the following expansion,

$$
\widehat{\mathbf{f}}_{t}-\mathbf{H f}_{t}=\widehat{\mathbf{V}}^{-1}\left(\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \mathbf{u}_{i}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u}^{-1} \mathbf{u}_{t} / p+\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \widehat{\eta}_{i t}+\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \widehat{\theta}_{i t}\right)
$$

where $\widehat{\eta}_{i t}=\mathbf{f}_{i}^{\prime} \mathbf{B}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u}^{-1} \mathbf{u}_{t} / p, \widehat{\theta}_{i t}=\mathbf{f}_{t}^{\prime} \mathbf{B}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u}^{-1} \mathbf{u}_{i} / p$, and $\widehat{\mathbf{V}}$ is the diagonal matrix of the $K$ largest eigenvalues of $\mathbf{Y}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u}^{-1} \mathbf{Y} / T$. Let $\eta_{i t}=\mathbf{f}_{i}^{\prime} \mathbf{B}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t} / p$ and $\theta_{i t}=\mathbf{f}_{t}^{\prime} \mathbf{B}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{i} / p$. Then, we have

$$
\begin{align*}
\left\|\widehat{\mathbf{f}}_{t}-\mathbf{H f}_{t}\right\| \leq & \left\|\widehat{\mathbf{V}}^{-1}\right\|\left(\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \mathbf{u}_{i}^{\prime}\left(\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right) \mathbf{u}_{t} / p\right\|+\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i}\left(\mathbf{u}_{i}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}-\mathrm{E}_{i}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}\right) / p\right\|\right. \\
& +\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \mathrm{E}\left(\mathbf{u}_{i}^{\prime} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{u}_{t}\right) / p\right\|+\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i}\left(\widehat{\eta}_{i t}-\eta_{i t}\right)\right\|+\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \eta_{i t}\right\| \\
& \left.+\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i}\left(\widehat{\theta}_{i t}-\theta_{i t}\right)\right\|+\left\|\frac{1}{T} \sum_{i=1}^{T} \widehat{\mathbf{f}}_{i} \theta_{i t}\right\|\right) \tag{A.2}
\end{align*}
$$

Denote the $j$ th summand inside the parenthesis as $G_{j t}$.
By Lemma A. 2 of Bai and Liao (2013), $\left\|\widehat{\mathbf{V}}^{-1}\right\|=O_{P}(1)$. By Lemma A.6(iv) of Bai and Liao (2013),

$$
\max _{t \leq T} G_{1 t}=O_{P}\left(\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|\left\{\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|+1 / \sqrt{p}+\sqrt{(\log p) / T}\right\}\right)
$$

By Proposition 4.1 of Bai and Liao (2013),

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|=o_{P}\left(\min \left\{T^{-1 / 4}, p^{-1 / 4}, \sqrt{T /(p \log p)}\right\}\right) \tag{A.3}
\end{equation*}
$$

therefore, $\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|\left(\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|+1 / \sqrt{p}+\sqrt{(\log p) / T}\right)=o\left(T^{-1 / 2}+p^{-1 / 2}\right)$. Hence,

$$
\max _{t \leq T} G_{1 t}=o_{P}\left(T^{-1 / 2}+p^{-1 / 2}\right)
$$

By Lemma A.8(ii) of Bai and Liao (2013), $\max _{t \leq T} G_{2 t}=O_{P}\left(T^{1 / 4} p^{-1 / 2}\right)$. By Lemma A.10(i) of Bai and Liao (2013), $\max _{t \leq T} G_{3 t}=O_{P}\left(T^{-1 / 2}\right)$. By Lemma A.6(vi) of Bai and Liao (2013),
$\max _{t \leq T} G_{4 t}=O_{P}\left(\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|\left\{\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|+1 / \sqrt{p}+1 / \sqrt{T}\right\}\right)+o_{P}(1 / \sqrt{p})=o_{P}(1 / \sqrt{p})$.
By Lemma A.8(iii) of Bai and Liao (2013), $\max _{t \leq T} G_{5 t}=O_{P}\left(T^{1 / 4} p^{-1 / 2}\right)$. By Lemma A.6(v) of Bai and Liao (2013) and (A.3),

$$
\max _{t \leq T} G_{6 t}=O_{P}\left(\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|\left\{\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|+1 / \sqrt{p}+\sqrt{(\log p) / T}\right\}\right)=o_{P}(1 / \sqrt{p})
$$

By Lemma A.6(iii) of Bai and Liao (2013) and (A.3),

$$
\max _{t \leq T} G_{7 t}=O_{P}\left(\left\|\tilde{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\| / \sqrt{p}+1 / p+1 / \sqrt{p T}\right)=o_{P}(1 / \sqrt{p})
$$

Then, by (A.2), we have

$$
\max _{t \leq T}\left\|\widehat{\mathbf{f}}_{t}-\mathbf{H f}_{t}\right\|=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{T^{1 / 4}}{\sqrt{p}}\right)
$$

Proof of Lemma 2. For Method 1, we have the following decomposition

$$
\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}=\underbrace{\frac{1}{T} \sum_{t=1}^{T} \mathbf{H}_{1} \mathbf{f}_{t} u_{i t}}_{I_{1}}+\underbrace{\frac{1}{T} \sum_{t=1}^{T} y_{i t}\left(\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right)}_{I_{2}}+\underbrace{\mathbf{H}_{1}\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} \mathbf{f}_{t}^{\prime}-\mathbf{I}_{K}\right) \mathbf{b}_{i}}_{I_{3}},
$$

where $\mathbf{b}_{i}$ is the true factor loading of the $i$ th subject as defined in (1).
For $I_{1}$, we have

$$
\max _{i \leq s}\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{H}_{1} \mathbf{f}_{t} u_{i t}\right\| \leq\left\|\mathbf{H}_{1}\right\| \max _{i \leq s} \sqrt{\sum_{k=1}^{K}\left(\frac{1}{T} \sum_{t=1}^{T} f_{k t} u_{i t}\right)^{2}}
$$

It follows from Lemma C.3(iii) of Fan et al. (2013) that, $\max _{i \leq s} \sqrt{\sum_{k=1}^{K}\left(\frac{1}{T} \sum_{t=1}^{T} f_{k t} u_{i t}\right)^{2}}$ $=O_{P}(\sqrt{(\log s) / T})$. From Lemma A. $2,\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$, therefore $I_{1}=O_{P}(\sqrt{(\log s) / T})$.

As for $I_{2}$, by conditions (v) and (vi),

$$
\max _{i \leq s} \mathrm{E} y_{i t}^{2}=\max _{i \leq s}\left\{\mathrm{E}\left(\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right)^{2}+\mathrm{E} u_{i t}^{2}\right\} \leq \max _{i \leq s}\left\|\mathbf{b}_{i}\right\|^{2}+\max _{i \leq s} \operatorname{Var}\left(u_{i t}\right)=O(1)
$$

By condition (iv), $y_{i t}^{2}$ is sub-exponential, therefore by the union bound and sub-exponential tail bound, $\max _{i \leq s}\left|\frac{1}{T} \sum_{t=1}^{T} y_{i t}^{2}-\mathrm{E} y_{i t}^{2}\right|=O_{P}(\sqrt{(\log s) / T})$. Then,

$$
\begin{equation*}
\max _{i \leq s} \frac{1}{T} \sum_{t=1}^{T} y_{i t}^{2} \leq \max _{i \leq s}\left|\frac{1}{T} \sum_{t=1}^{T} y_{i t}^{2}-\mathrm{E} y_{i t}^{2}\right|+\max _{i \leq s} \mathrm{E} y_{i t}^{2}=O_{P}(1) \tag{A.4}
\end{equation*}
$$

By Cauchy-Schwartz inequality,

$$
\begin{aligned}
\max _{i \leq s}\left\|\frac{1}{T} \sum_{t=1}^{T} y_{i t}\left(\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right)\right\| & \leq \max _{i \leq s}\left(\frac{1}{T} \sum_{t=1}^{T} y_{i t}^{2} \cdot \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right\|^{2}\right)^{1 / 2} \\
& =O_{P}\left(\left(\frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right\|^{2}\right)^{1 / 2}\right) \\
& =O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)
\end{aligned}
$$

where the last equality follows from Lemma A.5. So, $I_{2}=O_{P}(1 / \sqrt{T}+1 / \sqrt{s})$.
Finally, it follows from Lemma C.3(i) of Fan et al. (2013) that $\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} \mathbf{f}_{t}^{\prime}-\mathbf{I}_{K}\right\|=$ $O_{P}\left(T^{-1 / 2}\right)$. This together with $\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$ and condition (vi) show that $I_{3}=O_{P}\left(T^{-1 / 2}\right)$. Hence,

$$
\max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|=O_{P}\left(\frac{1}{\sqrt{s}}+\sqrt{\frac{\log s}{T}}\right)
$$

Using the same arguments and the results of $\widehat{\mathbf{f}}_{t}^{(2)}$ in Lemma 1, we can show that

$$
\max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{(2)}-\mathbf{H}_{2} \mathbf{b}_{i}\right\|=O_{P}\left(\frac{1}{\sqrt{p}}+\sqrt{\frac{\log s}{T}}\right) .
$$

When the common factor $\mathbf{f}_{t}$ is known, for the oracle estimator of the loading matrix, we have

$$
\left.\begin{array}{rl}
\max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\| & \leq \max _{i \leq s}\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} u_{i t}\right\|+\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} \mathbf{f}_{t}^{\prime}-\mathbf{I}_{K}\right\| \max _{i \leq s}\left\|\mathbf{b}_{i}\right\| \\
& =O_{P}\left(\sqrt{\frac{\log s}{T}}+\frac{1}{\sqrt{T}}\right.
\end{array}\right) .
$$

Proof of Lemma 3. By Theorem A. 1 of Fan et al. (2013) (cited as Lemma A. 7 in this document), it suffices to show

$$
\max _{i \leq s} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}-\widehat{u}_{i t}^{(1)}\right)^{2}=O_{P}\left(\frac{1}{s}+\frac{\log s}{T}\right) \quad \text { and } \quad \max _{i, t}\left|u_{i t}-\widehat{u}_{i t}^{(1)}\right|=o_{P}(1) .
$$

For Method 1, we have

$$
u_{i t}-\widehat{u}_{i t}^{(1)}=\mathbf{b}_{i}^{\prime} \mathbf{H}_{1}^{\prime}\left(\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right)+\left\{\left(\widehat{\mathbf{b}}_{i}^{(1)}\right)^{\prime}-\mathbf{b}_{i}^{\prime} \mathbf{H}_{1}\right\} \widehat{\mathbf{f}}_{t}^{(1)}+\mathbf{b}_{i}^{\prime}\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right) \mathbf{f}_{t} .
$$

Using $(a+b+c)^{2} \leq 4 a^{2}+4 b^{2}+4 c^{2}$, we have

$$
\begin{aligned}
\max _{i \leq s} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}-\widehat{u}_{i t}^{(1)}\right)^{2} & \leq 4 \max _{i \leq s}\left\|\mathbf{H}_{1} \mathbf{b}_{i}\right\|^{2} \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right\|^{2} \\
& +4 \max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|^{2} \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}\right\|^{2} \\
& +4\left\|\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right\|_{F}^{2} \max _{i \leq s}\left\|\mathbf{b}_{i}\right\|^{2} \frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{f}_{t}\right\|^{2}
\end{aligned}
$$

Since, $\max _{i}\left\|\mathbf{H}_{1} \mathbf{b}_{i}\right\| \leq\left\|\mathbf{H}_{1}\right\| \max _{i}\left\|\mathbf{b}_{i}\right\|=O_{P}(1), \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}\right\|^{2}=O_{P}(1)$, and $\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{f}_{t}\right\|^{2}$ $=O_{P}(1)$, it follows from Lemma 1, 2, A. 3 and A. 5 that

$$
\begin{equation*}
\max _{i \leq s} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}-\widehat{u}_{i t}^{(1)}\right)^{2}=O_{P}\left(\frac{1}{s}+\frac{\log s}{T}\right) \tag{A.5}
\end{equation*}
$$

On the other hand, by Lemma A.1,

$$
\max _{i, t}\left|u_{i t}-\widehat{u}_{i t}^{(1)}\right|=\max _{i, t}\left|\left(\widehat{\mathbf{b}}_{i}^{(1)}\right) \widehat{\mathbf{f}}_{i}^{(1)}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right|=O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}+\frac{T^{1 / 4}}{\sqrt{s}}\right)=o(1) .
$$

Then, the result follows from Theorem A. 1 of Fan et al. (2013).
In analogous, a similar result can be proved for Method 2. For the oracle estimator, $\widehat{u}_{i t}^{o}=y_{i t}-\left(\widehat{\mathbf{b}}_{i}^{o}\right)^{\prime} \mathbf{f}_{t}$. Therefore,

$$
\begin{gathered}
\max _{i \leq s} \frac{1}{T} \sum_{t=1}^{T}\left(u_{i t}-\widehat{u}_{i t}^{o}\right)^{2} \leq \max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|^{2} \frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{f}_{t}\right\|^{2}=O_{P}\left(\max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|^{2}\right)=O_{P}\left(\frac{\log s}{T}\right) . \\
\max _{i, t}\left|u_{i t}-\widehat{u}_{i t}^{o}\right|=\max _{i, t}\left|\left(\widehat{\mathbf{b}}_{i}^{o}\right)^{\prime} \mathbf{f}_{t}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right|=O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}\right)=o_{P}(1) .
\end{gathered}
$$

It then follows from Theorem A. 1 of Fan et al. (2013) that

$$
\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|=O_{P}\left(m_{s} \sqrt{\frac{\log s}{T}}\right)=\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\|
$$

Proof of Theorem 1. (1) For Method 1, $\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}=\widehat{\mathbf{B}}_{1} \widehat{\mathbf{B}}_{1}^{\prime}+\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}$. Therefore,

$$
\begin{aligned}
\left\|\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}-\boldsymbol{\Sigma}_{S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2} \leq & 2\left(\left\|\widehat{\mathbf{B}}_{1} \widehat{\mathbf{B}}_{1}^{\prime}-\mathbf{B}_{S} \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}+\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}\right) \\
\leq & 2\left(\left\|\mathbf{B}_{S}\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}+2\left\|\mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{C}_{1}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}+\left\|\mathbf{C}_{1} \mathbf{C}_{1}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}\right. \\
& \left.+\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}\right)
\end{aligned}
$$

where $\mathbf{C}_{1}=\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}$. Then, it follows from Lemma A. 4 that

$$
\left\|\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}-\boldsymbol{\Sigma}_{S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(\frac{1}{s T}+\frac{1}{s^{2}}+w_{1}^{2}+s w_{1}^{4}+m_{s}^{2} w_{1}^{2}\right)=O_{P}\left(s w_{1}^{4}+m_{s}^{2} w_{1}^{2}\right)
$$

Similarly, $\left\|\widehat{\boldsymbol{\Sigma}}_{S}^{(2)}-\boldsymbol{\Sigma}_{S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s w_{2}^{4}+m_{s}^{2} w_{2}^{2}\right)$.
In the oracle case, we have

$$
\begin{aligned}
\left\|\widehat{\boldsymbol{\Sigma}}_{S}^{o}-\boldsymbol{\Sigma}_{S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2} & \leq 2\left(\left\|\widehat{\mathbf{B}}_{o} \widehat{\mathbf{B}}_{o}^{\prime}-\mathbf{B}_{S} \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}+\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}\right) \\
& \leq 2(\underbrace{\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}}_{I_{1}}+2 \underbrace{\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}}_{I_{2}}+\underbrace{\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}}_{I_{3}}) .
\end{aligned}
$$

Since all eigenvalues of $\boldsymbol{\Sigma}_{S}$ are bounded away from zero, for any matrix $\mathbf{A} \in \mathbb{R}^{s \times s},\|\mathbf{A}\|_{\boldsymbol{\Sigma}_{S}}^{2}=$ $s^{-1}\left\|\boldsymbol{\Sigma}^{-1 / 2} \mathbf{A} \boldsymbol{\Sigma}^{-1 / 2}\right\|_{F}^{2}=O_{P}\left(s^{-1}\|\mathbf{A}\|_{F}^{2}\right)$. Then, by Lemma 2, we have

$$
I_{1}=O_{P}\left(s^{-1}\left\|\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right\|_{F}^{4}\right)=O_{P}\left(s w_{o}^{4}\right),
$$

where the last equality follows that $\left\|\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right\|_{F}^{2} \leq s\left(\max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|\right)^{2}=O_{P}\left(s w_{o}^{2}\right)$. For $I_{2}$, we have

$$
\begin{aligned}
I_{2} & =s^{-1} \operatorname{tr}\left(\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)^{\prime} \boldsymbol{\Sigma}_{S}^{-1}\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right) \\
& \leq s^{-1}\left\|\boldsymbol{\Sigma}_{S}^{-1}\right\|\left\|\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right\|_{F}^{2}\left\|\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right\| \\
& =O_{P}\left(w_{o}^{2}\right) .
\end{aligned}
$$

For $I_{3}$, Lemma 3 implies that

$$
I_{3}=O_{P}\left(s^{-1}\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|_{F}^{2}\right)=O_{P}\left(\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|^{2}\right)=O_{P}\left(m_{s}^{2} w_{o}^{2}\right) .
$$

Therefore, $\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s w_{o}^{4}+m_{s}^{2} w_{o}^{2}\right)$.
(2) For Method 1,

$$
\left\|\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}-\boldsymbol{\Sigma}_{S}\right\|_{\max } \leq \underbrace{\left\|\widehat{\mathbf{B}}_{1} \widehat{\mathbf{B}}_{1}^{\prime}-\mathbf{B}_{S} \mathbf{B}_{S}^{\prime}\right\|_{\text {max }}}_{I_{1}}+\underbrace{\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\text {max }}}_{I_{2}} .
$$

For $I_{1}$, we have

$$
I_{1}=\max _{i j}\left|\left(\widehat{\mathbf{b}}_{i}^{(1)}\right)^{\prime} \widehat{\mathbf{b}}_{j}^{(1)}-\mathbf{b}_{i}^{\prime} \mathbf{b}_{j}\right|
$$

$$
\begin{aligned}
& \leq \max _{i j}\left(\left|\left(\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right)^{\prime}\left(\widehat{\mathbf{b}}_{j}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{j}\right)\right|+2\left|\mathbf{b}_{i}^{\prime} \mathbf{H}_{1}^{\prime}\left(\widehat{\mathbf{b}}_{j}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{j}\right)\right|+\left|\mathbf{b}_{i}^{\prime}\left(\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}-\mathbf{I}_{K}\right) \mathbf{b}_{j}\right|\right) \\
& \leq\left(\max _{i}\left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|\right)^{2}+2 \max _{i j}\left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|\left\|\mathbf{H}_{1} \mathbf{b}_{j}\right\|+\left\|\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}-\mathbf{I}_{K}\right\|\left(\max _{i}\left\|\mathbf{b}_{i}\right\|\right)^{2} \\
& =O_{P}\left(w_{1}\right),
\end{aligned}
$$

where the last identity follows from Lemmas 2 and A.3.
For $I_{2}$, let $\sigma_{u, i j}$ be the $(i, j)$-th entry of $\boldsymbol{\Sigma}_{u, S}$ and $\widehat{\sigma}_{u, i j}=\frac{1}{T} \sum_{t=1}^{T} \widehat{u}_{i t} \widehat{u}_{j t}$, where $\widehat{u}_{i t}$ are the estimator of $u_{i t}$ from Method 1 as described in Section 4. Then,

$$
\begin{aligned}
& \max _{i j}\left|\widehat{\sigma}_{u, i j}-\sigma_{u, i j}\right| \\
= & \max _{i j}\left|\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t} \widehat{u}_{j t}-u_{i t} u_{j t}\right)\right|+\max _{i j}\left|\frac{1}{T} \sum_{i=1}^{T} u_{i t} u_{j t}-\mathrm{E}\left(u_{i t} u_{j t}\right)\right| \\
\leq & \max _{i j}\left|\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)\left(\widehat{u}_{j t}-u_{j t}\right)\right|+2 \max _{i j}\left|\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right) u_{j t}\right|+\max _{i j}\left|\frac{1}{T} \sum_{i=1}^{T} u_{i t} u_{j t}-\mathrm{E}\left(u_{i t} u_{j t}\right)\right| \\
\leq & \max _{i j}\left(\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)^{2}\right)^{1 / 2}\left(\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{j t}-u_{j t}\right)^{2}\right)^{1 / 2}+2 \max _{i j}\left(\frac{1}{T} \sum_{t=1}^{T}\left(\widehat{u}_{i t}-u_{i t}\right)^{2}\right)^{1 / 2}\left(\frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2}\right)^{1 / 2} \\
& +\max _{i j}\left|\frac{1}{T} \sum_{i=1}^{T} u_{i t} u_{j t}-\mathrm{E}\left(u_{i t} u_{j t}\right)\right| \\
= & O_{P}\left(w_{1}^{2}\right)+O_{P}\left(w_{1}\right)+O_{P}(\sqrt{(\log s) / T}),
\end{aligned}
$$

where the last equality follows from (A.5), Lemma C. 3 (ii) of Fan et al. (2013) and

$$
\max _{j \leq s} \frac{1}{T} \sum_{t=1}^{T} u_{j t}^{2}=O_{P}(1)
$$

as similarly shown in (A.4). Hence, $\max _{i j}\left|\widehat{\sigma}_{u, i j}-\sigma_{u, i j}\right|=O_{P}\left(w_{1}\right)$. After the thresholding,

$$
\begin{aligned}
\max _{i j}\left|s_{i j}\left(\widehat{\sigma}_{u, i j}\right)-\sigma_{u, i j}\right| & \leq \max _{i j}\left|s_{i j}\left(\widehat{\sigma}_{u, i j}\right)-\widehat{\sigma}_{u, i j}\right|+\left|\widehat{\sigma}_{u, i j}-\sigma_{u, i j}\right| \\
& \leq \max _{i j}\left|s_{i j}\left(\widehat{\sigma}_{u, i j}\right)-\widehat{\sigma}_{u, i j}\right|+O_{P}\left(w_{1}\right) \\
& =O_{P}\left(w_{1}\right) .
\end{aligned}
$$

where $s_{i j}(\cdot)$ is the hard thresholding at the level defined in step ii. of Method 1. Hence, $\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\max }=O_{P}\left(w_{1}\right)$. Similarly, $\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(2)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\max }=O_{P}\left(w_{2}\right)$. For the oracle estimator,

$$
\begin{aligned}
\left\|\widehat{\mathbf{B}}_{o} \widehat{\mathbf{B}}_{o}^{\prime}-\mathbf{B B}^{\prime}\right\|_{\max } & =\max _{i j}\left(\left|\left(\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right)^{\prime}\left(\widehat{\mathbf{b}}_{i}-\mathbf{b}_{i}\right)\right|+2\left|\left(\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right)^{\prime} \mathbf{b}_{j}\right|\right) \\
& \leq\left(\max _{i}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|\right)^{2}+2 \max _{i j}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|\left\|\mathbf{b}_{j}\right\|
\end{aligned}
$$

$$
=O_{P}\left(w_{o}\right)
$$

where the last equality follows from condition (vi) and Lemma 2. Using similar arguments as in the above, $\max _{i j}\left|\widehat{\sigma}_{u, i j}^{o}-\sigma_{u, i j}\right|=O_{P}\left(w_{0}\right)$. Hence, $\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}-\boldsymbol{\Sigma}_{u, S}\right\|_{\max }=O_{P}\left(w_{o}\right)$.
(3) For Method 1, let $\tilde{\boldsymbol{\Sigma}}_{S}=\mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{H}_{1} \mathbf{B}_{S}^{\prime}+\boldsymbol{\Sigma}_{u, S}$. We have

$$
\left\|\left(\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\| \leq\left\|\left(\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}\right)^{-1}-\tilde{\boldsymbol{\Sigma}}_{S}^{-1}\right\|+\left\|\tilde{\boldsymbol{\Sigma}}_{S}^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\|
$$

Since $\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}=\widehat{\mathbf{B}}_{1} \widehat{\mathbf{B}}_{1}^{\prime}+\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}$, by Sherman-Morrison-Woodbury formula,

$$
\begin{aligned}
\tilde{\boldsymbol{\Sigma}}_{S}^{-1} & =\boldsymbol{\Sigma}_{u, S}^{-1}+\boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{G}^{-1} \mathbf{H}_{1} \mathbf{B}_{S} \boldsymbol{\Sigma}_{u, S}^{-1}, \\
\left(\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}\right)^{-1} & =\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}+\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1} \widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}
\end{aligned}
$$

where $\mathbf{G}=\mathbf{I}_{K}+\mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}$ and $\widehat{\mathbf{G}}=\mathbf{I}_{K}+\widehat{\mathbf{B}}_{1}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1} \widehat{\mathbf{B}}_{1}$. Therefore, $\|\left(\widehat{\boldsymbol{\Sigma}}_{S}^{(1)}\right)^{-1}-$ $\tilde{\boldsymbol{\Sigma}}_{S}^{-1} \| \leq \sum_{i=1}^{6} I_{i}$, where

$$
\begin{aligned}
I_{1} & =\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{2} & =\left\|\left\{\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\} \widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}\right\|, \\
I_{3} & =\left\|\left\{\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\} \widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{4} & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{5} & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \widehat{\mathbf{G}}^{-1} \mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{6} & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\left\{\widehat{\mathbf{G}}^{-1}-\mathbf{G}^{-1}\right\} \mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\| .
\end{aligned}
$$

From Lemma 3, $I_{1}=O_{P}\left(m_{s} w_{1}\right)$. For $I_{2}$, we have

$$
I_{2} \leq\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\|\left\|\widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\right\|\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}\right\|
$$

By Lemma 3 and condition (v), $\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}\right\|=O_{P}(1)$. Lemma A.6(ii) implies that $\left\|\widehat{\mathbf{G}}^{-1}\right\|=$ $O_{P}\left(s^{-1}\right)$. Therefore, $\left\|\widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\right\|=O_{P}(1)$ and $I_{2}=O_{P}\left(m_{s} w_{1}\right)$. Similarly, $I_{3}=O_{P}\left(m_{s} w_{1}\right)$. For $I_{4}$, condition (v) implies that $\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\right\|=O(1)$. Next, $\left\|\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\right\|$ is bounded by

$$
\left\|\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\right\| \leq\left\|\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \widehat{\mathbf{G}}^{-1}\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime}\right\|^{1 / 2}\left\|\widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\right\|^{1 / 2}
$$

Since $\left\|\widehat{\mathbf{G}}^{-1}\right\|=O_{P}\left(s^{-1}\right)$ by Lemma A.6(ii) and $\left\|\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right\|_{F}^{2}=O_{P}\left(s w_{1}^{2}\right)$ by Lemma A.4(i), we have $\left\|\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \widehat{\mathbf{G}}^{-1}\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime}\right\|=O_{P}\left(w_{1}^{2}\right)$. This together with $\left\|\widehat{\mathbf{B}}_{1} \widehat{\mathbf{G}}^{-1} \widehat{\mathbf{B}}_{1}^{\prime}\right\|$ $=O_{P}(1)$ imply that $I_{4}=O_{P}\left(w_{1}\right)$. Similarly, $I_{5}=O_{P}\left(w_{1}\right)$. For $I_{6}$, we have

$$
I_{6} \leq\left\|\boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|\left\|\widehat{\mathbf{G}}^{-1}-\mathbf{G}^{-1}\right\|
$$

Condition (ii), (v) and $\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$ imply that $\left\|\boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|=O_{P}(s)$. Next, we bound $\left\|\widehat{\mathrm{G}}^{-1}-\mathrm{G}^{-1}\right\|$. Note that,

$$
\begin{aligned}
\left\|\widehat{\mathbf{G}}^{-1}-\mathbf{G}^{-1}\right\| & =\left\|\mathbf{G}^{-1}(\widehat{\mathbf{G}}-\mathbf{G}) \widehat{\mathbf{G}}^{-1}\right\|=O_{P}\left(s^{-2}\left\|\widehat{\mathbf{B}}_{1}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1} \widehat{\mathbf{B}}_{1}-\left(\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right\|\right) \\
& =O_{P}\left(s^{-1} m_{s} w_{1}\right)
\end{aligned}
$$

because by Lemma A. 6 (i) and (ii), $\left\|\mathbf{G}^{-1}\right\|=O\left(s^{-1}\right),\left\|\widehat{\mathbf{G}}^{-1}\right\|=O_{P}\left(s^{-1}\right)$, and

$$
\begin{align*}
& \left\|\widehat{\mathbf{B}}_{1}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1} \widehat{\mathbf{B}}_{1}-\left(\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right\| \\
\leq & \left\|\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)\right\|+2\left\|\left(\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right\| \\
& +\left\|\left(\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime}\left\{\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right\| \\
= & O_{P}\left(s w_{1}^{2}\right)+O_{P}\left(s w_{1}\right)+O_{P}\left(s m_{s} w_{1}\right) \\
= & O_{P}\left(s m_{s} w_{1}\right) . \tag{A.6}
\end{align*}
$$

Therefore, $I_{6}=O_{P}\left(m_{s} w_{1}\right)$. Summing the six terms, we have $\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\tilde{\boldsymbol{\Sigma}}_{S}^{-1}\right\|=$ $O_{P}\left(m_{s} w_{1}\right)$. Next, we bound $\left\|\tilde{\boldsymbol{\Sigma}}_{S}^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\|$.

By using Sherman-Morrison-Woodbury formula again,

$$
\begin{aligned}
\left\|\tilde{\boldsymbol{\Sigma}}_{S}^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\| & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\left\{\left[\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}\right)^{-1}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right]^{-1}-\left[\mathbf{I}_{K}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right]^{-1}\right\} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\| \\
& =O(s)\left\|\left[\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}\right)^{-1}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right]^{-1}-\left[\mathbf{I}_{K}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right]^{-1}\right\| \\
& =O_{P}\left(s^{-1}\right)\left\|\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}\right)^{-1}-\mathbf{I}_{K}\right\| \\
& =o_{P}\left(m_{s} w_{1}\right) .
\end{aligned}
$$

Therefore, $\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\|=O_{P}\left(m_{s} w_{1}\right)$. A similar result can be shown that $\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(2)}\right)^{-1}-$ $\boldsymbol{\Sigma}_{S}^{-1} \|=O_{P}\left(m_{s} w_{2}\right)$.

For the oracle estimator, by Sherman-Morrison-Woodbury formula, $\left\|\left(\widehat{\boldsymbol{\Sigma}}_{S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\| \leq$ $\sum_{i=1}^{6} I_{i}$, where

$$
\begin{aligned}
I_{1} & =\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{2} & =\left\|\left\{\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\} \widehat{\mathbf{B}}_{o} \widehat{\mathbf{J}}^{-1} \widehat{\mathbf{B}}_{o}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}\right\|, \\
I_{3} & =\left\|\left\{\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\} \widehat{\mathbf{B}}_{o} \widehat{\mathbf{J}}^{-1} \widehat{\mathbf{B}}_{o}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{4} & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \widehat{\mathbf{J}}^{-1} \widehat{\mathbf{B}}_{o}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{5} & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \widehat{\mathbf{J}}^{-1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|, \\
I_{6} & =\left\|\boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\left\{\widehat{\mathbf{J}}^{-1}-\mathbf{J}^{-1}\right\} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1}\right\|,
\end{aligned}
$$

that $\widehat{\mathbf{J}}=\mathbf{I}_{K}+\widehat{\mathbf{B}}_{o}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1} \widehat{\mathbf{B}}_{o}$ and $\mathbf{J}=\mathbf{I}_{K}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}$.

By Lemma 3, $I_{1}=O_{P}\left(m_{s} w_{o}\right)$. For $I_{2}$, Lemma A.6(ii) implies that $\left\|\widehat{\mathbf{J}}^{-1}\right\|=O_{P}\left(s^{-1}\right)$. This together with condition (ii) imply that $\left\|\widehat{\mathbf{B}}_{o} \widehat{\mathbf{J}}^{-1} \widehat{\mathbf{B}}_{o}^{\prime}\right\|=O_{P}(1)$. Moreover, it follows from Lemma 3 and condition (v) that $\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}\right\|=O_{P}(1)$. Therefore,

$$
I_{2} \leq\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\|\left\|\widehat{\mathbf{B}}_{o} \widehat{\mathbf{J}}^{-1} \widehat{\mathbf{B}}_{o}^{\prime}\right\|\left\|\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}\right\|=O_{P}\left(m_{s} w_{o}\right)
$$

Similarly, $I_{3}=O_{P}\left(m_{s} w_{o}\right)$. For $I_{4}$, we have $I_{4} \leq\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \widehat{\mathbf{J}}^{-1} \mathbf{B}_{S}^{\prime}\right\|\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\right\|^{2}$. We bound $\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \widehat{\mathbf{J}}^{-1} \mathbf{B}_{S}^{\prime}\right\|$ by

$$
\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \widehat{\mathbf{J}}^{-1} \mathbf{B}_{S}^{\prime}\right\| \leq\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right) \widehat{\mathbf{J}}^{-1}\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)^{\prime}\right\|^{1 / 2}\left\|\mathbf{B}_{S} \widehat{\mathbf{J}}^{-1} \mathbf{B}_{S}^{\prime}\right\|^{1 / 2}
$$

Since $\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)^{\prime}\right\| \leq\left\|\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right\|_{F}^{2} \leq s\left(\max _{s}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|\right)^{2}=O_{P}\left(s w_{o}^{2}\right)$. This together with $\left\|\widehat{\mathbf{J}}^{-1}\right\|=O_{P}\left(s^{-1}\right)$ and $\left\|\widehat{\mathbf{B}}_{o} \widehat{\mathbf{J}}^{-1} \widehat{\mathbf{B}}_{o}\right\|=O_{P}(1)$ imply that $I_{4}=O_{P}\left(w_{o}\right)$. Similarly, $I_{5}=O_{P}\left(w_{o}\right)$. For $I_{6}$, we have $I_{6} \leq\left\|\widehat{\mathbf{J}}^{-1}-\mathbf{J}^{-1}\right\|\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\right\|^{2}\left\|\mathbf{B}_{S} \mathbf{B}_{S}^{\prime}\right\|$. By conditions (ii) and (iv), we have $\left\|\boldsymbol{\Sigma}_{u, S}^{-1}\right\|=O(1)$ and $\left\|\mathbf{B}_{S} \mathbf{B}_{S}^{\prime}\right\|=O(s)$. As for $\left\|\widehat{\mathbf{J}}^{-1}-\mathbf{J}^{-1}\right\|$, we have

$$
\left\|\widehat{\mathbf{J}}^{-1}-\mathbf{J}^{-1}\right\|=\left\|\widehat{\mathbf{J}}^{-1}(\widehat{\mathbf{J}}-\mathbf{J}) \mathbf{J}^{-1}\right\|=O_{P}\left(s^{-2}\left\|\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}-\widehat{\mathbf{B}}_{o}^{\prime} \widehat{\boldsymbol{\Sigma}}_{u, S}^{-1} \widehat{\mathbf{B}}_{o}\right\|\right)=O_{P}\left(s^{-1} m_{s} w_{o}\right)
$$

where the last equation follows from that

$$
\begin{aligned}
\left\|\widehat{\mathbf{B}}_{o}^{\prime} \widehat{\boldsymbol{\Sigma}}_{u, S}^{-1} \widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right\| & \leq\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)^{\prime} \widehat{\boldsymbol{\Sigma}}_{u, S}^{-1}\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)\right\|+2\left\|\left(\widehat{\mathbf{B}}_{o}-\mathbf{B}_{S}\right)^{\prime} \widehat{\boldsymbol{\Sigma}}_{u, S}^{-1} \mathbf{B}_{S}\right\| \\
& +\left\|\mathbf{B}_{S}^{\prime}\left\{\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\} \mathbf{B}_{S}\right\| \\
& =O_{P}\left(s w_{o}^{2}\right)+O_{P}\left(s w_{o}\right)+O_{P}\left(s m_{s} w_{o}\right) \\
& =O_{P}\left(s m_{s} w_{o}\right)
\end{aligned}
$$

Therefore, $I_{6}=O_{P}\left(m_{s} w_{o}\right)$. After summing up, $\left\|\left(\widehat{\boldsymbol{\Sigma}}_{S}^{o}\right)^{-1}-\boldsymbol{\Sigma}_{S}^{-1}\right\|=O_{P}\left(m_{s} w_{o}\right)$.

## Convergence Rates of $\bar{\Sigma}_{S}$ in Section 5

Let $\overline{\mathbf{H}}=M^{-1} \sum_{m=1}^{M} \mathbf{H}_{[m]}$, where $\mathbf{H}_{[m]}=\widehat{\mathbf{V}}_{m}^{-1} \widehat{\mathbf{F}}_{m}^{\prime} \mathbf{F}_{m} \mathbf{B}_{m}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, m}^{-1} \mathbf{B}_{m} / T, \widehat{\mathbf{V}}_{m}$ is the diagonal matrix of the $K$ largest eigenvalues of $\mathbf{Y}_{m}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, m}^{-1} \mathbf{Y}_{m} / T, \mathbf{B}_{m}$ and $\mathbf{F}_{m}$ are the loadings and the factors in the $m$ th group.

According to the proof of Theorem 1, the key is to show that $\max _{1 \leq t \leq T}\left\|\overline{\mathbf{f}}_{t}-\overline{\mathbf{H}} \mathbf{f}_{t}\right\|$ has the same rate as $\max _{1 \leq t \leq T}\left\|\widehat{\mathbf{f}}_{t}^{(2)}-\mathbf{H}_{2} \mathbf{f}_{t}\right\|$ and $\max _{i \leq s}\left\|\overline{\mathbf{b}}_{i}-\overline{\mathbf{H}} \mathbf{b}_{i}\right\|$ has the same rate as $\max _{1 \leq i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{(2)}-\mathbf{H}_{2} \mathbf{b}_{i}\right\|$.

To give the rate of $\max _{1 \leq t \leq T}\left\|\overline{\mathbf{f}}_{t}-\overline{\mathbf{H}} \mathbf{f}_{t}\right\|$, since $M$ is fixed, $p / M$ is in the same order as p. Then, it follows from Lemma 1 that for any $1 \leq m \leq M$, $\max _{1 \leq t \leq T}\left\|\widehat{\mathbf{f}}_{m, t}-\mathbf{H}_{[m]} \mathbf{f}_{t}\right\|=$ $O_{P}\left(a_{p, T}\right)$, where $a_{p, T}=T^{-1 / 2}+T^{1 / 4} p^{-1 / 2}$. By definition, there exists a positive constant $C_{m, \epsilon}$ such that

$$
P\left(\max _{1 \leq t \leq T}\left\|\widehat{\mathbf{f}}_{m, t}-\mathbf{H}_{[m]} \mathbf{f}_{t}\right\|>C_{m, \epsilon} a_{p, T}\right) \leq \epsilon / M
$$

Let $C=\max _{1 \leq m \leq M} C_{m, \epsilon}$. We have

$$
\begin{aligned}
P\left(\max _{1 \leq t \leq T}\left\|\overline{\mathbf{f}}_{t}-\overline{\mathbf{H}} \mathbf{f}_{t}\right\|>C a_{p, T}\right) & =P\left(\max _{1 \leq t \leq T}\left\|\frac{1}{M} \sum_{m=1}^{M}\left(\widehat{\mathbf{f}}_{m, t}-\mathbf{H}_{[m]} \mathbf{f}_{t}\right)\right\|>C a_{p, T}\right) \\
& \leq \sum_{m=1}^{M} P\left(\max _{1 \leq t \leq T}\left\|\widehat{\mathbf{f}}_{m, t}-\mathbf{H}_{[m]} \mathbf{f}_{t}\right\|>C a_{p, T}\right) \\
& \leq \epsilon .
\end{aligned}
$$

By definition, $\max _{1 \leq t \leq T}\left\|\overline{\mathbf{f}}_{t}-\overline{\mathbf{H}} \mathbf{f}_{t}\right\|=O_{P}\left(a_{p, T}\right)$, which is the same as $\max _{1 \leq t \leq T}\left\|\widehat{\mathbf{f}}_{t}^{(2)}-\mathbf{H}_{2} \mathbf{f}_{t}\right\|$ shown in Lemma 1.

Next, we show that $\max _{i \leq s}\left\|\overline{\mathbf{b}}_{i}-\overline{\mathbf{H}} \mathbf{b}_{i}\right\|=O_{P}\left(w_{2}\right)$. For any $1 \leq m \leq M$, similarly as in Lemma A.2, we have $\left\|\mathbf{H}_{[m]}\right\|=O_{P}(1)$. By the same union bound argument, we have $\|\overline{\mathbf{H}}\|=O_{P}(1)$. Then, it follows from the same proof of Lemma 2 that $\max _{i \leq s}\left\|\overline{\mathbf{b}}_{i}-\overline{\mathbf{H}} \mathbf{b}_{i}\right\|=$ $O_{P}\left(w_{2}\right)$.

As $M$ is fixed, the results in Lemma 3 and Theorem 1 for each individual group hold. Repeatedly using the above union bound argument, $\bar{\Sigma}_{S}$ is shown to have the same convergence rate as $\widehat{\boldsymbol{\Sigma}}_{S}^{(2)}$.

## Additional Lemmas

Lemma A.1. Under conditions of Lemma 1, it holds that

$$
\left.\begin{array}{rl}
\max _{i \leq s, t \leq T}\left\|\left(\widehat{\mathbf{b}}_{i}^{(1)}\right)^{\prime} \widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right\| & =O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}+\frac{T^{1 / 4}}{\sqrt{s}}\right) \\
\max _{i \leq s, t \leq T}\left\|\left(\widehat{\mathbf{b}}_{i}^{(2)}\right)^{\prime} \widehat{\mathbf{f}}_{t}^{(2)}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right\| & =O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}+\frac{T^{1 / 4}}{\sqrt{p}}\right.
\end{array}\right),
$$

Proof of Lemma A.1. Under condition (i), it follows from the union bound argument that

$$
\max _{t \leq T}\left\|\mathbf{f}_{t}\right\|=O_{P}(\sqrt{\log T})
$$

Then, for Method 1, it follows from Lemmas 1, 2, A.2, and condition (vi) that, uniformly in $i$ and $t$,

$$
\begin{aligned}
\left\|\left(\widehat{\mathbf{b}}_{i}^{(1)}\right)^{\prime} \widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right\| \leq & \left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|\left\|\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right\|+\left\|\mathbf{H}_{1} \mathbf{b}_{i}\right\|\left\|\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right\| \\
& +\left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H}_{1} \mathbf{b}_{i}\right\|\left\|\mathbf{H}_{1} \mathbf{f}_{t}\right\|+\left\|\mathbf{b}_{i}\right\|\left\|\mathbf{f}_{t}\right\|\left\|\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right\|_{F} \\
= & O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}+\frac{T^{1 / 4}}{\sqrt{s}}\right)
\end{aligned}
$$

For Method 2, similar arguments give

$$
\max _{i \leq s, t \leq T}\left\|\left(\widehat{\mathbf{b}}_{i}^{(2)}\right)^{\prime} \widehat{\mathbf{f}}_{t}^{(2)}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right\|=O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}+\frac{T^{1 / 4}}{\sqrt{p}}\right)
$$

In the oracle setting, where the factors are known, we have

$$
\begin{aligned}
\max _{i \leq s, t \leq T}\left\|\left(\widehat{\mathbf{b}}_{i}^{o}\right)^{\prime} \mathbf{f}_{t}-\mathbf{b}_{i}^{\prime} \mathbf{f}_{t}\right\| & =\max _{i \leq s, t \leq T}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|\left\|\mathbf{f}_{t}\right\|=O_{P}\left(\sqrt{\log T} \max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{o}-\mathbf{b}_{i}\right\|\right) \\
& =O_{P}\left((\log T)^{1 / 2} \sqrt{\frac{\log s}{T}}\right)
\end{aligned}
$$

Lemma A.2. Let $\mathbf{H}_{1}=\widehat{\mathbf{V}}_{1}^{-1} \widehat{\mathbf{F}}^{(1)^{\prime}} \mathbf{F} \mathbf{B}_{S}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, S}^{-1} \mathbf{B}_{S} / T$ and $\mathbf{H}_{2}=\widehat{\mathbf{V}}_{2}^{-1} \widehat{\mathbf{F}}^{(2)^{\prime}} \mathbf{F} \mathbf{B}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u}^{-1} \mathbf{B} / T$, where $\widehat{\mathbf{V}}_{1}$ is the diagonal matrix of the largest $K$ eigenvalues of $\mathbf{Y}_{S}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, S}^{-1} \mathbf{Y}_{S} / T$ and $\widehat{\mathbf{V}}_{2}$ is the diagonal matrix of the largest $K$ eigenvalues of $\mathbf{Y}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u}^{-1} \mathbf{Y} / T$. Under conditions of Lemma 1, $\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$ and $\left\|\mathbf{H}_{2}\right\|=O_{P}(1)$.

Proof of Lemma A.2. Since $\boldsymbol{\Sigma}_{u, S}$ is a submatrix of $\boldsymbol{\Sigma}_{u}$, it follows from condition (v) that $\lambda_{\min }\left(\boldsymbol{\Sigma}_{u, S}^{-1}\right) \geq c_{2}^{-1}$. By Proposition 4.1 of Bai and Liao (2013), $\left\|\tilde{\boldsymbol{\Sigma}}_{u, S}^{-1}-\boldsymbol{\Sigma}_{u, S}^{-1}\right\|=o_{P}$ (1). Therefore, with probability tending to $1,\left\|\tilde{\boldsymbol{\Sigma}}_{u, S}^{-1}\right\| \geq 1 /\left(2 c_{2}\right)$. Then,

$$
T^{-1} \mathbf{Y}_{S}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, S}^{-1} \mathbf{Y}_{S}=T^{-1} \mathbf{Y}_{S}^{\prime}\left(\tilde{\boldsymbol{\Sigma}}_{u, S}^{-1}-\left(1 / 2 c_{2}\right) \mathbf{I}\right) \mathbf{Y}_{S}+1 /\left(2 c_{2} T\right) \mathbf{Y}_{S}^{\prime} \mathbf{Y}_{S}
$$

Under the pervasive condition (i), it follows from Lemma C. 4 of Fan et al. (2013) that the $K$ th largest eigenvalue of $T^{-1} \mathbf{Y}_{S}^{\prime} \mathbf{Y}_{S}$ is larger than $M s$. Since $T^{-1} \mathbf{Y}_{S}^{\prime}\left(\tilde{\boldsymbol{\Sigma}}_{u, S}^{-1}-\left(1 / 2 c_{2}\right) \mathbf{I}\right) \mathbf{Y}_{S}$ is semi-positive definite, it follows from Weyl's inequality that

$$
\lambda_{K}\left(T^{-1} \mathbf{Y}_{S}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, S}^{-1} \mathbf{Y}_{S}\right) \geq \lambda_{K}\left(1 /\left(2 c_{2} T\right) \mathbf{Y}_{S}^{\prime} \mathbf{Y}_{S}\right) \geq M s /\left(2 c_{2}\right)
$$

Hence $\left\|\widehat{\mathbf{V}}_{1}^{-1}\right\|=O_{P}\left(s^{-1}\right)$. Also, $\lambda_{\max }\left(\left\|\mathbf{F}^{\prime} \mathbf{F}\right\|\right)=\lambda_{\max }\left(\left\|\sum_{t=1}^{T} \mathbf{f}_{t} \mathbf{f}_{t}^{\prime}\right\|\right)=O_{P}(T)$. In addition, $\lambda_{\max }\left(\left\|\sum_{t=1}^{T} \widehat{\mathbf{f}}_{t}^{(1)}\left(\widehat{\mathbf{f}}_{t}^{(1)}\right)^{\prime}\right\|\right)=O_{P}(T)$, where the last equation follows from the constraint in (6). Then, $\left\|\left(\widehat{\mathbf{F}}^{(1)}\right)^{\prime} \mathbf{F}\right\| \leq\left\|\left(\widehat{\mathbf{F}}^{(1)}\right)^{\prime} \widehat{\mathbf{F}}^{(1)}\right\|^{1 / 2}\left\|\mathbf{F}^{\prime} \mathbf{F}\right\|^{1 / 2}=O_{P}(T)$. These results together with $\left\|\mathbf{B}_{S}^{\prime} \tilde{\boldsymbol{\Sigma}}_{u, S}^{-1} \mathbf{B}_{S}\right\|=O(s)$ imply that $\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$. Similarly, $\left\|\mathbf{H}_{2}\right\|=O_{P}(1)$.

Lemma A.3. (i) $\left\|\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)$; (ii) $\left\|\mathbf{H}_{2} \mathbf{H}_{2}^{\prime}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{p}}\right)$. (iii) $\left\|\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)$; (iv) $\left\|\mathbf{H}_{2}^{\prime} \mathbf{H}_{2}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{p}}\right)$.

Proof of Lemma A.3. Let $\widehat{\operatorname{cov}}\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)=\frac{1}{T} \sum_{t=1}^{T}\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)^{\prime}$. Then,

$$
\left\|\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}-\mathbf{I}_{K}\right\|_{F} \leq \underbrace{\left\|\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}-\widehat{\operatorname{cov}}\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)\right\|_{F}}_{I_{1}}+\underbrace{\left\|\widehat{\operatorname{cov}}\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)-\mathbf{I}_{K}\right\|_{F}}_{I_{2}} .
$$

For $I_{1}$, we have $I_{1} \leq\left\|\mathbf{H}_{1}\right\|^{2}\left\|\mathbf{I}_{K}-\widehat{\operatorname{cov}}\left(\mathbf{f}_{t}\right)\right\|_{F}$, where $\widehat{\operatorname{cov}}\left(\mathbf{f}_{t}\right)=\frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} \mathbf{f}_{t}^{\prime}$. It follows from Lemma C.3(i) of Fan et al. (2013) that $\left\|\mathbf{I}_{K}-\widehat{\operatorname{cov}}\left(\mathbf{f}_{t}\right)\right\|_{F}=O_{P}(1 / \sqrt{T})$. Then, $I_{1}=O_{P}(1 / \sqrt{T})$, since $\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$. For $I_{2}$, by the identifiability constraint in (6), $\frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{f}}_{t}^{(1)} \widehat{\mathbf{f}}_{t}^{(1)^{\prime}}=\mathbf{I}_{K}$. Therefore,

$$
\begin{aligned}
I_{2} & =\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{H}_{1} \mathbf{f}_{t}\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)^{\prime}-\frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{f}}_{t}^{(1)} \widehat{\mathbf{f}}_{t}^{(1)^{\prime}}\right\|_{F} \\
& \leq\left\|\frac{1}{T} \sum_{t=1}^{T}\left(\mathbf{H}_{1} \mathbf{f}_{t}-\widehat{\mathbf{f}}_{t}^{(1)}\right)\left(\mathbf{H}_{1} \mathbf{f}_{t}\right)^{\prime}\right\|_{F}+\left\|\frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{f}}_{t}^{(1)}\left(\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right)^{\prime}\right\|_{F} \\
& \leq\left(\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{H}_{1} \mathbf{f}_{t}-\widehat{\mathbf{f}}_{t}^{(1)}\right\|^{2} \cdot \frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{H}_{1} \mathbf{f}_{t}\right\|^{2}\right)^{1 / 2}+\left(\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{H}_{1} \mathbf{f}_{t}-\widehat{\mathbf{f}}_{t}^{(1)}\right\|^{2} \cdot \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}\right\|^{2}\right)^{1 / 2} \\
& =O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)
\end{aligned}
$$

where the last equality follows from Lemma A. 5 and that $\left\|\mathbf{H}_{1} \mathbf{f}_{t}\right\| \leq\left\|\mathbf{H}_{1}\right\|\left\|\mathbf{f}_{t}\right\|=O_{P}$ (1) and $\left\|\widehat{\mathbf{f}}_{t}^{(1)}\right\|=O_{P}(1)$. Similarly, $\left\|\mathbf{H}_{2} \mathbf{H}_{2}^{\prime}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{p}}\right)$.
(iii) Since $\left\|\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)$ and $\left\|\mathbf{H}_{1}\right\|=O_{P}(1)$, we have $\| \mathbf{H}_{1} \mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-$ $\mathbf{H}_{1} \|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)$. Since $\mathbf{H}_{1}^{-1}=\mathbf{H}_{1}^{-1}\left(\mathbf{I}_{K}-\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}+\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}\right)$, it follows Lemma A.3(i) that $\left\|\mathbf{H}_{1}^{-1}\right\| \leq\left\|\mathbf{H}_{1}^{-1}\right\| O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)+\left\|\mathbf{H}_{1}^{\prime}\right\|$. Hence, $\left\|\mathbf{H}_{1}^{-1}\right\|=O_{P}$ (1). Left multiplying $\mathbf{H}_{1} \mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{H}_{1}$ by $\mathbf{H}_{1}^{-1}$ gives $\left\|\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right\|_{F}=O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{s}}\right)$. Similarly, $\left\|\mathbf{H}_{2}^{\prime} \mathbf{H}_{2}-\mathbf{I}_{K}\right\|_{F}=$ $O_{P}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{p}}\right)$.

Lemma A.4. Let $\mathbf{C}_{1}=\widehat{\mathbf{B}}_{1}-\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}$ and $\mathbf{C}_{2}=\widehat{\mathbf{B}}_{2}-\mathbf{B}_{S} \mathbf{H}_{2}^{\prime}$, where $\widehat{\mathbf{B}}_{1}, \widehat{\mathbf{B}}_{2}$, and $\mathbf{B}_{S}$ are defined in Section 4.
(i) $\left\|\mathbf{C}_{1}\right\|_{F}^{2}=O_{P}\left(s w_{1}^{2}\right),\left\|\mathbf{C}_{2}\right\|_{F}^{2}=O_{P}\left(s w_{2}^{2}\right) ;\left\|\mathbf{C}_{1} \mathbf{C}_{1}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s w_{1}^{4}\right),\left\|\mathbf{C}_{2} \mathbf{C}_{2}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s w_{2}^{4}\right)$. (ii) $\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(m_{s}^{2} w_{1}^{2}\right) ;\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(2)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(m_{s}^{2} w_{2}^{2}\right)$.
(iii) $\left\|\mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{C}_{1}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(w_{1}^{2}\right) ;\left\|\mathbf{B}_{S} \mathbf{H}_{2}^{\prime} \mathbf{C}_{2}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(w_{2}^{2}\right)$.
(iv) $\left\|\mathbf{B}_{S}\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(\frac{1}{s T}+\frac{1}{s^{2}}\right) ;\left\|\mathbf{B}_{S}\left(\mathbf{H}_{2}^{\prime} \mathbf{H}_{2}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(\frac{1}{s T}+\frac{1}{s p}\right)$.

Proof of Lemma A.4. (i) We have $\left\|\mathbf{C}_{1}\right\|_{F}^{2} \leq s\left(\max _{i \leq s}\left\|\widehat{\mathbf{b}}_{i}^{(1)}-\mathbf{H b}_{i}\right\|\right)^{2}=O_{P}\left(s w_{1}^{2}\right)$. By the general result that for any matrix $\mathbf{A},\|\mathbf{A}\|_{\boldsymbol{\Sigma}_{S}}^{2}=s^{-1}\left\|\boldsymbol{\Sigma}_{S}^{-1 / 2} \mathbf{A} \boldsymbol{\Sigma}_{S}^{-1 / 2}\right\|_{F}^{2}=O_{P}\left(s^{-1}\|\mathbf{A}\|_{F}^{2}\right)$, we have $\left\|\mathbf{C}_{1}^{\prime} \mathbf{C}_{1}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s^{-1}\left\|\mathbf{C}_{1}\right\|_{F}^{4}\right)=O_{P}\left(s w_{1}^{4}\right)$. Similarly, $\left\|\mathbf{C}_{2}\right\|_{F}^{2}=O_{P}\left(s w_{2}^{2}\right)$ and $\left\|\mathbf{C}_{2} \mathbf{C}_{2}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s w_{2}^{4}\right)$.
(ii) By Lemma 3,

$$
\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(s^{-1}\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|_{F}^{2}\right)=O_{P}\left(\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}-\boldsymbol{\Sigma}_{u, S}\right\|^{2}\right)=O_{P}\left(m_{s}^{2} w_{1}^{2}\right)
$$

Similar results can be shown for $\left\|\widehat{\boldsymbol{\Sigma}}_{u, S}^{(2)}-\boldsymbol{\Sigma}_{u, S}\right\|_{\boldsymbol{\Sigma}_{S}}$.
(iii) By adapt the proof of Theorem 2 in Fan et al. (2008), we have that $\left\|\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right\|=$ $O(1)$. Hence,

$$
\begin{aligned}
\left\|\mathbf{B}_{S} \mathbf{H}_{1}^{\prime} \mathbf{C}_{1}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2} & =s^{-1} \operatorname{tr}\left(\mathbf{H}_{1}^{\prime} \mathbf{C}_{1}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{C}_{1} \mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right) \\
& \leq s^{-1}\left\|\mathbf{H}_{1}\right\|^{2}\left\|\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right\|\left\|\boldsymbol{\Sigma}_{S}^{-1}\right\|\left\|\mathbf{C}_{1}\right\|_{F}^{2} \\
& =O_{P}\left(s^{-1}\left\|\mathbf{C}_{1}\right\|_{F}^{2}\right)=O_{P}\left(w_{1}^{2}\right)
\end{aligned}
$$

Similarly, $\left\|\mathbf{B}_{S} \mathbf{H}_{2}^{\prime} \mathbf{C}_{2}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}=O_{P}\left(w_{2}^{2}\right)$.
(iv) We have

$$
\begin{aligned}
\left\|\mathbf{B}_{S}\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2} & =s^{-1} \operatorname{tr}\left(\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right) \\
& \leq s^{-1}\left\|\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}-\mathbf{I}_{K}\right\|_{F}^{2}\left\|\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{S}^{-1} \mathbf{B}_{S}\right\|^{2}=O_{P}\left(\frac{1}{s T}+\frac{1}{s^{2}}\right)
\end{aligned}
$$

Similarly, $\left\|\mathbf{B}_{S}\left(\mathbf{H}_{2}^{\prime} \mathbf{H}_{2}-\mathbf{I}_{K}\right) \mathbf{B}_{S}^{\prime}\right\|_{\boldsymbol{\Sigma}_{S}}^{2}=O_{P}\left(\frac{1}{s T}+\frac{1}{s p}\right)$.
Lemma A.5. Under conditions of Lemma 1,

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(1)}-\mathbf{H}_{1} \mathbf{f}_{t}\right\|^{2}=O_{P}(1 / s+1 / T) \\
& \frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}^{(2)}-\mathbf{H}_{2} \mathbf{f}_{t}\right\|^{2}=O_{P}(1 / p+1 / T)
\end{aligned}
$$

Proof of Lemma A.5. Without loss of generality, we only prove the result for general p. Again, we write $\widehat{\mathbf{f}}_{t}^{(2)}$ as $\widehat{\mathbf{f}}_{t}, \mathbf{H}_{2}$ as $\mathbf{H}$ and $\widehat{\mathbf{V}}_{2}$ as $\widehat{\mathbf{V}}$ for notational simplicity. By (A.2),

$$
\frac{1}{T} \sum_{t=1}^{T}\left\|\widehat{\mathbf{f}}_{t}-\mathbf{H f}_{t}\right\|^{2} \leq c\left\|\widehat{\mathbf{V}}^{-1}\right\|^{2} \sum_{j=1}^{7} \frac{1}{T} \sum_{t=1}^{T} G_{j t}^{2}
$$

where $c$ is a positive constant and $G_{j t}$ is the $j$ th summand on the right hand side of (A.2). By Lemma A. 6 (iv) of Bai and Liao (2013), $\frac{1}{T} \sum_{i=1}^{T} G_{1 t}^{2}=o_{P}(1 / p+1 / T)$. By Lemma A. 10 (i) and (iii) of Bai and Liao (2013), $\frac{1}{T} \sum_{t=1}^{T} G_{2 t}^{2}=O_{P}(1 / T)$ and $\frac{1}{T} \sum_{t=1}^{T} G_{3 t}^{2}=O_{P}(1 / T)$. By Lemma A. 6 (iii), (v) and (vi) of Bai and Liao (2013), $\frac{1}{T} \sum_{t=1}^{T} G_{4 t}^{2}=o_{P}(1 / p), \frac{1}{T} \sum_{t=1}^{T} G_{6 t}^{2}=$ $o_{P}(1 / p)$ and $\frac{1}{T} \sum_{t=1}^{T} G_{7 t}^{2}=o_{P}(1 / p)$. Finally, by Lemma A. 11 (ii) of Bai and Liao (2013), $\frac{1}{T} \sum_{t=1}^{T} G_{5 t}^{2}=O_{P}(1 / p)$. Therefore, the dominating terms are $G_{2 t}, G_{3 t}$ and $G_{5 t}$, which together give the rate of $O_{P}(1 / p+1 / T)$.

Lemma A.6. With probability tending to 1,
(i) $\lambda_{\min }\left(\mathbf{I}_{K}+\left(\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \geq c s, \lambda_{\min }\left(\mathbf{I}_{K}+\left(\mathbf{B}_{S} \mathbf{H}_{2}^{\prime}\right)^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{2}^{\prime}\right) \geq c s, \lambda_{\min }\left(\mathbf{I}_{K}+\right.$ $\left.\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right) \geq c s$;
(ii) $\lambda_{\min }\left(\mathbf{I}_{K}+\widehat{\mathbf{B}}_{1}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(1)}\right)^{-1} \widehat{\mathbf{B}}_{1}\right) \geq c s, \lambda_{\text {min }}\left(\mathbf{I}_{K}+\widehat{\mathbf{B}}_{2}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{(2)}\right)^{-1} \widehat{\mathbf{B}}_{2}\right) \geq c s, \lambda_{\min }\left(\mathbf{I}_{K}+\widehat{\mathbf{B}}_{o}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{u, S}^{o}\right)^{-1} \widehat{\mathbf{B}}_{o}\right)$ $\geq c s$;
(iii) $\lambda_{\text {min }}\left(\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}\right)^{-1}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right) \geq c s, \lambda_{\min }\left(\left(\mathbf{H}_{2}^{\prime} \mathbf{H}_{2}\right)^{-1}+\mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S}\right) \geq c s$.

Proof of Lemma A.6. By Lemma A.3, with probability tending to one, $\lambda_{\min }\left(\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}\right)$ is bounded away from 0 . Therefore,

$$
\begin{aligned}
& \lambda_{\min }\left(\mathbf{I}_{K}+\left(\mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right)^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \geq \lambda_{\min }\left(\mathbf{H}_{1} \mathbf{B}_{S}^{\prime} \boldsymbol{\Sigma}_{u, S}^{-1} \mathbf{B}_{S} \mathbf{H}_{1}^{\prime}\right) \\
\geq & \lambda_{\min }\left(\boldsymbol{\Sigma}_{u, S}^{-1}\right) \lambda_{\min }\left(\mathbf{B}_{S}^{\prime} \mathbf{B}_{S}\right) \lambda_{\min }\left(\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}\right) \geq c s .
\end{aligned}
$$

Similar results hold for the other two statements. The results in (ii) follow from (i) and (A.6). The statement (iii) follows from a similar argument as $\mathbf{H}_{1} \mathbf{H}_{1}^{\prime}$ and $\mathbf{H}_{2} \mathbf{H}_{2}^{\prime}$ are positive semi-definite.

Lemma A.7. [Theorem A. 1 of Fan et al. (2013)] Let $\widehat{u}_{i t}$ be defined as in step ii. of Method 1 in Section 4. Under conditions (iv), (v), if there is a sequence $a_{T}=o(1)$ so that $\max _{i \leq p} \frac{1}{T} \sum_{t=1}^{T}\left|u_{i t}-\widehat{u}_{i t}\right|^{2}=O_{P}\left(a_{T}^{2}\right)$ and $\max _{i \leq p, t \leq T}\left|u_{i t}-\widehat{u}_{i t}\right|=o_{P}(1)$, then the adaptive thresholding estimator $\widehat{\boldsymbol{\Sigma}}_{u}$ with $\omega(p)=\sqrt{(\log p) / T}+a_{T}$ satisfies that $\left\|\widehat{\boldsymbol{\Sigma}}_{u}-\boldsymbol{\Sigma}_{u}\right\|=$ $O_{P}\left(m_{p}[\omega(p)]^{1-q}\right)$. If further $m_{p}[\omega(p)]^{1-q}=o(1)$, then $\widehat{\boldsymbol{\Sigma}}_{u}$ is invertible with probability approaching one, and $\left\|\widehat{\boldsymbol{\Sigma}}_{u}^{-1}-\boldsymbol{\Sigma}_{u}^{-1}\right\|=O_{P}\left(m_{p}[\omega(p)]^{1-q}\right)$.

## References

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71, 135-171.

Bai, J. and Liao, Y. (2013). Statistical inferences using large estimated covariances for panel data and factor models. arXiv:1307.2662.

Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics 147, 186-197.

Fan, J., Liao, Y., and Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements. Journal of the Royal Statistical Society B 75, 603-680.

Shao, J. (2003). Mathematical Statistics. Springer-Verlag.
Stock, J. and Watson, M. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 1167-1179.

