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Proof of Proposition 1: By changing variables, the optimization problem can be

rewritten as

min B[]S — 37

1,002,y

st. =3 +wYe+ (1 —ay)yIp.

Using the facts that ¥ = X; + X and E(i]l) = X7, we can rewrite the objective

function as

E[|% - 2|7 = EllaaZ; + 2% + (1 — ar)yIp — 23]
=E[|orXr + ao3e + (1 — a)yIp, —ar By — (1 — a)E; — Ze||%]
=Blllar(Er = 1) + (1 = a1) (L = Zp)|[7] + Bl axEe — B3]
=0 Bl|Zr = 2|7 + (1 — ar)’[yLp — Zilf7 + ElllaxZe — Sell7.

Therefore, the optimal value of v can be obtained by minimizing ||y, — 3;||%. Thus,



the optimal value is v* = tr(3;)/p = tr(X)/p. The optimal value of ay can be obtained

2
HECHF

by minimizing E[Hagio—ECHQF]. The optimal value is oy = TEolotos:
F C

Replacing v by

its optimal value v* in the objective function and taking the derivative of the objective

. . . . 2
function with respect to ay, we can find that the optimal value of oy is o] = wa.
I
. . *52
Thus, the optimal value of ag is o =" (1 — af) = GZT%‘
2?92 + Z%IIEc|I2F2
51'1'92 6c+||20||p’

which is less than 67 + 62. Since E[||X — X||2] = 67 4 6%, we have E[||Z* — 23] <
El|E -3} O

At the optimum, the value of the objective function is equal to

To show the proof of Theorem 1, we first show the definition of the sub-Gaussian

distribution and Lemma 1 of Ravikumar et al.| (2011)).

Definition 1: A zero-mean random variable Z is sub-Gaussian with parameter
L>0if
E(exp(tZ) < exp(L*t?/2)) for all t € R.

Lemma 1 (Ravikumar et al.|(2011)) Consider a zero-mean random vector (X, ..., X,)
with covariance 3 such that each X;/,/o;; is sub-Gaussian with parameter L. Given

n i.i.d. samples, the associated sample covariance 3 satisfies the tail bound

né?

P(|6je = 0je| 2 0) < dexp{~ 128(1 + 4L%)? max;(0y;)

2

for all § € (0,8max;(0;;)(1+ 4L?)).

Proof of Theorem 1: In our theoretical study, we assume that o;; = 1 for each j.
Under the condition (A1), we know that X;/,/0;; is sub-Gaussian with parameter L for
each j = 1,2,...,p. The random variable y/+/var(y) is sub-Gaussian with parameter

L/y/var(y).

We use the above Lemma 1 and let § = 14 %tp. If
J

v14/ (logp)/nj < SmJaX(ajj)(l + 4L2),



we can use the above Lemma 1 and have the following result

3 n-t(52

P&, —aal > 68) < 4 — 3

(153 = 73 2 0) < dexp{— o)
\ nj - PR

= dexp{- 128(1 + 4L2)2 man(Ujj)z}

2

1%

= 4exp{— : ; logp}

128(1 4 4L2)%? max; (o)
L2
- 128(1+4L2)21max]-(o'

2
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In our theoretical studies, we choose v; = 8v/6(1 +4L?) max;(0;;) = 8v/6(1+4L?) and

vo = 4. If min;,; nj > 6logp, we can check that

6 = 8v6(1 + 4L?)

|
%58 max(oy;) < 8(1+ 4L2) max (o),
Tt J J

and

384(1+4L2)2 max; (0 ;)2
) < 4 128(1~|»4L2)2 maxj(o'J])2 — i — ﬁ

)= 3 3
5t p p

log p

P(|Gji — o] > n

for any j,t € {1,2,...,p}.

Hence, under condition (A1) and the condition min;, n; > 6logp, we have

logp) Vo
¢ P

3 1ng Vg 1%}
P(“2 - 2||ma:1: > 7/1“,—) < — «p2 = —,
mlnj,tnjt p P

where the constants v; = 8v/6(1 +4L?) and v, = 4.
In addition, we know that each X,/,/7;; and the random variable y/y/var(y) are

max P(|g;; — oj: > v
]7

also sub-Gaussian with parameter — \/W} Let v3 = 16(1+4m) max{var(y), 1}



and vy = 4. If min;; nj > 6logp, we can check that

minn; > mitnnjt > 6logp > 4logp,
j 2

log p 2

1

<8(1+4 )max{var(y), 1} for each j =1,2,...,p.

"3 min{var(y), 1}

Using the above Lemma 1, we have

Vy
=,
p

lo
max P(|¢; — ¢;| > v &b
J n;

A lng Vy Vy
P(HC_O”maxZVIB\/.i) < - P=—
101 72 D D

Proof of Theorem 2: Denote 3= a3 + Oégic + (1 — ag)Ip, where 1 — a; =
O(y/log p/ min; n;) and 1 — az = O(y/log p/ min;; n;;). We first show the convergence

rate of |2 — 2| ,nee. Based on the definition of 3 = (6t)} =1, we know that

) <

O

(

0 if j =t

Ojt — Ojt = 105 — oy if j #t (j and t are in the same modality);

a9 — oy if j#t (j and t are in different modalities).
\

Thus, if j # t and the predictors j and t are in the same modality, with probability at

least 1 — 1 /p3, we have

Gjt — 04t = |1y — 0ju| < aa]Gje — oje| + (1 — an)|oye

< Oél‘&jt _O'jt‘ +1 — 7

(by Theorem 1) < aqvy, /logp/ minn; +1 — oy
j
<, flogp/minn; +1 — a;.
j



Similarly, if j # t and the predictors j and ¢ are in different modalities, with probability

at least 1 — v, /p®, we have

|Gt — 0jt| = |aabje — o] < vy, [logp/ n}itnnjt +1— .

Therefore, there exists two constants v; and v, such that

P(”ﬁ] - z]Hmaac > Viw/Ing/H}itnnjt) < V2/p-

Denote events A = {||2 — mee < viy/logp/min;,; nj} and B = {||C' — C|lnaz <
vsy/logp/ min; n;}. From Theorem 1 and the above convergence rate of |2 — X||mae,
we have P(ANB) > 1— (2 + 1v4)/p. In events A and B, we have

IC = £ maz < € = Cllmaz + IIZ = Sllmasll Al

< (vz+ V{HBOHD, /logp/ Hjﬂtn Njt.

Therefore, we have ||C' — 23°||nae = O,(||3°[l11/log p/ min;, nj;). Next, we show that
16 — B°|]2 = O,(v/s)\). By the KKT condition, the solution 3 of (4) satisfies

||2ﬂ~ - C’V’Hmaz S >\
On the other hand, since § is the solution to (4), we have

1o s - 1 7w -
S0TE8 = CTB 4 MBIl < 58 86° — CTB + X5



Therefore,

MBI < BUTS8° — BTRB + 20T (B — B°) + 2\
(8° = B)"EB" + BTR(B° — B) + 207 (B — B°) + 2X/|5|Ix
= (2C =23 =326%"(3 - 8°) + 2A[18°h
(IC = EBllmaz + IC = 28maa) - 18° = Bl + 2M18°[lx
A+ 1C = 28 max) - 18° = Blla + 2X[[8°])1.

If the tuning parameter A = 2||C' — 35°||;naz, we have
271 Bl < 1.5ANB° = Bllx + 2X[16%]1.
Hence,
15 = Bl < 40118 = Bl + 18°1h = [1811h)-
Let § = 3 — 8°. Since for j € J¢, |BJ — ﬁf| + |B§]| — |5]| =0, it holds that

1B = B°ls = 10501+ 10s¢lls < 418411 + 18911 = 18s]1) < 8l|ds ]

Hence, |[0c|l1 < 7||0]|1. Furthermore, under the condition (A2), if the event A occurs,

we have

T35 6T®s  T(EZ %))

> — 3 _ > _ / . N
5Ts 575 + 575 >m — 64s]|% — X|| e = m — 64s1] /logp/njl"ltnn]lt

If we assume that svjy/logp/ min;,; n; = o(1) or min;; nj; > (128v]/m)?(s*logp), we

have

X )
5T

>m-—m/2=m/2 >0, (S1)



for sufficiently large s, p, and minj n;;. On the other hand, we have

5Tﬁ]5 < Hﬁj(ﬁ~ - BO)HmawH(SHI < (||f]5 - énmw + Hé - ﬁjﬁonmax)“énl
< A+ [1C = 2% max) 6]l = LEA[6]]5- (S2)

Therefore, by and , we have 2[|6]2 < 6726 < 15A|6] < 12X[|0y])1 <
120/3]|6]5. Hence, [[§]]2 < 247\/5/m.

Therefore || — 8% = Op(v/3A) = O,(||8°]l1+/slog p/ min;, nj;). This completes
the proof. [

Proof of Theorem 3: For each j,t € {1,2,...,p}, we know that ¢;; = 0j, = 1 if
j = t, and it equals to the solution to }-,cq ¥u,, (wijzi — p) = 0 otherwise. Under
condition (A3) and the assumption that min;,n; > 24logp, let H;, = %\/m
for each j,t € {1,2,...,p}, by Theorem 5 in Fan et al.| (2016)), we know that for all
Jted{l,2,...,p},

log p 2
P(loi; — o > < —.
(I7je — ojul = @ Nt ) < P
Therefore, we have
log p 2
P(|6;; — 0| > <=
H;.fitX (|‘7Jt thl > - ) < 7

Furthermore, for each j,t € {1,2,...,p}, we have

log p log p 2
P(|&: — 0| > —2L V< P(|8y — 0| > <.
(l0j0 = o3l = Quy | min, njt) < P(|oje —ojul = Qu "y ) < 7
Thus,
Y log p N log p 2
P35 = Bllmar 2 Quy| ————) = P(max|5;; — 0| 2 Q14| ———) < —.
ming; ; n gt min; ¢ Nt p




In addition, for each j € {1,2,...,p} and i € S;, we have
Var(zgy) < E(a}yl) = +/E(al)E(y}) < 2(Q1 + Q2)*.

Let H; = (Q1+Q2)/n;j/logp for each j € {1,2...,p}. Using Theorem 5 in Fan et al.
(2016)), we know that for each j € {1,2,...,p},

5 log p 2
P(|¢; — cj| = 8(Q1 + Q) ) < -
j p
Therefore, we have
5 log p 2
max P(|¢; — ¢j| > 8(Q1 + Q2) )< =
j 1 p

Furthermore, since

o log p 9 log p
P(ej = ¢j] 2 8(Qu+ Q2)y [ =) < P& — ¢ 2 8(Q1 + Qz2)y [—==),
J ) J

we know that

- 1
P(C = Cllmae = 8(Q1 + Qo) | —2P y < p. 2 = 2,

This completes the proof. [J

Proof of Theorem 4: Under the conditions max;<;<, E(|X;|*) < T and E(e}) =
E(e3f) = - -+ = E(¢2) < T, by Theorem 2 in [Whittle (1960)), we have

- dy p dy
Plloy —oyl > —,/—) < —.
H}%X (‘th Uatl = o7\/ njt) = p2h



Furthermore, for each j,t € {1,2,...,p}, we have

. dy | p . di [p ds
(| Jt ]tl - 2T 1 it njt> — (| Jt ]t| - 2T n]t) — 2h

Thus,

dy p

P 2 - X mazr e e
(H || 2T minjyt Tt

da
- p2h—2 ’

N dy p
= P S — T > — - -
) <H},%X|0Jt J]t| - 2T \/ min; ¢ njt)

In addition, since F(C') = C, using the Theorem 2 in [Whittle| (1960), for all j, we have

where d3 and dy are two positive constants.

Therefore, we have

~ ds [p
P(lé; —e;| > —= |2y <
mjaX (’C] C] | - 2T nj ) —

Furthermore, since

- ds [ p ~
P& — e > = < P(lé, —
(|C] CJ| = 27\ min, nj) = (|C]
= ds p
P O - O mazx 2 Py . S
<“ ” 2T \/ min; nj> p

we know that

This completes the proof. [

Proof of Theorem 5:

- d3 p dy
P(le; — ¢ > ﬁ\/n_j) < T

dy
th—l :

ds p
> = -
6l 2 2T \/ nj>’

dy dy

T ooh—1  2h—2°
p p

The proof is almost the same as the proof of Theorem 2.



We use the same technique to show that

PUE = Zlnar > Q4 fogpT i) < 2/p

Then, in events A = {||f) — X|maz < Q’l\/logp/ min;; n;)} and B = {||C’ — Olmaz <

8(Q1 + Q2)\/logp/ min;n;}, for sufficiently large s, p, and min,; nj, we show that
16 — 89|, < 24A\/s/m with probability at least 1 — 4/p. This completes the proof. ]

Proof of Theorem 6: By the KKT condition, we know that B is a solution to (4)

if and only if there exists a subgradient v € RP such that
C— ﬁ)B =\,

where for each j € {1,2,...,p}, v; = sign(ﬁj) if Bj #0, and v; € [-1,1] if Bj = 0.

We can construct a point 3 € RP by letting 3, = (2,,)'Cy — AM(2,,)~" - sign(59)
and By = 0. Define events A1 = {[|B7 — BYllmaz < %n} and Ay = {||Cre —
3 se1Bs)lmae < A}. If events A; and A, hold, we can check that j3 is a solution to (4)
and sign(3) = sign(3°). To prove the theorem, we only need to show that P(A;) — 1
and P(Az) — 1, as min;; nj — oo and p — oo.

Step 1: show the upper bound of ||(2,,)™"|cc.

Denote V = [[(X7) !|o. Since

1(Z00) ™" = (Z00) Moo < M) Moo 1(Z00) Moo - 1207 = Bl
<(Zg0) Moo - U(Zg0) Moo + 1(Zgs) ™ = () o) - 1257 — Bl

= VIV H(Zs) ™ = (Z0) Mloo) 1205 = Zglloos

we have,

V2||2JJ - EJJ||oo < SV2||53JJ - 2JJ||magc

1(250) 7 = (Zs) Moo < = < . :
1=VIX =2l 1=sV[E5 —Zssllmaz

10



and

sV = 277 llmas _ V
1=sVIZ55 = Zisllmae 1= sVI[Z55 = Zssllmaz

1(Z00) Ml <V +
Step 2: show the upper bound of |C; — 3,89/ mez. We have

HOJ - 2JJBt(}Hmcm: S HCN’J - CJ”mam + H(EJJ - 2JJ)B9Hmax
S ”C’J - OJHmax + ”EJJ - 2A:JJHOOHﬁf}”max

S ||éJ - OJHmaac + SﬂgqaszJJJ - EJJ“mam‘

Step 3: show that P(A;) — 1 as min;;nj — oo and p — oo.
Define events Az = {||f] — X|maz < vjy/logp/ minj; nj and Aq = {||C’ — Clmaz <
v3y/logp/ min; n;}. By Theorem 1 and Theorem 2, we know that P(A3;) — 1 and

P(A;) — 1 as p — oo. If events Az and A4 occur, since Hsfg"“” logp 0, if

ming ¢ Njt

sV\/ log p/ min;; n;; — 0 or the following condition holds

_ s?logp n
377 oo - . < :
1Z0) || minj, g~ vi(4+n)

187 = BYlmaz = 11(Z15) 7" Cr = A(Zgs) "+ sign(89) — B89l maa
<[(Z55) 1 Cr = BYllmaz + A(Zg7) oo
< (HéJ - EJJBL(}HWM + )‘) : H(SJJ)_luoo

< (IICs = Cllmaz + $B%aa|Bss = Esllmaz + A) -

we have

Vv
1 —sV|X5 — 2s|lma

< 22V < A4\V,

11— sV||2JJ — 3775 llmaz

for sufficiently large p and min;; n;. Therefore, if \V/BY. — 0, we have P(A;) =
1—- P({HBJ - 69|lma$ > B?nm}) — L.

11



Step 4: show the upper bound of ||§A]JCJ(2AJJJ)*1 — 3 7e7(X77) so. We have

HEAJJCJ(EAJJJ)_I - EJCJ(EJJ)_IHOO
<o (Bs0) ™ = (Zs) oo + 1(Zses = Zses)(Zgs) oo
< yes(Z5) oo 1207 = Zaalloo - 1(Z50) oo

F1(Z0) oo - 12505 = Be

25V 15 = 2|z

< E00) e (107 = Basle B = B lo) € 1= e

Step 5: show that P(A;) — 1 as min;;n;; — oo and p — oo.

Since 3, = (2,,)'Cy — A(2y,)~" - sign(BY), we have

HéJc - 2JCJBJ||max < HC'JC — EJCJ(iJJ)_IC’JHmam + >\||2JCJ2;}HOO
< HC'JC — Ce|lmaz + H(EJCJ(EJJV1 - 2JCJ(2JJ)71)CJHmax

+ ||2JCJ(SJJ)_1<CJ — éJ>||max + )\HEA]JCJ(EA:JJ)_lHOO

< \|C~’Jc - CJC maﬂg"*‘fﬁgmmni - ZHmaﬂc : (1 + HEJCJ<2JJ)_1HOO)
0 (7
+ A+ 11Cs = Chllmaz) - 120 (Es) o -
(111)

If events A3 and A4 occur, we know that

(I) <wvs, /logp/minn; < v; /logp/mitnnjt
-] .]7
: 25V 12 = 2mas
IT) < vsBY  flogp/minng - (2 —n+ -
(1) < 1180maq | log p/ minn, - (2 =1 1—sV|\E—2llmax)

: 25V = =|lmae
11T < (A+wv3, /lo minn;) - (1 —n+ - )
(I11) < (A +vs, flogp/minny) - (1 =1 1_8V||2_2||mm)

12



SIDCG 1+Sﬁ'(r)na1' Ing
A

ming ¢ Nj¢

— 0, if sV y/logp/ min;; n;y — 0 or we assume that
- s log p U
E ! oo . < )
1w\ iy ey = @)

||C’JC - EJCJ/BJHma;B S @ + @ + (]]])
A A A A

we have

n . Ui
<14l i1-22
SititiTa T

for sufficiently large p and min;; n;.
Therefore, P(Ay) — 1 as min;; n;; — oo and p — co. This completes the proof.

O

Proof of Theorem 7: The proof is almost the same as the proof of Theorem 6.
We define events A5 = {Hﬁ] — 3| imar < Q/logp/ min;,; nj and Ag = {Hé’— Cllmaz <
8(Q1+Q2)+/log p/ min; n;}. By Theorem 3, we know that P(A;) — 1 and P(Ag) —

1as p — oo. If events As and Ag occur, we can show that P({[|3; — 8%lmae <

BV — 1 and P({||Cye — 21187 |lmae < A}) — 1, as min;; nj; — oo and p — co.

This completes the proof. [J
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