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ABSTRACT
In the genomic era, the identi!cation of gene signatures associated with disease is of signi!cant interest.
Such signatures are often used to predict clinical outcomes in new patients and aid clinical decision-
making. However, recent studies have shown that gene signatures are often not replicable. This occurrence
has practical implications regarding the generalizability and clinical applicability of such signatures. To
improve replicability, we introduce a novel approach to select gene signatures from multiple datasets whose
e"ects are consistently nonzero and account for between-study heterogeneity. We build our model upon
some rank-based quantities, facilitating integration over di"erent genomic datasets. A high-dimensional
penalized generalized linear mixed model is used to select gene signatures and address data heterogene-
ity. We compare our method to some commonly used strategies that select gene signatures ignoring
between-study heterogeneity. We provide asymptotic results justifying the performance of our method
and demonstrate its advantage in the presence of heterogeneity through thorough simulation studies.
Lastly, we motivate our method through a case study subtyping pancreatic cancer patients from four gene
expression studies. Supplementary materials for this article, including a standardized description of the
materials available for reproducing the work, are available as an online supplement.
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1. Introduction

In the genomic era, gene signatures are o!en utilized to subtype
cancer patients, determine treatment, and predict response to
therapy (Golub et al. 1999; Sotiriou and Piccart 2007; Swisher,
Taniguchi, and Karlan 2012). Such signatures are de"ned as the
collection of one or more genes whose expression has validated
speci"city with respect to a particular clinical outcome (Chibon
2013). These signatures are o!en incorporated into statistical or
computational models for predicting clinical outcome in future
patients. For these reasons, gene signature selection and sub-
sequent clinical prediction are of signi"cant interest in cancer
research.

However, several problems exist with the application of such
signatures. For example, inconsistency in gene signature selec-
tion is common in published biomedical articles. Gene signa-
tures identi"ed in one article o!en show little or even no overlap
with the ones identi"ed in another article (Waldron et al. 2014).
In addition, models based upon these signatures have shown
variable accuracy in predicting outcomes in new clinical studies
(Sotiriou and Piccart 2007; Waldron et al. 2014), or estimate
contradictory e#ects of individual genes (Swisher, Taniguchi,
and Karlan 2012). This lack of replicability presents natural
questions toward the generalizability and reliability of utilizing
such gene signatures for clinical prediction (Sotiriou and Piccart
2007).
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A number of factors contribute to such a lack of replicability.
For example, studies with small sample size have been shown
to lack power in selecting gene signatures (Sotiriou and Piccart
2007) and have low prediction accuracy in new studies (Wal-
dron et al. 2014). Variation in the prevalence of the clinical out-
come also a#ects replicability. Lusa et al. (2007) demonstrated
that gene signatures derived from studies with low frequencies
of certain molecular subtypes are less likely to accurately predict
molecular subtype in new patients. Study-speci"c factors such as
variation in laboratory conditions or clinical protocols may also
introduce additional variation in the e#ects of individual genes.

Di#erences in data preprocessing are another source. For
example, the prediction accuracy of certain classi"ers has been
shown to be sensitive to the type of normalization method in
the preprocessing step (Lusa et al. 2007; Paquet and Hallett
2015). New datasets must be normalized to the training data
prior to its application for prediction to correct for technical
biases. However, prior work has shown that this procedure
results in “test-set bias,” where predictions may change due to
the samples in the test set or the normalization approach used
(Patil et al. 2015). Sophisticated procedures have been developed
for microarrays to avoid test-set bias, but still require expression
data to come from the same type of microarray chip (McCall,
Bolstad, and Irizarry 2010). If the new study uses a di#erent
platform, it is even harder to apply and validate the prediction
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model. For example, next generation sequencing data measures
gene expression on a di#erent scale (positive integer counts)
relative to microarray data (continuous measurements). Such a
di#erence typically makes methods developed for one platform
not applicable to the other (Glas et al. 2006).

To improve replicability, various statistical methods have
been developed to integrate data from multiple studies (hori-
zontal integration) to reach a consensus conclusion. Richardson,
Tseng, and Sun (2016) give a comprehensive review of recent
developments in this "eld. Addressing between-study hetero-
geneity is critical in horizontal data integration, as data from dif-
ferent studies come from di#erent cohorts, platforms, and bio-
samples. Several methods (Li and Tseng 2011; Li et al. 2014) have
been developed to account for between-study heterogeneity in
horizontal data integration. However, these methods mainly
focus on variable selection instead of prediction.

Motivated by a case study in subtyping pancreatic cancer
patients, we develop a new horizontal integration method that
selects gene signatures from multiple datasets and accounts
for between-study heterogeneity in variable e#ects. We apply
a rank-based transformation based upon gene pairs to the
raw expression data, facilitating data integration from multiple
studies. We note that some care needs to be taken when
merging data from di#erent expression platforms. More
details of this rank-based transformation will be discussed in
Section 3. Given the transformed data, we utilize a penalized
generalized linear mixed model (pGLMM) to select predictors
with study-replicable e#ects and account for between-study
heterogeneity. In particular, we assume the e#ect of each
predictor to be random among di#erent studies. We design
a penalty function to select predictors with nonzero "xed
e#ects in addition to those with nonzero variance across
studies. We propose to only use predictors with nonzero "xed
e#ects to predict outcome in new subjects, as their e#ects
are replicable in multiple studies. Through simulation and
case studies, we demonstrate that in the presence of between-
study heterogeneity, our proposed method can result in better
prediction performance than other commonly used strategies,
especially when the heterogeneity is large. Moreover, as we
use the transformed data as predictors in the pGLMM, our
method aims to select gene pairs instead of individual genes for
prediction.

2. Data

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal
disease with a 5-year survival rate of 4%. A key hallmark of
PDAC is the low tumor cellularity of patient samples, which
makes capturing precise tumor-speci"c molecular information
di$cult. Due to this fact, genomic subtyping of PDAC to inform
treatment selection has been limited.

In a recent study, Mo$tt et al. (2015) identi"ed genes that
are expressed solely in pancreatic tumor cells. Based upon these
tumor-speci"c genes, two novel tumor subtypes (“basal-like”
and “classical”) were identi"ed and validated. Subtypes were
found to be prognostic, in that patients with basal-like tumors
had signi"cantly worse median survival than patients with clas-
sical tumors. Finally, it was found that tumor-speci"c genes from
the basal-like subtype also de"ne a similar basal-like subtype
in breast and bladder cancers, suggesting a common basal-like
genomic pro"le shared across cancer types. This study repre-
sented the largest investigation of primary and metastatic PDAC
gene expression thus far and provided new insights into the
molecular composition of PDAC. These insights may be used
to make tailored treatment recommendations.

Given these promising results, methods are needed to
robustly predict basal-like subtype. However, existing datasets
with basal-like subtypes in PDAC are limited. Therefore, we
utilize the gene expression data from Mo$tt et al. (2015) in
addition to recently published PDAC RNA-seq data to train
a PDAC subtype classi"er. Of the three datasets examined
in Mo$tt et al. (2015), two are single-channel microarrays
(UNC PDAC, UNC Breast Cancer) and one is RNA-seq (TCGA
Bladder Cancer). Since the publication of Mo$tt et al. (2015), an
additional PDAC RNA-seq dataset from The Cancer Genome
Atlas (TCGA) has become available and will also be utilized
for training (Weinstein et al. 2013). Expression measurements
from each RNA-seq dataset is summarized in terms of fragments
per kilobase of transcript per million mapped reads (FPKM), a
measurement that accounts for both transcript length and the
number of mapped reads within a sample (Trapnell et al. 2010).
This allows for easier comparison of expression measurements
across genes and samples within an RNA-seq study. More
modern RNA-seq measurements, such as transcripts per million
(TPM, Patro et al. 2017) may also be utilized but were not
available from Mo$tt et al. (2015). Basic information regarding
each dataset is provided in Table 1. Each microarray dataset was
normalized as described in Mo$tt et al. (2015).

We wish to harness the above datasets to select gene signa-
tures that are predictive of the basal-like subtype. However, the
datasets arise from various expression platforms and therefore
have di#erent scales for their expression measurements. Fur-
thermore, the datasets have been separately prenormalized. For
these reasons, external validation and comparison of basal-like
subtype prediction models trained separately on each dataset is
challenging. In addition, integrating datasets to train a single
prediction model and select study-consistent variables is di$-
cult, given various expression platforms and states of prepro-
cessing. The between-study heterogeneity in gene e#ects may
also impact the selection and estimation of study-consistent
variables for subtype prediction.

Motivated by these issues, we propose a novel data inte-
gration approach to facilitate between-study comparisons

Table 1. Summaries of four gene expression datasets with basal-like subtype

Dataset Platform Sample size Gene set size % of Basal-like Prenormalized?

UNC PDAC Microarray 228 19749 40% Yes
UNC Breast Cancer Microarray 337 17631 26% Yes
TCGA Bladder Cancer RNA-seq 223 20533 47% No
TCGA PDAC RNA-seq 150 20531 43% No
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and merging of samples in Section 3. We also introduce a
high-dimensional pGLMM to select variables that are study-
consistent while accounting for between-study heterogeneity
in their e#ects. We compare our method with several common
strategies for gene signature selection and subtype prediction
using the data in Table 1, and summarize the results in Section 7.

3. Methods

We consider integrating data from K independent studies. For
simplicity, we assume there are n subjects in each study and the
total sample size N = nK. In the kth study for k = 1, . . . , K, let
yk = (yk1, . . . , ykn)T be the vector of n independent responses,
xki = (xki,1, . . . , xki,pn)

T be the pn-dimensional vector of pre-
dictors, and Xk = (xk1, . . . , xkn)T . Suppose the conditional
distribution of yk given Xk belongs to the canonical exponential
family, having the following density function up to an a$ne
transformation that

f (yk|Xk, αk; θ) =
n∏

i=1
c(yki) exp

[
τ−1{ykiϑki − b(ϑki)}

]
, (1)

where c(yki) is a constant that only depends on yki, τ is the
dispersion parameter, b(·) is a known link function, and the
linear predictor

ϑki = xT
kiβ + zT

ki#αk, (2)
such that β = (β1, . . . , βpn)

T is the pn-dimensional vector of
"xed e#ects, αk is the qn-dimensional vector of unobservable
random e#ects, zki is a qn-dimensional subvector of xki, and # is
a lower triangular matrix. We assume {αk}K

k=1 are independent
and identically distributed from a general distribution with
density φ(αk). A common choice of φ(αk) is the multivariate
normal distribution N(0, Iqn×qn) and #αk ∼ N(0, ##T). In
addition, we assume that E(αk) = 0 and var(αk) = Iqn . The
random component in the linear predictor has var(#αk) =
##T . We allow some rows of # to be identically zero, which
implies that the e#ects of corresponding covariates are "xed
across the K studies. We consider the high-dimensional setting
for which pn $ n, qn $ n, and they both can grow with n. We
use the subscript n to denote such a dependence on n.

Similar to Chen and Dunson (2003) and Ibrahim et al.
(2011), we reparameterize the linear predictor as

ϑki = xT
kiβ + zT

ki#αk =
(
xT

ki (αk ⊗ zki)TJq
) (

β
γ

)
, (3)

where γ t is a t × 1 vector consisting of nonzero elements of the
tth row of #, γ = (γ T

1 , . . . , γ T
qn)

T , and Jqn is the q2
n × qn(qn +

1)/2 matrix that transforms γ to &(#), that is, &(#) = Jqnγ . We
de"ne the vector of parameters θ = (βT , γ T , τ )T and assume
the true value of θ is θ∗ = (β∗T , γ ∗T , τ ∗)T such that θ∗ =
argminθ E[−&(θ)], where &(θ) is the total log-likelihood from
the K studies. While the linear predictor ϑki is indeed a function
of the parameter θ , we suppress its dependence on θ for the sake
of notational simplicity. In addition, we abbreviate ϑki(θ

∗) as ϑ∗
ki,

the value of the linear predictor when the parameters are taken
at their true values. As proposed in the above, we would like to
identify the set

S = S1 ∪ S2 = {j : β∗
j )= 0} ∪ {t :

∥∥γ ∗
t
∥∥

2 )= 0}.

Let s1n = |{j : β∗
j )= 0}| be the cardinality of set S1, s2n =∑

t:‖γ ∗
t ‖2 )=0 t be the cardinality of set S2, sn = s1n + s2n, and

dn = pn +qn(qn +1)/2 be the dimension of the whole problem.
In this article, we consider the case that dn, pn, qn, and sn change
with sample size n, but K remains "xed.

To recover the set S, we propose to solve the following penal-
ized likelihood problem:

θ̂ = argmin
θ

− &(θ) + λ1

pn∑

j=1
ρ1(βj) + λ2

qn∑

t=1
ρ2(

∥∥γ t
∥∥

2), (4)

where &(θ) = ∑K
k=1 &k(θ), &k(θ) is the observed log-likelihood

from the kth dataset such that &k(θ) = (1/n) log
∫

f (yk|
Xk, αk; θ)φ(αk)dαk, ρ1(t) and ρ2(t) are some penalty func-
tions, and λ1 and λ2 are positive tuning parameters. Since (4) is
a likelihood based method, we may allow the responses {yk}K

k=1
to be of di#erent types. We choose ρ1(t) and ρ2(t) as general
folded-concave penalty functions that satisfy condition 8 in
Lemma 1 in the supplementary materials. Examples of such
functions include the L1 penalty, the SCAD penalty (Fan and Li
2001) and the MCP penalty (Zhang 2010). The penalization on
γ is done in a groupwise manner (Yuan and Lin 2006), namely
we regard elements in γ t as a group and penalize its L2-norm.
Elements of the corresponding estimator γ̂ t will be either all
zero or all nonzero. If γ̂ t = 0, the corresponding variable’s
e#ect is regarded as "xed across studies. The selection of such
variables (i.e., S2) enables us to determine which predictors have
nonzero "xed e#ects. We postulate that accounting for study-
level heterogeneity will reduce the bias in "xed e#ects estimates.

In most applications, we recommend setting pn = qn and
let the algorithm determine which variables should be regarded
as "xed e#ects. However, if we know that some variables can
be treated as "xed e#ects based on prior knowledge, we only
need to impose the penalty ρ2 on the other variables. Based on
selections in S, we only use predictors with nonzero "xed e#ects
for prediction.

Compared to the existing literature on pGLMMs (Bondell,
Krishna, and Ghosh 2010; Ibrahim et al. 2011), our article is new
in the following perspectives. First, we deal with a much larger
dimension compared to existing articles. In our application, pn
and qn can both be greater than 50, yielding at least 2100 possible
models to be chosen from, whereas the existing articles only
consider pn = 7 and qn = 3 in Ibrahim et al. (2011) and pn =
qn = 16 in Bondell, Krishna, and Ghosh (2010). In particular,
large values of qn increase the computational complexity of the
problem, as the likelihood in (4) involves an integral of dimen-
sion qn. To solve such a large-scale problem, a new algorithm
is developed to estimate the pGLMM. More details are given in
Section 4. In addition, we give a high-dimensional asymptotic
result in Theorem 1 allowing both pn and qn diverge with n,
while the theory in Ibrahim et al. (2011) requires pn and qn to
be "xed.

Next, we introduce a technique to facilitate data integration
over di#erent studies. The motivation is that even though the
raw values of gene expression may be on di#erent scales in di#er-
ent studies, their relative magnitudes can be preserved by ranks.
Therefore, we propose to use some rank-derived quantities as
predictors in models (1) and (2), instead of the raw values. We
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use a variant of the top scoring pair (TSP) approach (Leek 2009;
Afsari et al. 2015; Patil et al. 2015).

Suppose there are G common genes in all K studies. We
enumerate G(G − 1)/2 gene pairs (gki,s, gki,t), where gki,s is the
raw expression of gene s for subject i in study k and gki,t is de"ned
similarly. For each gene pair (gki,s, gki,t), the TSP is an indicator
I(gki,s > gki,t) representing which gene of the two has higher
expression in subject i. Such binary indicators are then used
as the predictors in (1) and (2). In other words, xki consists of
G(G − 1)/2 binary variables.

We view such binary variables as “biological switches” indi-
cating how pairs of genes are expressed relative to some clinical
outcome. TSPs were originally proposed in the context of binary
classi"cation (Afsari, Braga-Neto, and Geman 2014). We "nd
that this representation of the original data is also appealing for
integrative analysis. First, the TSP only depends on the ranks
of raw gene expression in a sample. Hence, it is invariant to
monotone transformations of raw values. As a result, it is less
sensitive to various normalization procedures of data prepro-
cessing (Leek 2009; Afsari, Braga-Neto, and Geman 2014; Patil
et al. 2015). Second, it simpli"es data integration over di#erent
studies. The raw gene expression values may not be directly
comparable. A!er converting them into binary scores, data
from di#erent studies can be pooled together without the need
for between-sample or cross-study normalization. Prediction in
new patients is also simpli"ed, as normalizing new patient data
to the training set is no longer necessary.

In general, we wish to select gene pairs that are consistent
in their relationship with subtypes across multiple studies. An
ideal gene pair is such that one gene in the pair has higher
expression than the other gene in one subtype, lower expression
in the other subtype, and has this %ip replicated across many
subjects. Each gene in the pair should ideally be di#erentially
expressed between subtypes. Such ideal gene pairs are less likely
to be observed purely due to technical biases, as this %ip in
expression is speci"c to subtype and is also replicated across
many subjects. Indeed, many recent publications utilizing gene
pair-based approaches have shown high accuracy and robust-
ness in their validation datasets, re%ecting this point (Leek 2009;
Afsari, Braga-Neto, and Geman 2014; Afsari et al. 2015; Patil
et al. 2015; Shen, Luo, and Jiang 2017; Kagaris, Khamesipour,
and Yiannoutsos 2018).

However, some care needs to be taken when merging
gene pairs generated from di#erent platforms, especially when
merging microarray data with data from other platforms such
as RNA-seq. For microarrays, it is known that di#erences in
absolute expression between certain genes may not correlate
with di#erences in measured probe-level expression. Therefore,
merging microarray data with other platforms may reduce
the sensitivity to detect such ideal gene pairs. As a result, our
gene-pair approach is more applicable when data come from
the same or similar platforms. It is also preferable to utilize
more modern expression platforms (such as RNA-seq), as
well techniques that correct for GC content and other biases
in gene expression measurement (Patro et al. 2017), as these
approaches may improve the correlation between measured
and true expression of genes. Lastly, our gene pair approach is
predicated on the fact that the genes must also have overlapping
expression ranges. This is commonly observed in our real

data application candidate gene set, but may not always be the
case. When the expression ranges of two genes do not overlap,
the corresponding TSP will not %ip with respect to subtype
across patients, and would therefore would be uninformative
for prediction.

4. MCECM Algorithm

Since the observed likelihood involves intractable integrals, we
utilize a Monte Carlo expectation conditional minimization
(MCECM) algorithm for solving (4) (Garcia, Ibrahim, and Zhu
2010). Denote the complete and the observed data for study k
by dk,c = (yk, Xk, αk) and dk,o = (yk, Xk), respectively, and the
entire complete and observed data by dc and do, respectively.
Let λ = (λ1, λ2). At the sth iteration, given θ (s), the E-step is to
evaluate the penalized Q-function, given by

Qλ(θ |θ (s)) =
K∑

k=1
E

{
− log(f (dk,c; θ |do; θ (s)))

}

+λ1

pn∑

j=1
ρ1(βj) + λ2

qn∑

t=1
ρ2(

∥∥γ t
∥∥

2) (5)

= Q1(θ |θ (s)) + λ1

pn∑

j=1
ρ1(βj)

+λ2

qn∑

t=1
ρ2(

∥∥γ t
∥∥

2) + Q2(θ
(s)), (6)

where dk,c = (yk, Xk, αk), and

Q1(θ |θ (s)) = −
K∑

k=1

∫
log f (yk|Xk, αk; θ)φ(αk|do,k; θ (s))dαk,

Q2(θ
(s)) = −

K∑

k=1

∫
log φ(αk)φ(αk|do,k; θ (s))dαk.

Because these integrals are o!en intractable, we approximate
these integrals by taking a Markov chain Monte Carlo sample
of size L from the density φ(αk|do,k; θ (s)) using a coordinate-
wise metropolis algorithm described in McCulloch (1997) with
standard normal candidate distribution. This leads to a more
e$cient performance for larger qn. Let α

(s,l)
k be the lth simulated

value, for l = 1, . . . , L, at the sth iteration of the algorithm. The
integral in (6) can be approximated as

Q1(θ |θ (s)) = − 1
L

L∑

l=1

K∑

k=1
log f (yk|Xk, α(s,l)

k ; θ),

Q2(θ
(s)) = − 1

L

L∑

l=1

K∑

k=1
log φ(α

(s,l)
k ).

The M-step involves minimizing

Q1,λ(θ |θ (s)) = Q1(θ |θ (s)) + λ1

pn∑

j=1
ρ1(βj) + λ2

qn∑

t=1
ρ2(

∥∥γ t
∥∥

2)
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with respect to θ = (β , γ , τ ). Minimizing Q1,λ(θ |θ (s)) with
respect to τ is straightforward and can be done using a
standard optimization algorithm, such as the Newton–Raphson
algorithm (Rashid, Sun, and Ibrahim 2014). Minimizing Q1,λ
with respect to β and γ is done via the coordinate gradient
descent algorithm, leading to more e$cient performance in
larger dimensions.

In particular, we use three conditional minimization steps.
Prior to minimization, we augment the matrices used in the
linear predictor by “"lling in” the missing values of αk with
α

(s,l)
k , repeating the rows of the original matrices L times and

replacing αk with α
(s,l)
k in each of the L repeated rows. This

leaves us with Z̃nKL×q(q−1)/2 =
(
z̃T

11, . . . , z̃T
nK

)T , where z̃ki =
(α̃k ⊗ zki)TJq, and α̃k = ((α

(s,1)
k )T , . . . , (α(s,L)

k )T)T , as well
as X̃nKL×pn = (x̃T

11, . . . , x̃T
nK)T to match the dimension of Z̃,

where x̃ki = xkiJL×1. We "rst minimize Q1,λ with respect to β
given γ (s) and τ (s) to obtain β(s+1) using the coordinate gradient
descent approach similar to Breheny and Huang (2011) with
predictor matrix X̃ and o#set Z̃γ (s). We then minimize Q1,λ
with respect to γ given β(s+1) and τ (s) to obtain γ (s+1) using
the blockwise gradient descent algorithm (Breheny and Huang
2015) with X̃β(s+1) serving as an o#set. Therefore, elements
of the corresponding estimator γ̂ t will be either all zero or
all nonzero. If γ̂ t = 0, the tth predictor will be regarded as
"xed e#ect. By separating the penalized estimation of β and γ
into two conditional minimization steps, we are able to simplify
the variable selection process into a standard variable selection
problem for β and a group variable selection problem for γ .
Lastly, we minimize Q1,λ with respect to τ given β(s+1) and
γ (s+1) to obtain τ (s+1). This minimization is performed using
the Newton–Raphson algorithm.

As qn increases, the dimension of γ also increases. We uti-
lize an approximation treating the covariance matrix ##T as
a diagonal matrix. This approach has been demonstrated to be
advantageous for high-dimensional mixed models (Fan and Li
2012), and also results in greater computational e$ciency. This
is because the accumulative estimation error in estimating the
full covariance matrix for large qn can be much larger than the
bias incurred from utilizing a diagonal covariance matrix.

To ensure that the estimator θ̂ has good properties, the
penalty parameter λ has to be appropriately selected. Two com-
mon criteria are generalized cross validation and BIC (Wang,
Li, and Tsai 2007). However, these criteria cannot be easily
computed in the presence of random e#ects, because they are
functions of the observed likelihood, which involves intractable
integrals. Moreover, it has been shown in Wang, Li, and Tsai
(2007) that even in the simple linear model, the generalized
cross validation criterion can lead to signi"cant over"tting.
Instead, we utilize the ICQ criterion (Ibrahim et al. 2011) to
select the optimal λ by minimizing

ICQ(λ) = 2Q(θ̂ λ|θ̂0) + cN(θ̂ λ),

where cN(θ̂ λ) = dim(θ) × log(N), Q(θ̂ λ|θ̂0) = Q1(θ̂ λ|θ̂0) +
Q2(θ̂0), θ̂0 is the estimator of θ from the full model, and
θ̂ λ is the estimator from the model "tted with a particular λ.
As in the EM algorithm, we can draw a set of samples from
f (αk|dk,o; θ̂0) for k = 1, . . . , K to estimate Q(θ̂ λ|θ̂0) for any

λ. In higher dimensions, we choose small values for λ1 and λ2
to approximate θ̂0. Given the ICQ criterion, we perform a grid
search of (λ1, λ2) to "nd the optimal values.

For the penalty functions, we consider the MCP penalty for
both ρ1(t) and ρ2(t), which is de"ned as ρ(t) = λt − t2/(2ω)

for t ≤ ωλ and ρ(t) = 0 for t > ωλ. Similar to Breheny and
Huang (2011), we choose ω = 3. Other penalties such as the
SCAD and the L1 penalties may be used. Given the promising
performance of the MCP penalty in previous publications, we
do not explicitly compare between penalties in this article.

5. Theory

We "rst introduce some notation. For two sequences an and bn,
we write an = o(bn) if an/bn → 0; an $ bn if bn = o(an);
an = O(bn) if an ≤ cbn for some positive constant c. For a
p-dimensional vector a, let ‖a‖∞ = max1≤j≤p |aj| denote its
sup-norm. Let aS be a subvector of a with indices in the set
S. For a p × p matrix A, let ‖A‖∞ = max1≤i≤p

∑p
j=1 |aij|

denote the matrix sup-norm. Denote bn = (min1≤j≤pn{|β∗
j |} ∧

min1≤t≤qn{
∥∥γ ∗

t
∥∥

2})/2. Let λln = min{λ1, λ2} and λun =
max{λ1, λ2}. For simplicity, we assume the dispersion parameter
τ = 1 and ρ1(t) = ρ2(t) = ρ(t). We de"ne the local concavity
of the penalty function as

κ(ρ, u) = lim
ε→0+

max
1≤j≤sn

sup
t1<t2∈(|uj|−ε,|uj|+ε)

−ρ′(t2) − ρ′(t1)

t2 − t1
.

We de"ne a neighborhood of θ∗ as N = {θ = (βT , γ T)T :∥∥βS1 − β∗
S1

∥∥
∞ ≤ cn,

∥∥∥γ S2 − γ ∗
S2

∥∥∥
∞

≤ cn, βSc
1

= 0, and γ Sc
2

=
0}, where cn = cn−δ for some c > 0, 0 < δ < 1/2, Sc

1 =
{1, . . . , pn}\S1, and Sc

2 = {1, . . . , qn(1 + qn)/2}\S2.
The main result in Theorem 1 implies that the estimator θ̂

asymptotically recovers S and gives a uniform consistent esti-
mator of θ∗

S .

Theorem 1. Assume conditions (C1)–(C8) as shown in the
supplementary materials hold. If λunρ′(bn) = o(n−δ), λln $
nξ (s3/2

n bn/
√

n +
√

(log dn)/n + snn−2δ) for 0 < ξ < 1/2 and
λunκ0n = o(τ0n), where κ0n = supu∈N0 κ(ρ, u), N0 = {θS ∈
Rsn :

∥∥θS − θ∗
S
∥∥

∞ ≤ cn}, and τ0n = minθ∈N λmin(∇2
θS

&(θ)),
there exists a su$ciently large positive constant C such that with
probability greater than 1 − Ksnn−C − K(dn − sn)d−C

n , it holds
that
(a) {j : θ̂j )= 0} = {j : θ∗

j )= 0}.
(b)

∥∥∥θ̂S − θ∗
S

∥∥∥
∞

= O(n−δ), where 0 < δ < 1/2.

The convergence rate δ in statement (b) depends on the min-
imal signal bn, the dimensionality dn, the sparsity measurement
sn, and the penalty function ρ(·). In general, the larger bn is and
the smaller dn and sn are, the faster θ̂ converges. The optimal
rate can be as close as a root-n rate.

In Theorem 1, it is feasible to choose proper tuning parame-
ters λ1 and λ2 to satisfy all requirements. For example, if the L1
penalty is used, and we assume bn is bounded away from 0, we
only need to choose λ1 and λ2 such that λun = o(n−δ) for some
0 < δ < 1/2 and λln $ s3/2

n /
√

n +
√

(log dn)/n. As long as
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sn = o(
√

n) and log(dn) = o(n), there exists a feasible region
for λ1 and λ2. In practice, we tune the optimal λ1 and λ2 using
methods described in Section 4.

6. Simulation Studies

6.1. Oracle Setting

We "rst examine the oracle setting where the variables rele-
vant to the outcome are known a priori. We demonstrate the
performance of our method in comparison to some common
strategies to estimate variable e#ects from multiple datasets. The
"rst strategy is the traditional study-by-study analysis approach,
where variable e#ects are estimated separately in each individual
study. The second strategy is to combine samples from all studies
into a single dataset, and then estimate variable e#ects in a
single model. We de"ne a third strategy as a GLMM applied
to the merged data, assuming no penalization on the "xed
and random e#ects. To mimic the process of external valida-
tion, we utilize the "tted model from each strategy to pre-
dict outcomes in an externally simulated dataset. The median
absolute prediction error is calculated for each strategy, and
is then averaged over simulations. We assess each strategy’s
performance in terms of the bias of the estimated coe$cients
as well as the prediction accuracy under external validation.
We will later examine the variable selection performance under
similar conditions when the set of relevant variables is unknown
apriori.

Speci"cally, we generate binary responses representing can-
cer subtype from a random e#ects logistic regression model
with two predictors and an intercept. A range of sample sizes,
number of studies, magnitudes of variable e#ects, and levels of
between-study heterogeneity are to be inspected. For study k, we
generate the binary response yki, i = 1, . . . , nk such that yki ∼
Be(pki) where pki = P(yki = 1|xki, zki, αk, β∗) = exp(xT

kiβ
∗ +

zT
kiαk)/{1+exp(xT

kiβ
∗+zT

kiαk)}, and αk ∼ N3(0, σ 2I), where σ 2

controls between-study heterogeneity. To simulate imbalanced
sample sizes, we allocate N/3 samples to study k = 1 and
evenly distribute the remaining 2N/3 samples to the remain-
ing studies. We perform simulations for N = 100, 500, K =
2, 5, 10, σ 2 = 0.5, 1, 2, β∗ = (β∗

0 , β∗
1 , β∗

2 )T = (0, 1, 1)T

for moderate predictor e#ect, and β∗ = (0, 2, 2)T for strong
predictor e#ect. For each k, we denote the vector of predictors
pertaining to subject i as xki = (1, xki,1, xki,2)T , where we assume
xki,j ∼ N(0, 1), j = 1, 2. We also assume a random intercept
and random slope for each predictor by setting zki = xki.
The external validation set of 100 samples is generated under
the same conditions as the training set to produce ynew,i and
xnew,i.

For the "rst strategy (IND), we apply a logistic regression
model to each of the K datasets and calculate p̂new,i, the pre-
dicted probability of ynew,i = 1, using xnew,i and the estimated
coe$cients from each model. For the second strategy (GLM), we
apply a logistic regression model to the merged dataset to obtain
p̂new,i. For our method (GLMM), we apply a random e#ects
logistic regression model to the merged dataset to obtain the
estimated "xed e#ect coe$cients, assuming a random slope for
each predictor. Here, only the estimated "xed e#ect coe$cients
are used to obtain p̂new,i. In all of the above regression models,
we assume the relevant predictors are known to us and only use
them in the model. The median absolute prediction error for
each strategy is calculated as PEmed = median(|ynew,i − p̂new,i|),
where i varies in the validation set. For the "rst strategy, PEmed
is averaged across the K studies.

We "rst illustrate the results of a single simulation in
Figure 1. In this scenario, we simulate "ve studies of a total
of 500 samples assuming moderate variable e#ects and high
between-study heterogeneity, that is, we choose N = 500, K =
5, β∗ = (0, 1, 1)T , σ 2 = 2. Applying the "rst strategy to the
data illustrates the signi"cant study-to-study variation in the

Figure 1. Estimation and prediction for strategies 1–3 for a single simulation (N = 500, K = 5, β∗
0 = 0, β∗

1 = β∗
2 = 1, σ 2 = 2) under the oracle setting. (a) Estimated

coe"cients in each of the !ve simulated training datasets. (b) Boxplots of the prediction errors in a simulated external validation set. Colored boxplots correspond to the
predictions given by the study-by-study analysis.
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estimated coe$cients (Figure 1, le! panel). This variation is
also observed for the study-level absolute prediction errors in
the simulated external validation set (Figure 1, right panel).
In this setting, researchers using Study 3 would estimate a
strong association between each predictor and the response,
and may further conclude that their model performs well in
the validation set. However, researchers using Study 1 may
conclude otherwise due to the between-study heterogeneity
in variable e#ects. Combining data in the second strategy
results in smaller prediction errors compared with the "rst
strategy. This observation is in line with the prior "ndings
suggesting that combining data results in better estimation
and prediction (Waldron et al. 2014). However, accounting for
heterogeneity further improves the median absolute prediction
error.

Our full simulation results are presented in Tables 3 and 2,
where we average results over 100 simulations per condition.
Several trends are apparent from these results, re%ecting our

illustration from Figure 1. First, combining data from multiple
studies results in an reduction of the median absolute predic-
tion error (PEGLMM

med , PEGLM
med ) compared with models trained

on individual studies (PEIND
med); see Table 3. We also "nd that

the relative prediction accuracy of the GLMM improves more
when the simulated heterogeneity σ 2 and the number of stud-
ies K increase. This is due to an increased bias by the GLM
when σ 2 and K increase. Also, di#erences in prediction accu-
racy between the two strategies become more apparent as the
strength of the predictor e#ects increases (Table 2). Lastly, the
bias of the estimated coe$cients by the GLMM decreases as
K and N increase, as more data are available to estimate β
and #. In all, combining datasets in strategies two and three
leads to better prediction accuracy and accounting for between-
study heterogeneity via our method further improves the per-
formance.

These observations show that even in the oracle setting where
the relevant predictors are known, accounting between-study

Table 2. Estimation and prediction under the oracle setting with strong variable e#ects for β∗ = (β∗
0 , β∗

1 , β∗
2 )T = (0, 2, 2)T .

N K σ 2 β̂GLMM
1 β̂GLMM

2 β̂GLM
1 β̂GLM

2 PEGLMM
med PEGLM

med PEIND
med

100 2 0.5 2.11 2.09 1.96 1.88 0.14 0.16 0.26
1 2.22 2.11 1.72 1.65 0.16 0.21 0.30
2 1.79 2.30 1.08 1.28 0.30 0.35 0.41

5 0.5 2.18 2.31 1.89 1.98 0.16 0.17 0.26
1 2.12 2.21 1.52 1.47 0.19 0.22 0.31
2 1.91 1.92 0.85 0.85 0.27 0.32 0.38

10 0.5 2.25 2.31 1.88 1.86 0.13 0.17 0.26
1 2.07 2.26 1.39 1.51 0.17 0.24 0.32
2 2.26 2.12 0.98 0.77 0.28 0.38 0.40

500 2 0.5 2.04 1.98 1.97 1.93 0.15 0.17 0.26
1 1.93 1.95 1.66 1.60 0.20 0.26 0.32
2 2.10 1.96 1.54 1.18 0.26 0.36 0.39

5 0.5 2.09 2.00 1.92 1.85 0.12 0.16 0.29
1 2.02 1.89 1.54 1.44 0.18 0.25 0.36
2 1.88 1.89 0.89 0.87 0.25 0.36 0.41

10 0.5 2.01 1.98 1.85 1.85 0.15 0.17 0.26
1 1.93 1.91 1.41 1.40 0.18 0.25 0.31
2 1.81 1.83 0.88 0.90 0.27 0.36 0.40

Table 3. Estimation and prediction under the oracle setting with moderate variable e#ects for β∗ = (β∗
0 , β∗

1 , β∗
2 )T = (0, 1, 1)T .

N K σ 2 β̂GLMM
1 β̂GLMM

2 β̂GLM
1 β̂GLM

2 PEGLMM
med PEGLM

med PEIND
med

100 2 0.5 1.03 1.06 0.90 1.03 0.33 0.34 0.39
1 1.11 1.06 0.84 0.81 0.38 0.40 0.43
2 1.01 0.97 0.76 0.49 0.42 0.43 0.46

5 0.5 1.14 1.15 0.95 0.93 0.34 0.35 0.39
1 1.12 0.98 0.77 0.74 0.40 0.42 0.43
2 1.22 1.06 0.53 0.49 0.45 0.47 0.48

10 0.5 1.15 1.20 0.93 0.96 0.33 0.35 0.39
1 1.07 1.01 0.73 0.67 0.38 0.41 0.43
2 1.02 0.87 0.40 0.40 0.43 0.47 0.47

500 2 0.5 1.05 1.00 1.01 0.95 0.35 0.36 0.39
1 0.93 1.03 0.82 0.79 0.39 0.42 0.43
2 0.90 0.79 0.63 0.55 0.44 0.46 0.47

5 0.5 0.99 1.04 0.89 0.90 0.33 0.36 0.41
1 0.99 0.93 0.73 0.63 0.36 0.41 0.44
2 0.94 0.92 0.41 0.40 0.42 0.47 0.48

10 0.5 0.99 1.04 0.90 0.94 0.34 0.36 0.39
1 1.09 0.99 0.77 0.69 0.37 0.40 0.42
2 0.94 0.97 0.49 0.47 0.43 0.47 0.47
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heterogeneity has important consequences in model estima-
tion and prediction. We assume in our simulations that the
training and validation sets are generated from the same pop-
ulation. We show that even without other complicating fac-
tors, between-study heterogeneity can still impact the accuracy
and replicability of common approaches such as strategies one
and two. While we utilize normally distributed predictors in
our simulations, the impact of between-study heterogeneity
will generally apply to variables from any distribution. In the
next section, we show that heterogeneity presents additional
problems in variable selection when important variables are
unknown.

6.2. Non-Oracle Setting

We again assume that only two variables are relevant to the
outcome, but now are unknown a priori. We aim to select these
variables from a set of p variables and utilize them to predict
outcomes in an external dataset. In our simulation, we assume
the e#ects of the remaining p – 2 variables are zero in all studies.
We simulate our data the same way as in the previous section,
except we now generate xki,j ∼ N(0, 1), j = 1, . . . p. We assume
xki = zki. We consider p = 10 or 50, N = 500, and K = 5 or 10.
Simulation results for these scenarios are given in Tables 5 and 4.

We examine three strategies for selecting and estimating the
e#ects of the relevant variables. For the "rst strategy (IND), we
apply a penalized logistic regression model separately in each
study to select relevant variables. For the second strategy (GLM),
we merge samples from all studies, and then apply the penalized
logistic regression to select relevant variables. Finally, we apply
our method (GLMM) to the merged dataset. The BIC is used to
select the optimal tuning parameters for the "rst two methods.
The optimal tuning parameters of our method are obtained via
a grid search based on the ICQ. In all methods, we choose the
MCP penalty. Two metrics assessing variable selection perfor-
mance are presented in Tables 5 and 4. We denote TP as the

true positives, that is, the number of correctly selected variables
with true nonzero e#ects; and FP as the false positives, that
is, the number of incorrectly selected variables with true zero
e#ect.

In the low-dimensional setting of p = 10, our method is most
advantageous when the heterogeneity is high and the variables’
e#ects are moderate (Table 5). In general, strategy two selects
fewer true positives but more false positives compared with our
method. We also "nd that the "rst strategy results in the fewest
true positives with the greatest false positives. Its performance
worsens when σ 2 and K increase. This is due to the smaller
per-study sample size when K increases, as well as the greater
chance to have small simulated e#ects at larger σ 2. Similar to the
previous section, we observe that the "rst two strategies perform
worse than our method in estimation. These results also apply
in the high-dimensional setting of p = 50. In this scenario, the
FPGLMM is slightly higher than FPGLM in certain settings. But
the GLMM has better sensitivity in selecting true positives and
prediction performance.

Overall, we "nd that combining datasets improves the vari-
able selection compared with the study-by-study analysis. We
also "nd that accounting for heterogeneity in our method can
further improve variable selection, reduce bias, and reduce pre-
diction error. In the non-oracle setting where the relevant vari-
ables are unknown, the prediction errors are generally larger
than the ones in the oracle case. This is due to the uncertainty of
variable selection as well as the bias introduced by penalization.

7. Improved Clinical Subtype Prediction in Pancreatic
Cancer via Horizontal Data Integration

Using our described data integration approach, we apply four
methods to the four datasets described in Table 1 to predict the
“basal-like” subtype in new pancreatic cancer patients. We will
show that our method results in better prediction relative to the
other methods in the presence of between-study heterogeneity.

Table 4. Variable selection, estimation and prediction under the non-oracle setting with strong variable e#ects for β∗ = (β∗
0 , β∗

1 , β∗
2 )T = (0, 2, 2)T .

N p K σ 2 β̂GLMM
1 β̂GLMM

2 β̂GLM
1 β̂GLM

2 TPGLMM FPGLMM TPGLM FPGLM TPIND FPIND PEGLMM
med PEGLM

med PEIND
med

500 10 5 1 1.94 1.93 1.48 1.45 2.00 0.07 2.00 0.11 0.40 2.00 0.19 0.25 0.33
2 2.00 2.16 1.08 1.07 1.88 0.08 1.78 0.15 0.34 2.00 0.24 0.35 0.39

10 1 1.90 1.90 1.42 1.36 2.00 0.08 2.00 0.10 0.34 0.80 0.18 0.25 0.39
2 1.83 2.00 0.95 0.94 1.97 0.11 1.80 0.23 0.22 0.90 0.28 0.39 0.44

500 50 5 1 2.19 2.04 1.48 1.53 2.00 0.84 1.58 1.62 0.00 0.00 0.18 0.3 0.37
2 2.13 1.93 1.16 0.87 1.94 2.4 1.45 1.28 0.18 1.8 0.27 0.41 0.42

10 1 2.09 2.16 1.46 1.49 2.00 1.36 1.28 2.84 0.3 0.2 0.16 0.34 0.4
2 2.27 2.32 0.83 0.89 1.97 1.75 1.25 2.71 0.11 1.3 0.23 0.43 0.43

Table 5. Variable selection, estimation and prediction under the non-oracle setting with moderate variable e#ects for β∗ = (β∗
0 , β∗

1 , β∗
2 )T = (0, 1, 1)T .

N p K σ 2 β̂GLMM
1 β̂GLMM

2 β̂GLM
1 β̂GLM

2 TPGLMM FPGLMM TPGLM FPGLM TPIND FPIND PEGLMM
med PEGLM

med PEIND
med

500 10 5 1 0.96 1.05 0.63 0.68 1.80 0.14 1.75 0.34 0.54 1.40 0.39 0.42 0.44
2 1.16 1.33 0.60 0.57 1.44 0.15 1.34 0.27 0.49 1.40 0.45 0.48 0.48

10 1 0.99 0.89 0.67 0.67 1.96 0.14 1.81 0.39 0.16 1.10 0.37 0.42 0.45
2 1.11 1.20 0.39 0.57 1.71 0.13 1.53 0.26 0.11 1.20 0.45 0.47 0.49

500 50 5 1 1.18 1.15 0.45 0.47 1.82 0.57 1.61 0.61 0.2 0.3 0.36 0.44 0.42
2 1.12 1.18 0.55 0.44 1.47 0.91 1.12 0.42 0.23 1.4 0.36 0.43 0.44

10 1 1.18 1.14 0.48 0.48 1.86 0.72 1.38 0.92 0.15 1.3 0.31 0.42 0.42
2 1.23 1.38 0.55 0.53 1.51 1.08 1.23 0.4 0.13 1.3 0.36 0.41 0.43
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To generate the predictors, we "rst use 302 genes that were
deemed to be tumor-speci"c in Mo$tt et al. (2015) and appear
in all four studies. Then, we apply the rank transformation
described in Section 2 in each dataset, enumerating all pos-
sible 45,451 TSPs based on these common genes. To reduce
the dimension, we further screen these TSPs by applying a
univariate random e#ects logistic regression model with respect
to each TSP, assuming a random slope and a random inter-
cept. We sort the TSPs from largest to the smallest by the
marginal likelihood from their corresponding random e#ects
logistic regression model. Then, similar to Afsari et al. (2015),
we keep TSPs with larger marginal likelihood and remove TSPs
sharing one gene with the higher ranked ones. This reduces
potential strong correlation between TSPs sharing same genes

(Supplementary Figure 1). A!er screening, 95 TSPs remain,
of which we select the top 50 ones to be used as covariates
in the regression model. We aim to determine the best subset
of the 50 TSPs for prediction. This results in a total of 250

possible "xed e#ects models and 2100 possible random e#ects
models.

In Figure 2, we represent the top 50 TSPs for each sample
in the four studies. Yellow cells indicate that the "rst gene in
the TSP has higher expression than the second gene and the
red ones indicate otherwise. It is clear that certain TSPs have
variable association with the subtype across studies, that is, low
replicability. Our goal is to select the TSPs that are consistently
associated with the subtype across studies while accounting for
between-study heterogeneity.

Figure 2. The matrix of screened TSPs in all studies. TSPs are labeled in each row as “A_B”, where “A” indicates the name of gene A and “B” indicates the name of gene B in
the TSP. Columns indicate samples. Yellow cells in a column indicate that the expression of gene A is greater than the expression of gene B, and red cells indicate otherwise.
The top track (red, green, cyan, and purple) indicates study membership. The second track indicates patient subtype (blue for basal-like and orange for classical). Values of
TSPs vary signi!cantly across studies, where some segregate strongly between basal and classical subtypes in one study but not in other studies.
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Figure 3. Estimated coe"cients given by the four methods.

We compare four methods. For the "rst method, we apply
the penalized logistic regression model (pGLM) to each dataset.
For the second method, we combine all datasets and run the
penalized logistic regression model (pGLMC). For the third
method, we run the penalized logistic regression model with
random e#ects on the combined data (pGLMMC). Finally, we
run the Meta-Lasso method (Li et al. 2014) on the combined
data. For each subject, we assume the response yki = 1 if
the subject is of the basal-like subtype and 0 otherwise. The
vector xki is the vector of the screened TSPs as shown in Fig-
ure 2. The computational details of the "rst three methods
are the same as described in the simulation study. For the
Meta-Lasso method, the coe$cients pertaining to the same TSP

in multiple studies are treated as a group and the composite
group penalty is imposed on each group as in Li et al. (2014),
to select the key TSPs. The TSPs selected by Meta-Lasso are
de"ned as the ones that have nonzero estimated coe$cients
in at least one study. The optimal tuning parameters in Meta-
Lasso is determined by the BIC method described in Li et al.
(2014).

The selected TSPs by the four methods are shown in
Figure 3. Not surprisingly, for the pGLM, very di#erent TSPs
are selected in di#erent studies. We "nd that TSPs that are
repeatedly selected by the pGLM are also more likely to be
selected by the pGLMC. Our method yields larger estimated
coe$cients than the pGLMC, especially for those TSPs selected
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Figure 4. Estimated coe"cients given by the pGLMC and the pGLMMC. Red circles indicate variables with nonzero random e#ects estimated by the pGLMMC. Larger red
dots indicate larger estimated between-study variance.

by both methods (Figure 4). This mimics "ndings in our
simulation studies that the estimated coe$cients given by the
pGLMC are biased in the presence of heterogeneity. Moreover,
the Meta-Lasso selects very di#erent TSPs resulting in poor
replicability.

Next, we evaluate the subtype prediction performance of
the four methods. For each method, we hold one dataset out
and train the model using the remaining studies. We utilize
this procedure to mimic the process of external validation.
For the pGLM, an ordinary logistic regression model is "tted
to each training study using selected TSPs from Figure 3.
The averages of the three predicted probabilities are assigned
to subjects in the holdout study. Their absolute prediction
errors are then calculated and aggregated from each holdout
study. Predictions given by the Meta-Lasso are done similarly
using variables selected by itself. For the pGLMC and the
pGLMMC, a single logistic model is "tted by combining
three training datasets and using their own selected TSPs.

The predicted probabilities are then given by such combined
models.

Figure 5 shows the prediction errors given by the four meth-
ods in each study. From its top le! panel, we see that the
overall performance of the pGLM and the Meta-Lasso is much
worse than the pGLMC and the pGLMMC. These observa-
tions re%ect the low replicability of predictions from the pGLM
and the Meta-Lasso, as the pGLM does not borrow strength
across datasets and the Meta-Lasso is a method mainly focused
on variable selection. Similar to our simulation studies, our
proposed pGLMMC method still performs well, despite the
variation of its prediction errors on the TCGA Bladder Can-
cer dataset is larger than that of the pGLMC. Its median pre-
diction error however is still the best in this study. In addi-
tion, as shown in Figure 6, our method is more con"dent than
other methods for classi"cation as most predicted probabilities
are either <10% for >90%. In all, combining datasets signif-
icantly improves the prediction accuracy. By taking hetero-
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Figure 5. Prediction errors of the holdout studies given by the four methods.

geneity into account, our method performs the best out of all
competitors.

In the supplementary materials, we provide an alternative
screening approach that renders more TSPs and repeat our
analysis therein. Our method’s prediction performance is still
much better than the pGLM and the Meta-Lasso, albeit it is
only slightly better than the pGLMC (Supplementary Figure 6).
This is because the between-study heterogeneity given by the
new screening approach is much smaller than the one shown in
this section. Lastly, we also train our method on the microarray
data only and predict on the RNA-seq data, and vice versa. The
prediction performance does not change dramatically (Supple-
mentary Figure 8).

8. Discussion

In this article, we introduce a novel approach accounting for
between-study heterogeneity in gene signature selection and
clinical prediction. We demonstrate through simulations that
approaches ignoring existing between-study heterogeneity have
lower prediction accuracy, higher bias, and worse variable selec-
tion performance than our method. The common approach of
study-by-study analysis shows the worst performance compared
with the integrative approaches. Lastly, we show in a case study
of pancreatic cancer that our method increases prediction accu-
racy and replicability, where the data integration is facilitated
via a rank-based transformation of the original gene expression
data.
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Figure 6. Predicted probabilities of the basal-like subtype given by the four methods.

These results have some important impact. It is o!en
observed that gene signatures derived from individual studies
demonstrate low replicability, even when they pertain to similar
clinical outcomes. Our simulation results clearly demonstrate
that this is partially due to the heterogeneity among di#erent
studies as small sample sizes in individual studies. We have
also shown that as the sample sizes of individual studies
decreases, the selection sensitivity and prediction performance
also deteriorate. Selection sensitivity also decreases when the
between-study heterogeneity of a gene’s e#ect increases. On the
other hand, combining data from multiple studies improves
variable selection and prediction performance by borrowing
strength across studies. However, without taking between-study
heterogeneity into account, the naive combination still performs
worse than our proposed method. In the absence of between-
study heterogeneity, the random e#ects model reduces to the
"xed e#ects model, and therefore we would expect similar
performance. This can be observed in the additional results
in the supplementary materials. Our simulation and case study
results clearly show how the e#ects of the same variable may vary
signi"cantly between studies, and how this variability impacts
prediction. This explains the lack of replicability observed
among published gene signatures.

Finally, we would like to comment that the TSP transfor-
mation is one possible way to enable data integration, and that
the choice of the transformation is tangential to the penalized
GLMM model that we have proposed. In addition, the inte-

gration of data from multiple platforms should be taken with
care, particularly when merging microarray data with data from
other platforms. Finally, our model aims to select TSPs instead
of individual genes. The success of the TSP transformation relies
on the assumption that the raw gene expression has overlapping
ranges. Therefore, as pointed out by one reviewer, it could
be possible that some genes that are di#erentially expressed
between subtypes will not be selected by our method.

Supplementary Materials

The online supplementary materials contain details on the alternative TSP
screening procedure described in Section 7, supplementary "gures pertain-
ing to Section 7, and additional proofs pertaining to Section 5. R and Rcpp
Code is also provided to perform the simulations and real data analysis.
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