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S1 TSP construction and screening

We provide a new comprehensive workflow of TSP construction and screening. Because

the number of gene pairs grows fast with the number of genes, it is preferable to filter

genes prior to gene pair construction. Inspired by Afsari et al. (2015), we focus on genes

differentially expressed (DE) between subtypes. We first utilize the Wilcoxon Rank Sum

Test to determine whether a gene is differentially expressed in one study. To avoid the

uncertainty of whether between-sample normalization procedure is performed, we rank

transform columns of the expression data matrix before carrying out the Wilcoxon Rank

Sum Test gene by gene. Then we sum up the negative logarithm of the p-values from the

four studies and keep 75% genes with the smallest overall p-values.

After applying this approach, the percentage of genes that significantly differentially

expressed with Benjamini-Hochberg adjusted p-values less than 0.05, varies between 65%–

80% (Figure 2, left panel). Approximately 33% of genes are differentially expressed across

all four datasets and 20% of genes are differentially expressed in the same direction across

all datasets. We also see clear cases where genes are consistently differentially expressed,

but in different directions, where the overall p-values do not correlate with the absolute

values of the sum of such genes’ ranked expression between subtypes (Figure 2, right panel,

red points). We keep these genes to avoid introducing bias into the candidate gene lists.

Then, we enumerate all possible gene pairs from this reduced gene list. A small percent

of these pairs has one gene express higher or lower than the other in all samples, resulting

TSPs that are always 0 or 1 (Figure 3). To avoid collinearity with the intercept term in

our model, we filter out these TSPs. We also remove TSPs with values equal to 0 or 1 in

less than 10% samples in at least one study.

Next, we rank the TSPs by their likelihood in a marginal GLMM, assuming a study-

level random slope and a random intercept. Our original approach removes lower ranked

TSPs that share one same gene with higher ranked TSPs. Here we relax to only remove

lower ranked TSPs if their absolute correlation coefficients with any higher ranked ones

sharing one same gene is greater than 0.25.

Finally, we comment that users may set their own thresholds to cut the p-values and

the correlation coefficients among TSPs. In our numerical work, we find that the prediction
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Figure 1: Correlation coefficients of the top 50 gene pairs rendered by the original screening.
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Figure 2: The Wilcoxon Rank Sum Test for testing differentially expressed genes. The left panel

gives the boxplot of − log10(p-values) for testing differential expression for every gene in each

study. The right panel shows whether a gene is differentially expressed in the same direction in

different studies. The absolute differences of a gene’s expression rank in the two subtypes are

summed across studies and plotted against its sum of − log10(p-value) from all studies. Red dots

represent genes that are differentially expressed in different directions across studies.
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Figure 3: Percentages of gene pairs that have gene 1 express higher than gene 2 in the two

subtypes. Red lines are boundaries where the resulting TSPs equal to 0 or 1 in less than

10% samples, beyond which the TSPs are filtered out.
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Figure 4: Correlation coefficients of the top 50 gene pairs rendered by the new screening.
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error of our method is not very sensitive to such thresholds. A summary of the proposed

screening steps is given as follows.

1. Take top 75% DE genes from the original gene list by their overall p-values across

studies.

2. Enumerate all gene pairs to generate TSPs, remove those that equal to 0 or 1 in less

than 10% samples in at least one study.

3. Rank TSPs by their likelihood in a marginal GLMM.

4. Remove lower ranked TSPs that are have absolute correlation coefficients > 0.25 with

higher ranked TSPs sharing one same gene.

In contrast to this, our previous screening approach is equivalent to setting the correla-

tion threshold to equal to 0 in Item 4 above, effectively removing all lower gene pairs that

have genes appearing in high ranked TSPs. We also did not apply Item 1 in our previous

screening approach, instead filtering out TSPs with TSP score (as defined by the tspair

package) less than than 0.4.

S2 Additional analysis results of the PDAC data

The new screening approach in the prior section yields 107 TSPs, based on which we repeat

the same analysis as in the main manuscript. The results are summarized in Figures 5–7.

We find that our pGLMMC method still has small prediction errors (PE), albeit only a

slight improvement in terms of median overall PE compared to the pGLMC. Compared to

the results in the main manuscript, the prediction errors remain at similar levels for the

pGLMMC. Under the new screening, the pGLMMC selects fewer number of predictors to

have non-zero variance across datasets. As a result, the improvement of the pGLMMC

over the pGLMC is not as pronounced as shown in the main manuscript. The pGLM and

the Meta-Lasso remain to have large prediction errors.

Using the TSPs from the new screening, we also perform a holdout prediction study

across platforms. More specifically, we combine microarray data (studies 1 and 4), apply

7



the pGLMMC to fit a model, use the resulting model to predict subtypes from RNA-seq

platforms (studies 2 and 3), and vice versa. The boxplots of absolute prediction errors are

given in Figure 8. It is seen that the prediction errors are similar to the original holdout

study, which suggests that platform may not severely impact our method’s prediction

performance.
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Figure 5: Estimated coefficients given by the four methods.
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Figure 6: Prediction errors of the holdout studies given by the four methods.
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Figure 7: Estimated coefficients given by the pGLMC and the pGLMMC. Red circles

indicate variables with non-zero random effects estimated by the pGLMMC. Larger red

dots indicate larger estimated between-study variance.
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Figure 8: Prediction errors by the pGLMMC trained on a different platform. Red denotes

RNA-seq data and purple denotes microarray data.
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S3 Proofs

We need the following conditions to establish the theoretical properties in Section 5.

(C1) b(ϑ) is twice continuously differentiable.

(C2) For all 1 ≤ k ≤ K and 1 ≤ i ≤ n, there exists a constantM such that max1≤j≤p |xki,j| ≤

M .

(C3) sncn = o(1).

(C4) sn = o(nδ), bn � n−δ, s
3/2
n bn = o(n1/2−δ), and log dn = o(n).

(C5) ‖{E[∇2
θS
`(θ∗)]}−1‖∞ = O(1).

(C6) ‖{E[∇θScθS
`(θ∗)]}

{
E[∇2

θS
`(θ∗)]

}−1‖∞ < min{ρ
′(0+)
ρ′(bn)

, Lnξ} for some L > 0 and 0 <

ξ < 1/2.

(C7) supθ∈N max1≤j≤sn‖∇2
θS
{E[∇θ`(θ)]}j‖2 = O(1).

(C8) ρ(t) is increasing and concave in t ∈ [0,∞) and has a continuous derivative ρ′(t) with

ρ′(0+) > 0.

Conditions (C1) and (C2) are standard conditions for the GLMM. Conditions (C3) and

(C4) are sparsity conditions on sn and conditions required for the minimal signal of bn.

These conditions require sn � n and bn to be bounded away from 0. Conditions (C5)-(C7)

are common conditions for establishing variable selection consistency (Fan and Lv, 2011).

Due to the usage of the folded-concave penalty, the upper bound in (C6) is allowed to

grow at an order of nξ for 0 < ξ < 1/2. Condition (C8) defines the class of folded-concave

penalty functions.

To prove Theorem 1, we first provide a maximal inequality for the gradient ∇θj`(θ)

when θ varies in the neighborhood N .

Lemma 1. Under conditions (C1)–(C3), it holds that

P

(∣∣∣∣sup
θ∈N

{
∇θj`(θ)− E

[
∇θj`(θ)

]}∣∣∣∣ > C1s
3/2
n bn/n

1/2 + C2t

)
≤ K exp(−C3nt

2),

where C1, C2 and C3 are some universal positive constants.

Proof of Lemma 1. Let `k(θ) be the log-likelihood of the k-th dataset (after removing

constants that do not depend on θ), which is given by

`k(θ) =
1

n

n∑
i=1

log

∫
Rqn

exp{ykiϑki − b(ϑki)}φ(αk)dαk.

13



Define

U1kj(θ) = ∇βj`k(θ) =

∫
Rqn{yki − b′(ϑki)} exp{ykiϑki − b(ϑki)}xki,jφ(αk)dαk∫

Rqn exp{ykiϑki − b(ϑki)}φ(αk)dαk

(S.1)

U2kj(θ) = ∇γtj
`k(θ) =

∫
Rqn{yki − b′(ϑki)} exp{ykiϑki − b(ϑki)}zTkimat(Jqn,tj)αkφ(αk)dαk∫

Rqn exp{ykiϑki − b(ϑki)}φ(αk)dαk

,

(S.2)

where Jqn,tj is the tj-th column of Jqn , and mat(·) is an operator that transforms the vector

into a qn × qn matrix. Observe that only one element in mat(Jqn,tj) is one and all others

are zero. Let

S1kj(θ) =
1

n

n∑
i=1

U1kj(θ), s1kj(θ) = E[U1kj(θ)];

S2kj(θ) =
1

n

n∑
i=1

U2kj(θ), s2kj(θ) = E[U2kj(θ)].

First, we show that, for any 1 ≤ k ≤ K, 1 ≤ j ≤ pn, there exist positive constants C1, C2,

C3 such that

P

(
sup
θ∈N
|S1kj(θ)− s1kj(θ)| ≥ C1s

3/2
n bn/n

1/2 + C2t

)
≤ exp(−C3nt

2); (S.3)

P

(
sup
θ∈N
|S2kj(θ)− s2kj(θ)| ≥ C1s

3/2
n bn/n

1/2 + C2t

)
≤ exp(−C3nt

2). (S.4)

To prove (S.3), we define the class of functions F = {U1kj(θ) : θ ∈ N}. We first

calculate the bracketing entropy of F . For any θ1 = (β1,γ1)
T ∈ N and θ2 = (β2,γ2)

T ∈

N , define ϑk1 = xTkβ1 + (αk ⊗ zk)
TJqnγ1 and ϑk2 = xTkβ2 + (αk ⊗ zk)

TJqnγ2. We have

|U1kj(θ1)− U1kj(θ2)| = |U ′1kj(θ̃)||ϑk1 − ϑk2|
(i)

. |xTk (β1 − β2) + (αk ⊗ zk)
TJqn(γ1 − γ2)|

≤ s1n‖β1 − β2‖∞ + s2n‖γ1 − γ2‖∞

≤ sn‖θ1 − θ2‖∞,

where θ̃ is a vector lying on the line segment connecting θ1 and θ2. In (i), the smoothness

condition (C1) implies that U ′1kj(θ) is continuous. Hence, supθ∈N |U ′1kj(θ)| is bounded by a

constant M . Therefore, the bracketing entropy of F is at most of the order sn log(Msnbn/ε)

14



(see Example 19.7 of Van der Vaart (2000)). Then, for the entropy integral, we have∫ 1

0

√
sn log(Msnbn/ε)dε . s3/2n bn.

Next, for the purposes of applying the maximal inequality, we show that for any 1 ≤ k ≤ K,

1 ≤ j ≤ pn and θ ∈ N , there exists uniform positive constants σ and c such that, for all

integers l ≥ 2,

E|U1kj(θ)|l ≤ l!

2
σ2cl−2 and E|U2kj(θ)|l ≤ l!

2
σ2cl−2.

In other words, the gradients U1kj(θ) and U2kj(θ) have exponential tails. Note that

U1kj(θ) = I1(θ) + I2(θ), where

I1(θ) =

∫
Rqn{yki − b′(ϑ∗ki)} exp{ykiϑki − b(ϑki)}xki,jφ(αk)dαk∫

Rqn exp{ykiϑki − b(ϑki)}φ(αk)dαk

,

I2(θ) =

∫
Rqn{b′(ϑ∗ki)− b′(ϑki)} exp{ykiϑki − b(ϑki)}xki,jφ(αk)dαk∫

Rqn exp{ykiϑki − b(ϑki)}φ(αk)dαk

.

Since the distribution of yki belongs to the exponential family, there exists positive constants

σ0 and c0 such that E|yki|l ≤ l!σ2
0c
l−2
0 /2. By conditions (C1) and (C2), xki,j and b′(ϑ∗ki) are

bounded. Using Hölder’s inequality, we have E|I1(θ)|l ≤ l!σ2
1c
l−2
1 /2 for some constants σ1

and c1. On the other hand,

|I2(θ)|l . {sup
θ∈N
|b′(ϑ∗ki)− b′(ϑki)|}l . {sup

θ∈N
|ϑ∗ki − ϑki|}l

. {sup
θ∈N
|xTki(β∗ − β) + (zki ⊗αki)

TJqn(γ∗ − γ)|}l

. sn sup
θ∈N
‖θ − θ∗‖∞ = O(sncn) = o(1),

Therefore, there exists positive constants σ and c such that E|U1kj(θ)|l ≤ (l!/2)σ2cl−2. A

similar result can be shown for U2kj(θ).

Applying the maximal inequality (Massart, 2007), for any x > 0, there exists constants

A1 and A2 such that

P

(
sup
θ∈N
|S1kj(θ)− s1kj(θ)| ≥ C1s

3/2
n bn/n

1/2 + A1

√
x/n+ A2x/n

)
≤ exp(−x).

Let t =
√
x/n. Then, for any t ≤ A1A

−1
2 , A1

√
x/n ≥ A2x/n. Hence, A1

√
x/n+A2x/n ≤

C2

√
x/n, where C2 = 2A1. Therefore,

P

(
sup
θ∈N
|S1kj(θ)− s1kj(θ)| ≥ C1s

3/2
n bn/n

1/2 + C2t

)
≤ exp(−C3nt

2).
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This completes the proof of (S.3).

Finally, notice that the gradient of `(θ) is given by

∇βj`(θ) =
K∑
k=1

S1kj(θ) and ∇γtj
`(θ) =

K∑
k=1

S2kj(θ).

Then, it follows from (S.3), (S.4) and the union bound that the result holds.

Proof of Theorem 1. By Karush–Kuhn–Tucker conditions, any vector θ̂ satisfying (S.5)-

(S.9) is a solution to 4, and

∇βj`(θ̂) = λ1ρ
′(|β̂j|)sgn(β̂j), for β̂j 6= 0; (S.5)

∇γt
`(θ̂) = λ2ρ

′(‖γ̂t‖2)
γ̂t
‖γ̂t‖2

, for γ̂t 6= 0; (S.6)∣∣∣∣[∇βj`(θ̂)
]
β̂j=0

∣∣∣∣ < λ1ρ
′(0+), for β̂j = 0; (S.7)

‖
[
∇γt

`(θ̂)
]
γ̂t=0
‖2 < λ2ρ

′(0+), for γ̂t = 0; (S.8)

λmin

(
∇2

θS
`(θ̂)

)
> (λ1 + λ2)κ(ρ,u), (S.9)

where the sign function is defined as sgn(x) = 1 for x > 0 and sgn(x) = −1 for x < 0.

Let η = ∇θ`(θ)− E[∇θ`(θ)] and A = A1 ∩ A2, where

A1 =

{∥∥∥∥sup
θ∈N

ηS

∥∥∥∥
∞
≤ C1s

3/2
n bn/

√
n+D

√
(log dn)/n

}
,

A2 =

{∥∥∥∥sup
θ∈N

ηSc

∥∥∥∥
∞
≤ C1s

3/2
n bn/

√
n+D

√
(log dn)/n

}
,

for a sufficiently large constant D. Lemma 1 together with the union bound imply that

P (A2 ∩ A2) ≥ 1− P (Ac1)− P (Ac2) ≥ 1− {Ksnn−C +K(dn − sn)d−Cn }. (S.10)

For the event A1 ∩ A2, we show that the following two results hold. They together with

(S.10) complete the proof.

[1] Within the hypercube C = {θS : ‖θS − θ∗S‖∞ ≤ cn−δ}, where c is a positive constant,

there exists a vector θ̂S satisfying (S.5), (S.6), and (S.9).

[2] The vector θ̂ = (θ̂S,0)T also satisfies (S.7) and (S.8).

To show statement [1], denote the sn × 1 vector

τ S =

(
λ1Kρ

′(|βj|)sgn(βj), λ2Kρ
′(‖γt‖2)

γt
‖γt‖2

)T
for j ∈ S1 and t ∈ S2.
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Since E[∇θ`(θ
∗)] = 0, by a Taylor’s series expansion, we have

∇θS
`(θ) = E[∇θS

`(θ)]− E[∇θS
`(θ∗)] + ηS = E[∇2

θS
`(θ∗)](θS − θ∗S) + rS + ηS,

where rS is an sn×1 vector such that its j-th element equals to (θS−θ∗S)T∇2
θS
{E[∇θS

`(θ̄)]}j
(θS−θ∗S), and θ̄ is a vector lying on the line segment joining θ and θ∗. By condition (C7),

‖rS‖∞ = O(‖θS − θ∗S‖2) = O(snn
−2δ). (S.11)

Since bn � n−δ, for any θS ∈ C, we have for its j-th element that

min
1≤j≤sn

|θS,j| ≥ min
1≤j≤sn

|θ∗S,j| − bn ≥ bn.

By condition (C8), ρ′(t) is a decreasing function for t ∈ [0,∞). Hence, ρ′(|θS,j|) ≤ ρ′(bn).

Therefore,

λ1ρ
′(|β̂j|)|sgn(β̂j)| ≤ λ1ρ

′(bn), for all j ∈ S1,

λ2ρ
′(‖γ̂t‖2)‖γ̂t‖−12 ‖γ̂t‖∞ ≤ λ2ρ

′(bn), for all t ∈ S2.

Hence,

‖τ S‖∞ = O(λunρ
′(bn)). (S.12)

Then, by condition (C5), (S.11), (S.12) and the stated choice of λ1 and λ2, we have

‖{E[∇2
θS
`(θ∗)]}−1(rS + ηS + τ S)‖∞ ≤ ‖{E[∇2

θS
`(θ∗)]}−1‖∞(‖rS‖∞ + ‖ηS‖∞ + ‖τ S‖∞)

= O(snn
−2δ + s3/2n bn/

√
n+

√
(log dn)/n+ 2λunρ

′(bn))

= o(n−δ).

Define f(θS) = E[∇2
θS
`(θ∗)](θS−θ∗S)+rS+ηS−τ S and g(θS) = {E[∇2

θS
`(θ∗)]}−1f(θS).

For sufficiently large n, if |θj − θ∗j | = n−δ,

{g(θS)}j ≥ n−δ − ‖{E[∇2
θS
`(θ)]}−1(rS + ηS + τ S)‖∞ > 0.

If |θj − θ∗j | = −n−δ, {g(θ)}j ≤ −n−δ + ‖{E[∇2
θS
`(θ)]}−1(rS + ηS + τ S)‖∞ < 0. Since the

function g(θ) is continuous in N , an application of Miranda’s existence theorem (Vrahatis,

1989) implies that the equation g(θ) = 0 has a solution θ̂ in C. Hence, θ̂ also solves
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f(θ) = 0 and further solves (S.5) and (S.6). Finally, by the stated choices of λ1 and λ2,

(S.9) also holds for θ̂S. This completes the proof of statement [1].

To show statement [2], by a Taylor’s series expansion, we have

∇θSc `(θ̂) = E[∇θSc `(θ̂)]− E[∇θSc `(θ
∗)] + ηSc

= E[∇θScθS
`(θ∗)](θ̂S − θ∗S) + ηSc + rSc

= E[∇θScθS
`(θ∗)]

{
E[∇2

θS
`(θ∗)]

}−1
(ηS + rS − τ S) + ηSc + rSc ,

where rSc is a (dn − sn)× 1 vector such that its j-th element equals to

(θS − θ∗S)T∇2
θS
{E[∇θSc `(θ̃)]}j(θS − θ∗S),

and θ̃ is a vector lying on the line segment joining θ̂ and θ∗. Then,

‖∇θSc `(θ̂)‖∞ ≤ ‖E[∇θScθS
`(θ∗)]

{
E[∇2

θS
`(θ∗)]

}−1‖∞(‖ηS‖∞ + ‖rS‖∞ + ‖τ S‖∞)

+ ‖ηSc‖∞ + ‖rSc‖∞.
(S.13)

Similarly as (S.11), we have ‖rSc‖∞ = O(snn
−2δ). By (S.11), (S.12), condition (C6) and

the stated choice of λ1 and λ2, we have

λ−1ln ‖E[∇θScθS
`(θ∗)]

{
E[∇2

θS
`(θ∗)]

}−1‖∞(‖ηS‖∞ + ‖rS‖∞) + λ−1ln ‖ηSc‖∞ + λ−1ln ‖rSc‖∞

= o(λ−1ln n
ξ{s3/2n bn/

√
n+

√
(log n)/n+ snn

−2δ}) +O(λ−1ln n
ξ{s3/2n bn/

√
n+

√
(log dn)/n})

+O(λ−1ln snn
−2δ)

= o(1).

The dominating term in (S.13) has

λ−11 ‖E[∇2
θSc `(θ

∗)]
{

E[∇2
θS
`(θ∗)]

}−1‖∞‖τ S‖∞ < λ−11

ρ′(0+)

ρ′(bn)
λ1ρ

′(bn) < ρ′(0+),

Therefore (S.7) holds. By a similar argument, we can also prove (S.8). This completes the

proof of statement [2].
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