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ABSTRACT
Multimodal data, where di!erent types of data are collected from the same subjects, are fast emerging in a
large variety of scienti"c applications. Factor analysis is commonly used in integrative analysis of multimodal
data, and is particularly useful to overcome the curse of high dimensionality and high correlations. However,
there is little work on statistical inference for factor analysis-based supervised modeling of multimodal
data. In this article, we consider an integrative linear regression model that is built upon the latent factors
extracted from multimodal data. We address three important questions: how to infer the signi"cance of one
data modality given the other modalities in the model; how to infer the signi"cance of a combination of
variables from one modality or across di!erent modalities; and how to quantify the contribution, measured
by the goodness of "t, of one data modality given the others. When answering each question, we explicitly
characterize both the bene"t and the extra cost of factor analysis. Those questions, to our knowledge,
have not yet been addressed despite wide use of factor analysis in integrative multimodal analysis, and
our proposal bridges an important gap. We study the empirical performance of our methods through
simulations, and further illustrate with a multimodal neuroimaging analysis.
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1. Introduction

Thanks to rapid technological advances, multiple types of data
are now frequently collected for a common set of experimental
subjects. Such a new data structure, o!en referred as multi-view,
multi-source or multimodal data, is fast emerging in a wide
range of scienti"c "elds. Examples include multi-omics data
in genomics, multimodal neuroimaging data in neuroscience,
multimodal electronic health records data in health care admin-
istration, among others. Numerous empirical studies have found
that, by combining diverse but usually complementary infor-
mation from di#erent types of data, an integrative analysis of
multimodal data is o!en bene"cial; see Uludag and Roebroeck
(2014), Li, Wu, and Ngom (2016), Richardson, Tseng, and Sun
(2016) for reviews and the references therein.

In view of the promise of multimodal data, a number of
statistical methods have recently been developed for integrative
analysis. An important class of such solutions is matrix or ten-
sor factorization, which decomposes multimodal data into the
components that capture joint variations shared across modal-
ities, and the components that characterize modality-speci"c
variations (Lock et al. 2013; Yang and Michailidis 2015; Li and
Jung 2017; Lock and Li 2018; Gaynanova and Li 2019). Another
class is canonical correlation analysis, which seeks maximum
correlations between di#erent data modalities through decom-
position of the between-modality dependency structure (Li
and Gaynanova 2018; Shu, Wang, and Zhu 2020). However,
all these methods are unsupervised, in the sense that there
is not a response variable involved. Li, Liu, and Chen (2018)
recently proposed an integrative reduced-rank regression to
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model multivariate responses given multi-view data as predic-
tors. Xue and Qu (2020) developed an estimating equations
approach to accommodate block missing patterns in multi-
modal data. Their methods are supervised, but both focused
on parameter estimation and variable selection instead of
statistical inference.

It is of ubiquitous interest to study the predictive associations
between responses and multimodal predictors. However, there
are some unique characteristics of multimodal data that make
the problem challenging. First, multimodal data are o!en high-
dimensional. In plenty of applications, even a single modality
contains more variables than the sample size. Second, some
variables in multimodal data can be highly correlated. This
can happen for the variables within a single modality, or for
the related variables across multiple modalities as they o!en
measure-related features of the same subject. This phenomenon
has been constantly observed, and is actually the base upon
which those matrix or tensor factorization solutions are built
(Lock et al. 2013). Such high correlations pose challenges when
directly applying many standard high-dimensional methods,
such as LASSO (Tibshirani 1996), to multimodal data, as they
usually require the predictors not to be highly correlated in
order to achieve some desired statistical properties, for example,
the variable selection consistency. Finally, multimodal data pose
new questions; for instance, how to quantify the contribution
and statistical signi"cance of one data modality conditioning on
the other data modalities in the regression model.

Factor analysis is a well-known approach to both reduce
high dimensionality and high correlations among the variables.

© 2021 American Statistical Association



2208 Q. LI AND L. LI

For data with a single modality, Fan, Liao, and Mincheva
(2013) employed a factor model to estimate a non-sparse covari-
ance matrix. Kneip and Sarda (2011) proposed to include
the latent factors as additional explanatory variables in a
high-dimensional linear regression, and established the model
selection consistency. Fan, Ke, and Wang (2016) proposed a
factor-adjusted model selection method for a general high-
dimensional M-estimation problem. They separated the latent
factors from the idiosyncratic components to reduce correla-
tions among the covariates, and showed that their method can
reach the variable selection consistency under milder condi-
tions than standard selection methods. Li et al. (2018) studied
estimation of a covariance matrix of variables. They showed
that leveraging on additional auxiliary variables can improve
the estimation, when the auxiliary variables share some com-
mon latent factors with the variables of interest. For data with
multiple modalities, Shen, Wang, and Mo (2013) proposed
an integrative clustering method based on identifying com-
mon latent factors from multi-omics data. Zhang, Tang, and
Qu (2020) developed an imputed factor regression model for
dimension reduction and prediction of multimodal data with
missing blocks. Despite these e#orts, however, there is little work
on statistical inference for supervised modeling of multimodal
data. Moreover, there is no explicit quanti"cation of the bene"t
of factor analysis in a multimodal regression setting, and many
important inference-related questions remain unanswered.

In this article, we aim to bridge this gap. We consider an
integrative linear regression model built upon the latent fac-
tors extracted from multimodal data. We show that this model
alleviates high dimensionality and high correlations of multi-
modal data. Based on this model, we address three important
questions: how to infer the signi"cance of one data modal-
ity given the other modalities in the model; how to infer the
signi"cance of a combination of variables from one or more
modalities; and how to quantify the contribution, measured
by the goodness-of-"t, of one data modality given the oth-
ers. When answering each question, we explicitly characterize
both the bene"t and the extra cost of factor analysis. First, by
resorting to a relatively small number of latent factors, it e#ec-
tively reduces the dimensionality and turns a high-dimensional
test to a low-dimensional one when testing the signi"cance
of a whole modality. As a result, it enables us to derive a
closed form for the limiting distribution of the test statistic;
see Theorem 1. Second, our method can consistently estimate
the support and nonzero components of the covariate coe$-
cients in the regression model. More importantly, by using the
decorrelated idiosyncratic components from factor analysis as
the pseudo predictors, instead of the original highly correlated
covariates, it requires much weaker conditions to reach the
variable selection and estimation consistency; see Theorem 3.
In addition, we show that, when there are enough variables in
each modality so that the latent factors can be well estimated,
the resulting estimation error can reach the minimax optimal
rate, and under weaker conditions. Third, such an improvement
in selection and estimation in turn bene"ts the inference of the
signi"cance of a linear combination of predictors, by requiring
less stringent conditions to establish the limiting distribution of
the test statistic; see Theorem 4. Finally, by leveraging on the
latent factors shared across modalities, it enables us to obtain a

closed-form measure of the variance of the response explained
by one modality in addition to the others. Such a measure
facilitates the quanti"cation of the contribution of an individual
modality.

Our proposal contributes on several fronts. Even though
factor analysis has been widely used in multimodal data analysis,
there has been no formal test developed to explicitly quantify
the contribution and signi"cance of an individual modality or a
related set of variables across di#erent modalities. Our proposal
provides the "rst inferential tools to address those important
questions. Moreover, our work is built on careful examination
of the bene"t and tradeo# of factor analysis in regression.
Compared to the existing literature, the proof techniques are
much more involved than those of the standard setting when the
design matrix is observed and "xed with a single data modality.
The technical tools we develop here are not limited to our setting
alone, but are applicable to general supervised high-dimensional
factor models. We also remark that, although we focus on a
linear factor regression model, most of the inference-related
results we obtain can be extended to more general M-estimation
problems such as a generalized linear model.

We employ the following notation throughout this article.
For a vector a ∈ Rd, let ‖a‖∞ = maxj |aj|, ‖a‖1 =
∑d

j=1 |aj|, ‖a‖2 = (
∑d

j=1 a2
j )

1/2 denote its sup-norm, L1-norm
and Euclidean norm, respectively. For an index set S, let aS
denote the subvector of a with indices in S. In particular, let
the subscript m denote the index set of the mth modality, and
the subscript −m denote the index set of all other modalities.
Let a⊗2 = aa′ denote its outer product. Let supp(a) = {j :
aj '= 0} denote the support of a. For a square matrix A =
(aij) ∈ Rd×d, let λmin(A) and λmax(A) denote its minimum
and maximum eigenvalues. Let ‖A‖∞ = supij |aij|, ‖A‖1 =
max1≤j≤d

∑d
i=1 |aij|, ‖A‖2 = λmax(A), ‖A‖F = (

∑
i,j a2

ij)
1/2

denote its element-wise sup-norm, L1-norm, L2-norm, and
Frobenious norm, respectively. Let AS denote the submatrix of
A with row and column indices in S. For a rectangular matrix
B = (bij) ∈ Rm×n, let ‖B‖L∞ = max1≤i≤m

∑n
j=1 |bij|. For

two sequences an and bn, write an = o(bn) if an/bn → 0, and
an + bn if bn/an → 0. For an integer M, let [M] = {1, . . . , M}.
For a set S, let |S| denote the number of elements in S.

The rest of the article is organized as follows. We introduce
the integrative factor regression model in Section 2, and describe
the parameter estimation in Section 3. These results are mostly
built upon the existing literature on factor analysis. Then we
address the three questions, which to our knowledge have not
been answered before. That is, we develop a test to evaluate the
signi"cance of an individual modality given the other modalities
in Section 4, develop a test for a linear combination of predictors
in Section 5, and derive a measure to quantify the contribution
of an individual modality in Section 6. We present the simula-
tions and a multimodal neuroimaging data example in Section 7.
We relegate all technical proofs and some additional lemmas to
the supplementary materials.

2. Integrative Factor Regression Model

Suppose there are M modalities of variables. Let xm ∈
Rpm denote the vector of pm random variables from the
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mth modality, and y denote the response variable. Let x =
(x′

1, . . . , x′
M)′ ∈ Rp, and p = ∑M

m=1 pm. We assume xm is driven
by some latent factors in that xm can be decomposed as

xm = !mf m + um, (1)

where f m ∈ RKm is the vector of Km random latent factors,
um ∈ Rpm is the vector of random idiosyncratic errors of
variables in the mth modality that are uncorrelated with f m, and
!m ∈ Rpm×Km is the loading matrix of xm on the latent factors
f m. To avoid the identi"ability issue on !m and f m, we adopt the
usual assumption in the factor analysis literature by assuming
that

var(f m) = IKm , and
!′

m!m = Dm ∈ RKm×Km is a diagonal matrix.

We also assume that f = (f ′
1, . . . , f ′

M)′ ∈ RK is uncorrelated
with u = (u′

1, . . . , u′
M)′ ∈ Rp, where K = ∑M

m=1 Km. Let
! = diag(!1, . . . , !M) ∈ Rp×K be the block diagonal matrix
of the loading matrices from all modalities, and "u = var(u) be
the covariance matrix of the idiosyncratic errors. In the factor
analysis literature, for example, Fan, Liao, and Mincheva (2013),
it is o!en assumed that "u is sparse, that is, a!er removing
the variations contributed by the latent factors, the correlations
among the idiosyncratic components are weak. Therefore, the
idiosyncratic u can be viewed as a decorrelated version of the
original variables x.

We next employ a linear model to connect xm with y, in that,

y =
M∑

m=1
x′

mβ∗
m + ε, (2)

where β∗
m ∈ Rpm is the true e#ect of xm on the response y, and

ε is an error uncorrelated of the covariates, with E(ε) = 0 and
var(ε) = σ 2

ε .
Suppose we have n iid realizations of the data, Y =

(y1, . . . , yn)′ ∈ Rn, Xm = (x1,m, . . . , xn,m)′ ∈ Rn×pm , X =
(X1, . . . , XM) ∈ Rn×p, β∗ = (β∗

1
′, . . . , β∗

M
′)′ ∈ Rp, and

ε = (ε1, . . . , εn)′ ∈ Rn. Then model (2) can be written as

Y =
M∑

m=1
Xmβ∗

m + ε = Xβ∗ + ε.

By the factor model (1), we have Xm = Fm!′
m + Um, where

Fm = (f 1,m, . . . , f n,m)′ ∈ Rn×Km is the matrix of the Km factors
in the mth modality pertaining to the n subjects, and Um =
(u1,m, . . . , un,m)′ ∈ Rn×pm is the matrix of idiosyncratic errors.
Then, we have,

Y = Fγ ∗ + Uβ∗ + ε, (3)

where F = (F1, . . . , FM) ∈ Rn×K , γ ∗ =
(β∗

1
′!1, . . . , β∗

M
′!M)′ ∈ RK , and U = (U1, . . . , UM) ∈ Rn×p.

We call model (3) an integrative factor regression model. In
the remainder of this article, we aim to show that model (3)
can bene"t estimation, selection and inference about β∗. The
intuition is that, a!er the latent factors F are separated, the
idiosyncratic error U can be treated as the pseudo predictors.
Such a decorrelation eases selection of β∗, which in turn bene"ts
the inference on β∗. In addition, the factor decomposition also

serves as a dimension reduction tool, which enables us to
derive some closed-form results in inference. We remark that,
in model (3), the coe$cient β∗ associated with U is the same
as that associated with the original predictor X. It is the main
object of interest in our inference, as its component β∗

m re%ects
the e#ect of the mth modality xm on the response y. Meanwhile,
we treat γ ∗ as a nuisance parameter. We also remark that, one
does not necessarily have to perform factor decomposition for
all data modalities. In practice, we "rst estimate the number
of factors for each modality. For a particular modality that
does not admit a factor structure, we can set the corresponding
!m = 0 and xm = um in (1).

3. Estimation

To "t model (3), we "rst estimate the latent variables F and U ,
along with the number of latent factors Km, using some well
established methods in the factor analysis literature. We then
estimate β∗

m through a penalized least-square approach.
First, we estimate the latent variables F and U , we adopt

the method in Bai and Li (2012) and Fan, Liao, and Mincheva
(2013), by running principal components analysis (PCA) on
each individual modality Xm. We then estimate Fm by

√
n times

eigenvectors corresponding to the largest Km eigenvalues of
XmX′

m. Denote this estimator by F̂m. We next estimate !m by
!̂m = (1/n)X′

mF̂m, and estimate Um by Ûm = Xm − F̂m!̂
′
m,

accordingly. Fan, Liao, and Mincheva (2013) showed that F̂m is
a consistent estimator, up to a rotation, of Fm, under a pervasive
condition that the latent factors should a#ect many variables;
see Condition 2 and its discussion in Section 4. We remark that,
there are alternative ways to estimate the factors. For instance,
methods such as Ma (2013); Cai, Ma, and Wu (2013), and Lock
et al. (2013) may also be applicable, as long as the resulting factor
estimates are consistent.

Next, we determine the number of the latent factors Km in
each modality, which is usually unknown in practice. We use
the method of Bai and Ng (2002) to estimate Km by

K̂m = argmin0≤k≤M̃ log
{ 1

npm

∥∥∥Xm − n−1F̂mk F̂′
mk Xm

∥∥∥
2

F

}

+ kg(n, pm), (4)

where M̃ is a prede"ned upper bound on Km, F̂mk is
√

n times
eigenvectors corresponding to the largest mk eigenvalues of
XmX′

m, and g(n, pm) is a penalty function that,

g(n, pm) = n + pm
npm

log
( npm

n + pm

)
, or

g(n, pm) = n + pm
npm

log
(
min{n, pm}

)
.

For both choices, Bai and Ng (2002) showed that K̂m is a consis-
tent estimator of Km under some regularity conditions. We make
two additional remarks about Km. First, in this article, we treat
Km as "xed, which is reasonable in numerous scienti"c applica-
tions. As Km is related to the number of spiked eigenvalues of
XmX′

m, it is usually small. Second, following a common practice
of the factor analysis literature, in our subsequent theoretical
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analysis, we treat Km as known. All the theoretical results remain
valid conditioning on that there is a consistent estimator K̂m of
Km.

Next, we estimate β∗ and γ ∗. We replace F and U with
the corresponding estimators F̂ = (F̂1, . . . , F̂M) and Û =
(Û1, . . . , ÛM), and solve a penalized least-square problem,

(γ̂ , β̂) = argmin(γ ,β)

1
2n

n∑

i=1

(
yi − F̂′

iγ − Û ′
iβ

)2
+λ

p∑

j=1
p(|βj|),

(5)
where p(·) is some general folded-concave penalty function,
and λ is a tuning parameter. This class of penalty functions
includes SCAD (Fan and Lv 2011) and MCP (Zhang 2010). It
assumes that p(t) is increasing and concave in t ≥ 0, and has
a continuous "rst derivative ṗ(t) with ṗ(0+) > 0. This opti-
mization problem can be solved by standard proximal gradient
descent algorithms (Parikh and Boyd 2014). We also brie%y
comment that, in our optimization (5), we do not impose the
linear constraint that γ = !′β , mainly because both F and
! are unknown and unidenti"able in our setting. Besides, as
we later show in Theorem 3 that, even without this constraint,
the estimator β̂ from Equation (5) achieves the minimax rate,
and can consistently select the support and estimate the nonzero
components of β∗, as long as there are enough variables to
estimate the latent factors well. We tune λ in Equation (5) using
the standard cross-validation method, following Fan and Lv
(2011), while alternative criteria, for example, the extended BIC
(Chen and Chen 2008), can also be used to tune λ.

Finally, we estimate σ 2
ε by σ̂ 2

ε = n−1 ∑n
i=1(yi − x′

iβ̃)2,
where β̃ is the Lasso estimator of β∗ obtained by β̃ =
argminβ(2n)−1 ∑n

i=1(yi − x′
iβ)2 + λε ‖β‖1, where λε is the

tuning parameter. We show in the Supplementary Materials that
σ̂ 2

ε is consistent to σ 2
ε . Actually, any consistent estimator of σ 2

ε

would su$ce for the subsequent hypothesis testing procedures.
Alternative methods such as scaled LASSO (Sun and Zhang
2013), re"tted cross-validation (Fan, Guo, and Hao 2012), or
directly using the residuals from Equation (5) can all be applied
to estimate σ 2

ε as well.

4. Hypothesis Test of a Whole Modality

A crucial question in multimodal data analysis is to evaluate if
a whole modality is signi"cantly associated with the outcome,
given other modalities in the model. For instance, in multi-
omics analysis, it is of interest to test if DNA methylation cor-
relates with the phenotypic traits related to genetic disorders
given gene expression level (Richardson, Tseng, and Sun 2016).
In multimodal neuroimaging analysis, it is of interest to evaluate
if functional imaging quanti"cation for hypometabolism asso-
ciates with the diagnosis of Alzheimer’s disease, given structural
magnetic resonance imaging of brain atrophy measurement
(Zhang et al. 2011). The challenge here is that even a single
modality o!en contains many more variables than the sample
size.

This is essentially a problem of testing a high-dimensional
subvector of β∗ in a high-dimensional regression model.
Related testing problems have been extensively studied for a
single modality data. For example, Zhang and Zhang (2014),

van de Geer et al. (2014), and Javanmard and Montanari (2014)
developed bias-corrected or de-sparsifying methods to test if a
"xed-dimensional subvector of β∗ in a high-dimensional linear
or generalized linear model equals zero. In particular, under
a general M-estimation framework, Ning and Liu (2017) pro-
posed a decorrelated score test for the same problem, that is,
to test if a subvector β∗

S = 0. They "rst showed that their
score test statistic has a closed-form limiting distribution when
the dimension of the subset |S| is "xed. They then extended to
the case where β∗

S can be any arbitrary subvector of β∗ with
|S| diverging and even when |S| > n. Built on a pioneering
work by Chernozhukov et al. (2013), they showed that the dis-
tribution of the supremum of the decorrelated score functions
can be approximated by a multiplier bootstrap approach. Con-
sequently, they employed bootstrap simulations to obtain the
critical values of the limiting distribution to form the rejection
region. Our test di#ers from Ning and Liu (2017). When |S|
diverges, the test of Ning and Liu (2017) no longer has a closed-
form limiting distribution, and they had to resort to bootstrap
for critical values. By contrast, we are able to obtain a closed-
form limiting distribution for our test when |S| diverges. This is
due to that, instead of using the observed likelihood, we perform
factor decomposition on Xm "rst, then use the factor model as
a dimension reduction tool to reduce a high-dimensional test
to a "xed-dimensional one. Our method does pay the extra
price that we need to estimate the latent factors to plug into
the likelihood function. However, as we show later, this extra
cost can be well controlled. We also numerically compare with
Ning and Liu (2017) in Section 7.1. We show that our test is as
powerful, and o!en more powerful than the test of Ning and Liu
(2017).

Formally, for our multimodal analysis, we aim at testing the
following pair of hypotheses:

H0 : β∗
m = 0 versus Ha : β∗

m '= 0. (6)

We perform factor decomposition on the mth modality follow-
ing Equation (1). Then,

x′β = x′
−mβ−m + f ′

mγ m + u′
mβm,

where γ m = !′
mβm. The null hypothesis β∗

m = 0 implies
that γ ∗

m = 0, where γ ∗
m = !′

mβ∗
m. Therefore, under the null

hypothesis, testing γ ∗
m is the same as testing β∗

m. The di#erence
is that γ ∗

m ∈ RKm is a low-dimensional vector, while β∗
m ∈ Rpm

is high-dimensional. As such, the factor model plays the role of
dimension reduction for our testing problem. Actually, directly
testing β∗

m is challenging, since the dimension of β∗
m diverges

with the sample size, and there is not a closed form for the
limiting distribution of β̂m − β∗

m, where β̂m is an estimator
of β∗

m. On the other hand, we note that, under the alternative
hypothesis, the magnitude of γ ∗

m can be di#erent from that of
β∗

m. As such, the power of the test that is built on γ ∗
m can be

di#erent from the one that is built on β∗
m. We later study the

local power property of the test based on γ ∗
m in detail.

Next, we develop a factor-adjusted decorrelated score test,
and show that it is asymptotically e$cient when the latent fac-
tors can be well estimated. Following Ning and Liu (2017), and
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based on the Gaussian quasi-likelihood, we de"ne the decorre-
lated score function as

S(β , γ m) = 1
nσ 2

ε

n∑

i=1
(yi − f ′

i,mγ m − z′
iβ)(f i,m − W∗′zi),

where zi = (x′
i,−m, u′

i,m)′ ∈ Rp, p−m = p − pm, and W∗ =
E(x⊗2

i,−m)−1E(xi,−mf ′
i,m) ∈ Rp−m×Km , which is essentially the

projection of the latent factors onto the linear space spanned
by x−m. Such a projection is needed to control the variability of
the high-order terms in establishing the central limit theorem
in Theorem 1 (Ning and Liu 2017). In the high-dimensional
setting, we need some sparsity condition on W∗; see Condi-
tion 4, and solve a regularized problem to obtain its consistent
estimator. We treat the score function as a function of γ m. Under
the null hypothesis, we propose to estimate S(β , γ m) by,

Ŝ(β̂−m, 0) = 1
nσ̂ 2

ε

n∑

i=1
(yi − x′

i,−mβ̂−m)(f̂ i,m − Ŵ ′xi,−m),

where f̂ ′
i,m is the ith row of the estimated latent factor matrix F̂m,

σ̂ 2
ε is any consistent estimator of σ 2

ε that satis"es Condition 5
below, and β̂−m ∈ Rp−m and Ŵ ∈ Rp−m×Km are obtained by
solving the following optimization problems,

(β̂−m, γ̂ m) = argmin(β−m,γ m)

1
2n

n∑

i=1

(
yi−x′

i,−mβ−m − f̂ ′
i,mγ m

)2

+ λ1
∥∥β−m

∥∥
1 , (7)

Ŵ = argmin ‖W‖1 , such that
∥∥∥∥∥

1
n

n∑

i=1
xi,−m

(
f̂ ′

i,m − x′
i,−mW

)∥∥∥∥∥
∞

≤ λ2. (8)

We make a few remarks regarding our score function and
compare it to Ning and Liu (2017). First, we need to estimate
the latent factors in the decorrelated score function, while in
the score function of Ning and Liu (2017), the covariates are
fully observed. This introduces an additional layer of complexity
when analyzing the statistical property of the score function.
Later in Theorems 1 and 4, we carefully evaluate the extra cost
of estimating the latent factors. Second, we need to involve
γ m in (7), even under the null hypothesis γ m = 0. This is
because, if γ m is removed from Equation (7), β̂−m is no longer
consistent to β∗

−m under the alternative, which would in turn
impact the power of the test. On the other hand, γ̂ m is not used
in constructing the test statistic, but only β̂−m is. Finally, in
order to consistently estimate W∗, we need to solve a non-typical
Dantzig problem (8), where the latent factors are replaced by
their corresponding estimators.

Next, we compute the variance of the score function by
using the Fisher information. By the sandwich formula, the
information matrix is
I∗
γ m|β−m

= σ−2
ε

{
E(f ⊗2

i,m)−E(f i,mx′
i,−m)E(x⊗2

i,−m)−1E(xi,−mf ′
i,m)

}

∈ RKm×Km ,
which can be estimated by

Îγ m|β−m = σ̂−2
ε

{
1
n

n∑

i=1
f̂ ⊗2

i,m − Ŵ ′
(

1
n

n∑

i=1
xi,−m f̂ ′

i,m

)}

.

Then, our test statistic is given by

Tn = √
n Î−1/2

γ m|β−m
Ŝ(β̂−m, 0).

We next show that, under the null hypothesis, the asymptotic
distribution of Tn is N(0, IKm). In other words, Tn is asymptot-
ically e$cient. We "rst begin with a set of conditions.

Condition 1. For m ∈ [M], suppose {(f ′
i,m, u′

i,m)′}n
i=1 are iid

uncorrelated sub-Gaussian random vectors with zero mean.
That is, E(f i,m) = 0, E(ui,m) = 0, and E(f i,mu′

i,m) =
0. Moreover, E{exp(tα′f i,m)} ≤ exp(C ‖α‖2

2 t2/2), and
E{exp(tα′ui,m)} ≤ exp(C ‖α‖2

2 t2/2), for some constant C.
In addition, for all k ∈ [Km], x′

i,−mw∗
k are iid sub-Gaussian

such that E{exp(tx′
i,−mw∗

k)} ≤ exp(Ct2/2), where w∗
k is the

kth column of W∗. Additionally, {εi}n
i=1 are iid sub-Gaussian

with zero mean, and εi is uncorrelated with (f ′
i,m, u′

i,m)′ for all
m ∈ [M].

Condition 2. For m ∈ [M], suppose 0 < c ≤
λmin(!′

m!m/pm) ≤ λmax(!
′
m!m/pm) ≤ C < ∞, for some

positive constants c and C.

Condition 3. For m ∈ [M], s, t ∈ [pm], i, j ∈
[n], suppose E[p−1/2

m {u′
i,muj,m − E(u′

i,muj,m)}4] ≤ C, and

E
∥∥∥p−1/2

m !′
mui,m

∥∥∥
4

2
≤ C. Moreover, ‖!m‖∞ ≤ C,

λmin("um) > c,
∥∥"um

∥∥
1 ≤ C, where "um = var(um), and

mins,t∈[pm] var(ui,ms ui,mt ) > c.

Condition 4. Let s∗w = maxk∈[Km] |supp(w∗
k)|. Suppose

s∗w log(p−m){1 ∨ (n1/4/
√pm)} = o(n1/2), and

[s∗−m{
√

(log p−m)/n+1/
√pm}]·

√
log(p−m){1∨(n1/4/

√pm)} =
o(1).

Condition 5. Suppose σ̂ 2
ε = σ 2

ε + oP (1).

Condition 6. Suppose 0 < c ≤ λmin(I∗
γ m|β−m

).

Condition 1 is a typical sub-Gaussian assumption for high-
dimensional problems. Condition 2 is the pervasive condition,
and is common in factor analysis (Fan, Liao, and Mincheva
2013). It requires that the latent factors a#ect a large number of
variables. This is reasonable for a variety of multimodal data. For
instance, in multi-omics data, some genetic factors are believed
to impact both gene expression and DNA methylation, and
in multimodal neuroimaging, some neurological factors a#ect
both brain structures and functions. Condition 3 imposes some
technical requirements on the loading matrix and idiosyncratic
component. Together, Conditions 2 and 3 ensure that f i,m and
ui,m can be consistently estimated by the PCA method (Fan,
Liao, and Mincheva 2013). Condition 4 is a sparsity condition
on W∗ and β∗

−m, which requires s∗w and s∗−m to be much smaller
than n. Under such a condition, W∗ and β∗

−m can both be
consistently estimated, even if the latent factors are unknown;
see Lemmas 6 and 8 in the supplementary materials for more
details. We remark that this sparsity assumption on W∗ is
weaker and more %exible than requiring both E(x⊗2

i,−m)−1 and
E(xi,−mf ′

i,m) are sparse. Condition 5 ensures the estimator of
σ 2

ε is consistent. Condition 6 ensures the information matrix is
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invertible. We also remark that, if there is no factor in the mth
modality, Condition 1 reduces to the sub-Guassian assumption
on xi,m, and Conditions 2 and 3 are no longer needed for that
modality.

We next obtain a closed-form limiting distribution for the
test statistic Ts.

Theorem 1. Suppose Conditions 1–6 hold. Suppose λ1 0√
(log p−m)/n + 1/

√pm, and λ2 0
√

(log p−m)/n{1 ∨
(n1/4/

√pm)}. Then, under H0 : β∗
m = 0, it holds that

Tn
D−→ N(0, IKm).

By Theorem 1, we reject the null hypothesis if
n{Ŝ(β̂−m, 0)}′Î−1

γ m|β−m
Ŝ(β̂−m, 0) > χ2

α(Km, 0), where χ2
α(Km, 0)

is the α-upper quantile of the χ2-distribution with Km degrees
of freedom.

We next explicitly discuss the bene"t and the extra cost of
our factor-based test when compared with Ning and Liu (2017).
The main di#erence is that, through latent factors, we obtain a
closed-form limiting distribution and do not have to resort to
bootstrap. The price we pay mainly lies in Condition 4 and the
choices of λ1 and λ2. Actually, the extra term 1/

√pm appearing
in both Condition 4 and λ1, λ2 re%ects the estimation error
caused by using f̂ i,m to estimate β∗

−m. The term n1/4/
√pm is due

to the same reason for estimating w∗
k . Therefore, the choices of

the tuning parameters λ1 and λ2 need to be adjusted accordingly,
by taking into account such extra estimation errors.

We further consider three scenarios. First, when pm + n,
both 1/

√pm and n1/4/
√pm are dominated by

√
(log p−m)/n.

Therefore, the estimation errors of β̂−m and Ŵ reach the opti-
mal oracle rate, that is, the best rate as if the latent factors were
known; see Lemmas 6 and 8 in the supplementary materials. In
this case, using the factor estimates actually does not incur any
extra cost. The reason is that many variables are used to estimate
the latent factors, and its estimation error is so small that it
would not a#ect the inference on β∗

m. Second, when pm = o(n),
the estimation errors of β̂−m and Ŵ would be greater than
the optimal rate. However, the central limit theorem still holds,
given proper choices of λ1 and λ2, and more stringent sparsity
conditions on β∗

−m and W∗ in Condition 4. Third, in a special
case where variables in all modalities are driven by exactly the
same latent factors, even we perform the hypothesis test on the
mth modality, we could use variables from all di#erent modal-
ities to estimate the latent factors. Then, the terms 1/

√pm and
n1/4/

√pm become 1/
√p and n1/4/

√p, respectively, which are
naturally dominated by

√
(log p−m)/n. In this case, the optimal

oracle rate is again attained. Such a result can be viewed as a
blessing of the dimensionality for the factor model. In summary,
our method is most suitable for testing the signi"cance of a
modality containing many variables, or for multimodal data
with a large number of variables driven by some common latent
factors.

Next, we study the power of the proposed test under the local
alternative Han : β∗

m = bmn , where bmn is a sequence converging
to 0 as n → ∞. Since we use the latent factors to transform the
test on β∗

m to the one on γ ∗
m, we show that the local power of

the test depends on cmn = !′
mbmn . We consider the following

parameter space under the local alternative, N =
{
β∗ : β∗

m =
bmn , |supp(β∗

−m)| = s∗−m, where s∗−m 1 n
}

. The next theorem
gives the limiting distribution of Qn = T′

nTn uniformly for all
β∗ ∈ N under the local alternative.

Theorem 2. Suppose the conditions of Theorem 1 hold. Suppose
λ1 0

√
(log p−m)/n + 1/

√pm, λ2 0
√

(log p−m)/n{1 ∨
(n1/4/

√pm)},
∥∥bmn

∥∥
2 = o(1/

√
log n), and

∥∥cmn

∥∥
2 =

o(1/
√

log n). Then, under the Han , it holds uniformly for all
β∗ ∈ N that

sup
x>0

∣∣Pr(Qn ≤ x) − Pr
{
χ2(Km, hmn) ≤ x

}∣∣ → 0,

where hmn = nc′
mn I∗

γ m|β−m
cmn .

Since hmn 0 n
∥∥cmn

∥∥2
2, Theorem 2 implies that the local

power of our test essentially depends on
∥∥cmn

∥∥
2. If we let∥∥cmn

∥∥
2 = Cn−φγm , the local power is to exhibit some transition

behavior depending on the value of φγm , which is summarized
in the next corollary.

Corollary 1. Suppose the conditions of Theorem 2 hold. Then,

(a) limn→∞ supβ∗∈N supx>0 |Pr(Qn ≤ x) − Pr(χ2(Km, 0) ≤
x)| → 0, if φγm > 1/2;

(b) limn→∞ supβ∗∈N supx>0 |Pr(Qn ≤ x) − Pr(χ2(Km, h) ≤
x)| → 0, if φγm = 1/2;

(c) lim infn→∞ supβ∗∈N Pr(Qn > x) = 1, if φγm < 1/2;

where h = limn→∞ nc′
mn I∗

γ m|β−m
cmn in (b), and (c) holds for

any x > 0.

We make some remarks. First, Corollary 1 shows that, the
local power is to converge to the Type I error if φγm > 1/2;
to a non-central χ2-distribution if φγm = 1/2; and to 1 if
φγm < 1/2. Such a transition behavior is analogous to the
classical local power results, which showed that the root-n local
alternative is the transition point of the local power (van der
Vaart 2000). Second, the existing debiased method (van de
Geer et al. 2014) and the decorrelated method (Ning and Liu
2017) only established the root-n local power results when the
dimension of the parameters being tested is "xed. Moreover,
even though Ning and Liu (2017) used a multiplier bootstrap
method to extend their test from a single parameter to arbitrar-
ily many parameters, they only studied the local power when
testing a single parameter. Our local power result di#ers in that
we allow the dimension of β∗

m to grow with n, whereas we "x
the dimension of γ ∗

m. Finally, Theorem 2 shows that the local
power depends on the magnitude of γ ∗

m, or cmn = !′
mbmn . This

is again due to that we transform the test of β∗
m to that of γ ∗

m.
Therefore, the power of our test depends on the relation between
the loadings and where the alternative hypothesis occurs.

Next, we give some speci"c examples to further illustrate the
power behavior of our proposed test. To simplify the discussion,
we set Km = 1.

Example 1. Let !m = (DL, 1, . . . , 1)′ and bmn =
(DSn−1/2, 0, . . . , 0)′, where DL and DS are two constants. In
this case,

∥∥cmn

∥∥
2 = DSDLn−1/2, and thus the power of our

test depends on the product DSDL. On the contrary, even one
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had known apriori that the alternative only occurs at the "rst
coordinate, and performs a debiased or decorrelated test on that
coordinate, its local power depends on DS. Therefore, when DL
is large and DS is small, our testing method gains power. On
the other hand, when DL is small and DS is large, the alternative
methods may be more powerful.

Example 2. Let !m = (1, 1, . . . , 1)′, and bmn =
(C1n−2/3, C2n−2/3 . . . , CLn−2/3, 0, . . . , 0)′. In this case, if
L + n1/6,

∥∥cmn

∥∥
2 + n−1/2, then the power of our test

converges to 1. On the contrary, if one performs a debiased or
decorrelated test on each element of β∗

m, there is no power. Our
testing method gains power in this example too.

Example 3. Let !m = (0, 1, . . . , 1)′, and bmn = (cn, 0, . . . , 0)′.
In this case, no matter how large cn is, our testing method has
no power to detect the alternative, because cmn = 0.

As we have seen in these examples, when transforming the
test from β∗

m to γ ∗
m, our method does not necessarily lose

power, but can gain power in some situations. For instance, in
Example 1, the variables with large loadings on the latent factors
have nonzero coe$cients, while in Example 2, many variables
with nonzero loadings have nonzero coe$cients. In such cases,
our test gains power. On the other hand, in Example 3, the
product of the loadings and the nonzero coe$cients is small,
then our test has little power.

5. Hypothesis Test of Linear Combinations of
Predictors of One or More Modalities

Another important question in multimodal data analysis is to
test if some linear combinations of predictors, within the same
modality or across di#erent modalities, is signi"cantly corre-
lated with the response. This is because multimodal data o!en
measures di#erent aspects of related quantities. For instance, in
multi-omics studies, expression data measures how genes are
expressed, methylation data measures how DNA molecules are
methylated, and both data may be related to the same set of
genes. In multimodal neuroimaging analysis, brain structures,
functions, and chemical constituents of the same brain regions
are o!en measured simultaneously. As such, it is of great scien-
ti"c interest to test if various measurements on a particular gene
or brain region are associated with the outcome.

Shi et al. (2019) considered a similar testing problem in a
high-dimensional generalized linear model for a single modal-
ity data. They derived the corresponding partially penalized
likelihood ratio test, score test and Wald test, and showed that
the three tests are asymptotically equivalent. They allowed the
dimension of the model to grow with the sample size, as long
as the dimension of the subvector being tested and the num-
ber of linear combinations are smaller than the sample size.
Our method di#ers from Shi et al. (2019) in several ways. Shi
et al. (2019) treated the design matrix X as "xed, while we
treat X as iid random realizations from some distributions.
More importantly, we do not directly use the observed X, but
instead perform a factor decomposition and use the decorre-
lated idiosyncratic components as the pseudo design matrix. We
explicitly show in Theorem 3 that such a factor-adjusted step

leads to less stringent conditions to reach the variable selection
and estimation consistency. Moreover, since variable selection
consistency is needed to correctly calculate the variance of the
test statistic, as shown in Theorem 4, our method also requires
less stringent conditions to establish the limiting distribution
of the test statistic. Moreover, our model concerns with data
with multiple modalities, instead of a single modality as in Shi
et al. (2019). High correlations are commonly observed in mul-
timodal data, and as such the factor-adjusted decorrelation step
becomes essential. Relatedly, Zhu and Bradic (2018) proposed
a test for a linear combination of predictors under a unimodal
linear regression model. Even though they did not restrain
the size or the sparsity of the model, they only considered a
single linear combination, and required the eigenvalues of the
covariate covariance matrix var(x) to be bounded. By contrast,
both Shi et al. (2019) and we consider jointly testing multiple
linear combinations of predictors, and we do not require the
eigenvalues of var(x) to be bounded. We further numerically
compare with Shi et al. (2019) and Zhu and Bradic (2018) in
Section 7.2.

Formally, we consider testing the following pair of hypothe-
ses:

H0 : Aβ∗
T = b versus Ha : Aβ∗

T '= b, (9)

where A ∈ Rr×t , b ∈ Rr , β∗
T ∈ Rt is a subvector of β∗, and

T ⊂ [p] is a low-dimensional index set with |T| = t < n. This
simultaneously tests r linear combinations of β∗

T , with r < n.
We next develop a factor-adjusted Wald test.

To construct the test statistic, we "rst consider a penalized
least-square problem,

(γ̂ a, β̂a) = argmin(γ ,β)

1
2n

n∑

i=1

(
yi − F̂′

iγ − Û ′
iβ

)2

+ λa
∑

j '∈T
p(|βj|). (10)

This is essentially the same as Equation (5), except that, instead
of penalizing all variables in β , we do not penalize βj for j ∈ T.
This is to avoid introducing bias when estimating β∗

j for j ∈ T,
which is needed for Theorem 4. A similar idea was also adopted
in Shi et al. (2019).

Given β̂a, our factor-adjusted Wald test statistic is given by

Tw = (Aβ̂a,T − b)′(A'̂TA′)−1(Aβ̂a,T − b)/σ̂ 2
ε ,

where β̂a,T is the subvector of β̂a with indices in T, '̂T is the
"rst T rows and columns of

'̂T∪Ŝa
= n

(
Û ′

TÛT Û ′
TÛ Ŝa

Û ′
Ŝa ÛT Û ′

Ŝa Û Ŝa

)−1

,

Ŝa = {j ∈ Tc : β̂a,j '= 0}, and σ̂ 2
ε is any consistent estimator

of σ 2
ε . In this test statistic, Ŝa plays a critical role in calculating

the variance of Aβ̂a,T − b. In fact, Ŝa needs to be consistent to
Sa = {j ∈ Tc : β∗

j '= 0} in order for the variance to be valid.
Such a consistency is guaranteed by Theorem 3.

We next present a set of regularity conditions.
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Condition 7. Suppose c ≤ λmin{E(u⊗2)} ≤ λmax{E(u⊗2)} ≤ C
for some postive constants c and C.

Condition 8. Suppose
∥∥∥E(u⊗2

T∪Sa
)−1

∥∥∥
L∞

≤ C.

Condition 9. Suppose
∥∥∥E(u(T∪Sa)c u′

T∪Sa
){E(u⊗2

T∪Sa
)−1}

∥∥∥
L∞

≤C.

Condition 10. Suppose dn = min{|β∗
j | : β∗

j '= 0}/2 +
λa + δn, where δn =

√
(log p)/n{1 ∨ (n1/4/

√pmin)},
pmin = minm∈[M] pm, and λaṗ(dn) = o(δn), where ṗ is the "rst
derivative.

We "rst note that Conditions 7–9 are imposed on u, instead
of on x. Since u can be viewed as the residual of x a!er the latent
factors are removed, the correlations among the variables in u
are much weaker than those in x. In particular, Conditions 7
and 8 are needed to avoid singularity of E(u⊗2) and E(u⊗2

T∪Sa
).

Condition 9 is the well-known irrepresentable condition, which
is necessary for establishing the variable selection consistency.
Shi et al. (2019) required such a condition to hold for the Gram
matrix X′X, which essentially requires the correlations among
X must be small. This condition hardly holds for multimodal
data. By contrast, we only impose such a condition on E(u⊗2),
which requires the idiosyncratic components not to be highly
correlated. This condition is well accepted in the factor model
literature. Indeed, when an exact factor model is assumed,
E(u⊗2) is a diagonal matrix, then Condition 7 naturally holds.

We now establish the variable selection and estimation con-
sistency of the estimator β̂a in (10), which is essential for deriv-
ing the asymptotic distribution of Tw.

Theorem 3. Suppose Conditions 1–3 and 7–10 hold. Then there
exists a solution (γ̂ a, β̂a) of (10) such that, with probability
tending to 1, the following results hold:

(a) (sign consistency) sign(β̂a) = sign(β∗);
(b) (L∞ consistency)

∥∥∥β̂a,T∪Sa − β∗
T∪Sa

∥∥∥
∞

= OP (δn);

(c) (L2 consistency)
∥∥∥β̂a,T∪Sa − β∗

T∪Sa

∥∥∥
2

= OP
(√

t + saδn
)
,

where sa = |Sa|;
(d) (asymptotic expansion)

√
n(β̂a,T∪Sa − β∗

T∪Sa) =
n−1/2K−1

n U ′
T∪Sa

ε+oP (1), where Kn = (1/n)U ′
T∪Sa

UT∪Sa ,
if we further have that pmin + n3/2, and

√
nλaṗ(dn) = o(1).

We again explicitly examine the bene"t and the extra cost
of our factor-based test compared with Shi et al. (2019). The
main di#erence is that we obtain the variable selection and
estimation consistency under much weaker conditions than Shi
et al. (2019). The price we pay lies in δn, which re%ects the
convergence rates in (b) and (c) of Theorem 3. Particularly, the
component n1/4/

√pmin in δn is due to the factor estimation.
We consider two scenarios. First, when all data modalities have
a large number of variables, i.e. pmin + n1/2, then δn =√

(log p)/n, which makes the convergence rates in (b) and (c)
to be minimax optimal. This is because when there are enough
variables to estimate the latent factors well, the extra factor
estimation error becomes so small that it would not a#ect the
estimation error on β̂a. Second, when one modality has only

a small number of variables, i.e. pm = o(n1/4) for some m ∈
[M], estimating the latent factors in that modality becomes
challenging, and the resulting estimation error would slow the
convergence of β̂a. In this case, one possible alternative solution
is to skip factor decomposition for that particular modality, but
directly use Xm in Equation (10) and solve

(γ̂ a, β̂a) = argmin(γ ,β)

1
2n

n∑

i=1

(
yi − X′

i,mβm − F̂′
i,−mγ

−Û ′
i,−mβ−m

)2
+ λa

∑

j '∈T
p(|βj|),

where X′
i,m, F̂′

i,−m and Û ′
i,−m denote the ith row of X−m, F̂−m

and Û−m, respectively. Finally, we note that the variable selec-
tion and estimation consistency of β̂ in Equation (5) is directly
implied by Theorem 3 if we treat T as the empty set.

Next, we study the asymptotic distribution of our test statistic
Tw, and show that it can be uniformly approximated by a χ2-
distribution under both H0 and Ha. We need two more regular-
ity conditions.

Condition 11. Suppose ‖hn‖2 = O(
√

r/n), and
λmax{(AA′)−1} ≤ C for some constant C, where hn = Aβ∗

T − b.

Condition 12. Suppose r1/4n−1/2E|u′
T∪Sa

"−1
u,T∪Sa

uT∪Sa |3/2 →
0, where "−1

u,T∪Sa
is the inverse of the submatrix of "u with rows

and columns in T ∪ Sa.

Condition 11 regulates the local alternative hn and avoids sin-
gularity of AA′. Condition 12 is a Lyapunov condition to ensure
the asymptotic normality of β̂a,T∪Sa , which is the key to establish
the χ2-approximation.

Theorem 4. Suppose the conditions of Theorem 3 and Condi-
tions 11 and 12 hold, pmin + n3/2,

√
nλaṗ(dn) = o(1), and

t + sa = o(n1/3). Then it holds that

sup
x

∣∣Pr(Tw ≤ x) − Pr{χ2(r, νn) ≤ x}
∣∣ → 0,

where νn = nh′
n(A'TA′)−1hn/σ 2

ε , 'T is the the submatrix of
"−1

u,T∪Sa
with rows and columns in T.

By Theorem 4, we reject H0 : Aβ∗
T = b if Tw > χ2

α(r, 0),
where χ2

α(r, 0) is the α-upper quantile of the χ2-distribution
with r degrees of freedom. The limiting distribution we establish
in Theorem 4 is the same as the classical Wald test result for a
low-dimensional linear regression model (Shi et al. 2019).

We also remark that, the requirement of pmin + n3/2 in
Theorem 4 ensures that the latent factors in each modality can
be well estimated. Therefore, the extra factor estimation error
would not a#ect the limiting distribution of Tw. This condition
is more stringent than that of pmin + n1/2, which guarantees
the minimax optimal rate of estimation in Theorem 3. This
is because hypothesis testing is a more challenging task than
estimation.

Finally, write
∥∥(A'TA′)−1/2hn

∥∥
2 = Cn−φν for some con-

stant C > 0, and let Ñ =
{
β∗ :

∥∥Aβ∗
T − b

∥∥
2 = O(

√
r/n), t +

sa = o(n1/3)
}

. Theorem 4 implies the following corollary
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regarding the local power of the proposed test. Its proof is
similar to that for Corollary 1 and is omitted.

Corollary 2. Suppose the conditions of Theorem 4 hold. Then,

(a) limn→∞ supβ∗∈Ñ supx>0 |Pr(Tw ≤ x) − Pr(χ2(r, 0) ≤
x)| → 0, if φν > 1/2;

(b) limn→∞ supβ∗∈Ñ supx>0 |Pr(Tw ≤ x) − Pr(χ2(r, ν) ≤
x)| → 0, if φν = 1/2;

(c) lim infn→∞ supβ∗∈Ñ Pr(Tw > x) = 1, if φν < 1/2;

where ν = limn→∞ νn in (b), and (c) holds for any x > 0.

6. Quanti!cation of Contribution of a Single Modality

In addition to testing the signi"cance of a whole data modality,
it is of equal interest to quantify the amount of contribution of
a modality conditioning on other data modalities in the regres-
sion model. As an example, in heritability analysis, the goal is to
evaluate the contribution of genetic e#ects to the phenotype in
addition to the environmental e#ects (Lynch and Walsh 1998).
Motivated by the proportion of the response variance explained
in the classical linear regression, we propose a measure of the
contribution of a single data modality in our integrative factor
regression model.

Let x−m ∈ Rp−pm denote the subvector of x ∈ Rp excluding
xm ∈ Rpm , and X−m ∈ Rn×(p−pm) denote the submatrix of
X ∈ Rn×p excluding Xm ∈ Rn×pm . To evaluate the contribution
of xm, our key idea is to compare the goodness of "t of regressing
y on x to that of regressing y on x−m. Toward that end, under
model (2), we de"ne

σ 2
m|−m = var(x′

mβ∗
m|x−m).

Next, we present a proposition regarding σ 2
m|−m, where state-

ments (a) and (b) show in two di#erent ways that σ 2
m|−m can be

interpreted as the improvement of the goodness-of-"t, or equiv-
alently, additional variance of the response explained, given
by the mth modality in addition to all other modalities. This
justi"es why σ 2

m|−m can be used to quantify the contribution of a
single modality. To simplify the presentation, we only consider
the case where p < n. We then discuss that such an interpre-
tation of σ 2

m|−m holds for p > n as well. Next, statement (c)
shows that, if xm and x−m share some common factors, in that
xm = !mf + um, and x−m = !−mf + u−m, where f ∈ RK , we
then have a closed-form expression for σ 2

m|−m. This expression
holds true regardless of p < n or p > n, and thus provides a
uni"ed way of computing σ 2

m|−m in practice.

Proposition 1. Suppose x follows a multivariate normal distribu-
tion and p < n. Let Ŷ and Ŷ−m denote the predicted response
by regressing y on x, and regressing y on x−m, respectively, via
least squares. Let σ 2

y = var(y). Then the following results hold:

(a) σ 2
m|−m = E

∥∥∥Y − Ŷ−m
∥∥∥

2

2
/(n − p−m) − σ 2

ε ;

(b) σ 2
m|−m = σ 2

y (r2 − r2
−m), where r2 = 1−E

∥∥∥Y − Ŷ
∥∥∥

2

2
/{(n−

p)σ 2
y }, and r2

−m = 1 − E
∥∥∥Y − Ŷ−m

∥∥∥
2

2
/{(n − p−m)σ 2

y };

(c) σ 2
m|−m = β∗

m
′
{
!m(IK + !′

−m"−1
u−m!−m)−1!′

m + "um

}
β∗

m.

By Proposition 1(a), when regressing y using all but the mth
modality, we have E

∥∥∥Y − Ŷ−m
∥∥∥

2

2
= (n − p−m)(σ 2

ε + σ 2
m|−m).

On the other hand, when regressing y on all data modalities, we
have E

∥∥∥Y − Ŷ
∥∥∥

2

2
= (n − p)σ 2

ε . Therefore, from a goodness-of-
"t perspective, ignoring xm leads to a “worsened” prediction by
an amount of σ 2

m|−m.
For Proposition 1(b), recall in the classical linear regression

model, the adjusted R2 measures the percentage of total varia-
tion in the response that has been explained by the predictors,
and is de"ned as R2 = 1 − {RSS/(n −p)}/{TSS/(n − 1)}, where
RSS and TSS are the residual sum of squares and total sum of
squares, respectively. Then, r2 in Proposition 1(b) can be viewed
as an “expected” percentage of total variation in the response
explained, in that,

r2 = 1 − E(RSS)/(n − p)

E(TSS)/(n − 1)
= 1 −

E
∥∥∥Y − Ŷ

∥∥∥
2

2
(n − p)σ 2

y
.

As we show in the proof of Proposition 1, when using all but
the mth modality, the “expected” percentage of total variation in
the response explained is r2

−m = 1 − (σ 2
ε + σ 2

m|−m)/σ 2
y , where

σ 2
ε = E

∥∥∥Y − Ŷ
∥∥∥

2

2
/(n − p). On the other hand, when using

all data modalities, the “expected” percentage of total variation
in the response explained is r2 = 1 − σ 2

ε /σ 2
y . Therefore, using

the mth modality improves the “expected” percentage of total
variation in the response explained by an amount of σ 2

m|−m/σ 2
y .

We have so far justi"ed σ 2
m|−m in the setting where p < n.

In the setting, where p > n and the true model is sparse, in
that there are only s variables associate with y with s < n, we
can still use σ 2

m|−m to quantify the contribution of an individual
modality. This is because Proposition 1(a) and (b) continue to
hold if we replace Ŷ and Ŷ−m with Ỹ and Ỹ−m, and replace
(n − p) with (n − s), where Ỹ denotes the predicted response
by regressing y on the s true variables via least squares, and
Ỹ−m is de"ned similarly but excluding the variables in the
mth modality. In practice, of course, which subset are the true
variables is unknown. However, Proposition 1(a) and (b) only
provide conceptual justi"cations of σ 2

m|−m. We always resort to
Proposition 1(c) to compute σ 2

m|−m, which holds regardless of
p < n or p > n. Besides, it does not require the knowledge of the
true variables, nor any extra variable selection step to identify
them.

Next, we present a plug-in estimator of σ 2
m|−m given the

data. We "rst apply Bai and Ng (2002) in Equation (4) to the
concatenated data matrix X = (X1, . . . , XM) ∈ Rn×p to
estimate the number of shared factors. We then apply PCA to
obtain F̂. We next estimate !m by !̂m = (1/n)X′

mF̂, and obtain
Ûm = Xm − F̂!̂

′
m. We solve for β̂ following Equation (5). We

then apply the thresholding method of Fan, Liao, and Mincheva
(2013) to estimate "u by "̂u, whose (i, j)th element is σ̂ 2

u,ij =
s(n−1 ∑n

+=1 Û+iÛ+j, ω), s(x, ω) is a thresholding function, ω is
the threshold, and Û = (Û1, . . . , ÛM). Let β̂m denote the
subvector of β̂ with indices in the mth modality. By Theorem 3,
β̂m is a consistent estimator of β∗

m. By Theorem 3.3 of Fan,
Liao, and Mincheva (2013), !̂m and !̂−m are two consistent
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estimators of the loading matrices. In addition, by Theorem 3.1
of Fan, Liao, and Mincheva (2013), "̂u is a consistent estimator
of "u. Plugging all these estimators into Proposition 1(c) gives
a consistent estimator of σ 2

m|−m.
We make two additional remarks about σ 2

m|−m. First, the
closed-form expression of σ 2

m|−m uses the factors commonly
shared by xm and x−m. Indeed, such factors determine the
correlations between xm and x−m. When no such common
factors exist, xm and x−m are uncorrelated. In that case,
var(x′

mβ∗
m|x−m) = var(x′

mβ∗
m) = β∗

m
′"xmβ∗

m = β∗
m

′"umβ∗
m.

Therefore, the closed-form expression in Proposition 1(c) can
be viewed as a more general form of this special case by taking
the correlations between xm and x−m into account. Second, the
computation of σ 2

m|−m only requires to invert a sparse high-
dimensional matrix "u−m and a low-dimensional matrix IK +
!′

−m"−1
u−m!−m. If an exact factor model is further adopted

such that "u becomes a diagonal matrix, σ 2
m|−m can be easily

computed, then as one only needs to invert a low-dimensional
matrix. On the contrary, if one does not employ a factor model,
then var(x′

mβ∗
m|x−m) = β∗

m
′("xm −"xm,x−m"−1

x−m"x−m,xm)β∗
m,

where "xm = E(x⊗2
m ), "xm,x−m = E(xmx′

−m), "x−m = E(x⊗2
−m),

and "x−m,xm = E(x−mx′
m). Consequently, a large dense matrix

"x−m has to be inverted.

7. Numerical Analysis

7.1. Test of a Whole Modality

We evaluate the empirical performance of the factor-adjusted
score test of a whole modality proposed in Section 4. We gener-
ate M = 3 modalities, and consider two cases of x. Speci"cally,
for each modality m = 1, 2, 3, xm are n iid random samples
generated from Npm(0, "m). For Case 1, "m = !m!′

m +
0.5Ipm , where each column of !m ∈ Rpm×Km is generated from
Npm(0, 2), and the number of factors Km = 2. For Case 2, the
diagonal elements of "m equal 1 and the o#-diagonal elements
equal 0.4. Accordingly, in Case 1, xm indeed follows a factor
model setup, and in Case 2, although xm does not strictly follow
a factor model, its covariance matrix has spiked eigenvalues. In
both cases, we aim to test if the "rst modality x1 is signi"cantly
associated with the response, i.e. H0 : β∗

11 = . . . = β∗
1p1 = 0.

We then consider two types of alternatives. The "rst alternative
is HA1 : β∗

11 = . . . = β∗
1p1 = δ/p, where δ is a sequence

approaching zero. As such, there is a weak signal in each variable
of x1 and the overall signal is dense. The second alternative is
HA2 : β∗

11 = . . . = β∗
15 = δ/5, β∗

16 = . . . = β∗
1p1 = 0.

As such, the overall signal is sparse, as all signals come only
from the "rst 5 variables, whereas the rest do not associate with
the response. For the other two modalities x2 and x3, we set
β∗

21 = 1, β∗
22 = 2, β∗

23 = . . . = β∗
2p2 = 0, and β∗

31 = −1, β∗
32 =

−1, β∗
33 = . . . = β∗

3p3 = 0. We generate the error ε as n iid
samples from N(0, 0.5), and generate y based on model (2). We
set p1 = p2 = p3 = p/3. We consider two combinations
(n, p) = (100, 600), and (200, 900). We compare our test with
the score test of Ning and Liu (2017), where the critical values
are obtained by bootstrap.

We report the proportion of rejections of H0 by both tests
out of 600 data replications as we vary the value of δ. When

δ = 0, this gives the empirical size, and when δ > 0, it gives
the empirical power of the two tests. Figures 1 and 2 report the
results for Cases 1 and 2, respectively. In both cases, we see that
our proposed test controls the Type I error at the nominal level
of α = 0.05 when δ = 0. However, the test of Ning and Liu
(2017) o!en yields an in%ated size. This may be due to that their
multiplier bootstrap method rejects the null hypothesis if the
maximum of the decorrelated score functions of variables in that
modality is greater than a threshold, and as such, it is easier to
reject the null hypothesis. Moreover, our test achieves an as good
or o!en a better power than the test of Ning and Liu (2017) as δ

increases.
Next, we simulate data from the three examples as we dis-

cussed in Section 4 to further examine the performance of the
proposed test. For all three examples, we generate M = 2
modalities with Km = 1 factor in each modality, and set n =
100, pm = 200, and α = 0.05. We aim to test the signi"cance of
the "rst modality. We generate xm as n iid random samples from
Npm(0, "m), where "m = !m!′

m + 0.5Ipm for m = 1, 2. For
the second modality, we always choose !2 = (1, 1, 1, . . . , 1)′,
and set its coe$cients as β∗

21 = 1, β∗
22 = 2, β∗

23 = · · · =
β∗

2p2 = 0. For the "rst modality, we choose di#erent loadings
and test di#erent local alternatives. For Example 1, we choose
!1 = (20, 1, 1, . . . , 1)′, and the alternative HA : β∗

11 =
0.08, β∗

12 = · · · = β∗
1p1 = 0. For Example 2, we choose

!1 = (1, 1, 1, . . . , 1)′, and the alternative HA : β∗
11 = · · · =

β∗
18 = 0.01, β∗

19 = · · · = β∗
1p1 = 0. For Example 3, we

choose !1 = (0, 1, 1, . . . , 1)′, and the alternative HA : β∗
11 =

0.2, β∗
12 = · · · = β∗

1p1 = 0. Table 1 reports the empirical size
and power of the proposed factor-adjusted score test and the
score test of Ning and Liu (2017) based on 600 data replications.
For Example 1, thanks to the large loading of the "rst variable,
the proposed test achieves a better power than the test of Ning
and Liu (2017). For Example 2, the nonzero coe$cients are
spread out in eight covariates, and they all have loadings on
the latent factor. Therefore, thanks to the cumulative e#ects, our
method again achieves a better power to detect the alternative.
For Example 3, while the nonzero coe$cient β∗

11 is large, the
corresponding loading is zero. Our test thus has no power in
detecting such an alternative. These numerical results agree with
our discussion in Section 4 on the local power of the proposed
test.

7.2. Test of a Linear Combination of Predictors

We next evaluate the empirical performance of the factor-
adjusted Wald test of a linear combination of predictors pro-
posed in Section 5. We again generate M = 3 modalities
and two cases of x similarly as in Section 7.1, except that in

Table 1. Empirical size and power of testing a whole modality in Examples 1 to 3
for the factor-adjusted score test, and the decorrelated score test of Ning and Liu
(2017).

Factor-adjusted test Test of Ning and Liu
Size Power Size Power

Example 1 0.06 0.50 0.05 0.40
Example 2 0.06 0.60 0.07 0.45
Example 3 0.06 0.07 0.05 0.35
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Figure 1. Empirical size and power of testing a whole modality in Case 1 for the factor-adjusted score test (solid line), and the score test of Ning and Liu (2017) (dashed
line).

the second case we increase the o#-diagonal elements of "m
to 0.8 for m = 1, 2, 3. We set β∗ = (β∗

1
′, β∗

2
′, β∗

3
′)′, β∗

1 =
(−2 + δ, −1, 0, . . . , 0)′, β∗

2 = (1 + δ, 2, 0, . . . , 0)′, β∗
3 = (1 +

δ, 1, 0, . . . , 0)′, and aim to test the linear combination of the "rst
variable in each modality that H0 : β∗

11 + β∗
21 + β∗

31 = 0
versus HA : β∗

11 + β∗
21 + β∗

31 '= 0. The rest of the simulation
setup is the same as that in Section 7.1. Since we only consider
testing a single linear combination in this study, we compare
our test with both the partially penalized Wald test proposed

in Shi et al. (2019), and the test proposed in Zhu and Bradic
(2018).

We again report the proportion of rejections of H0 out of
600 data replications as we vary the value of δ. Figure 3 reports
the results for both Cases 1 and 2. In both cases, we see that
our factor-adjusted Wald test and the test of Shi et al. (2019)
achieve a good control of the Type I error at the nominal
level α = 0.05 when δ = 0. But our test achieves a much
improved power as δ increases. The main reason is that, in this
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Figure 2. Empirical size and power of testing a whole modality in Case 2 for the factor-adjusted score test (solid line), and the score test of Ning and Liu (2017) (dashed
line).

example, the variables are highly correlated with each other. The
factor adjustment alleviates such high correlations, and yields a
better variable selection and estimation of the true regression
coe$cients, which in turn bene"ts the inference. Meanwhile, in
Case 1, the test of Zhu and Bradic (2018) yields a Type I error
that is much larger than the nominal level. This is because, in
this case, the variables are driven by the latent factors, which
leads to a wide spectrum of the eigenvalues of the covariate
covariance matrix. However, Zhu and Bradic (2018) required

the eigenvalues to be bounded. In Case 2, the variables are
not generated from a factor model. In this case, the test of
Zhu and Bradic (2018) enjoys the best power. Nevertheless,
it still su#ers from an in%ated Type I error, which is around
0.09 and is about twice as large as the nominal level. Moreover,
we recall that both our test and the test of Shi et al. (2019)
can jointly test multiple linear combinations, while the test of
Zhu and Bradic (2018) was designed to test a single linear
combination.
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Figure 3. Empirical size and power of testing a linear combination of predictors for the factor-adjusted Wald test (solid line), the Wald test of Shi et al. (2019) (dashed line),
and the test of Zhu and Bradic (2018) (dotted line).

7.3. Multimodal Neuroimaging Analysis

We illustrate our methods with a multimodal neuroimaging
analysis to study Alzheimer’s disease (AD). AD is an irre-
versible neurodegenerative disorder characterized by progres-
sive impairment of cognitive and memory functions. It is the
leading form of dementia in elderly subjects, and is the sixth
leading cause of death in the United States. In 2018, AD a#ects
over 5.5 million Americans, and without any e#ective treatment
and prevention, this number is projected to almost triple by 2050

(Alzheimer’s Association 2018). Tau is a hallmark pathological
protein of AD, and is believed to be part of the driving mecha-
nism of the disorder. It is present in the brains of both AD sub-
jects and the elderly absent of dementia. Brain atrophy is another
well known characteristic that di#erentiates between AD and
normal aging. We study a dataset with n = 125 subjects. Each
subject receives a positron emission tomography (PET) scan
with AV-1451 tracer that measures accumulation of tau protein,
as well as an anatomical magnetic resonance imaging (MRI)
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Table 2. The identi!ed brain regions with the coe"cient estimates and the corresponding p-values of the factor-adjusted Wald test for the signi!cance of the brain regions.

R.rostantcing L.superiorparietal L.inferiorparietal L.middletemporal
Coe"cient β̂1 0.07 0.12 0 0

β̂2 0 0 −0.18 −0.01
p-value 0.05 0.03 0.001 0.1

L.parahippocampal L.rostantcing R.parstriangularis R.superiortemporal
Coe"cient β̂1 0 0 0 0

β̂2 0.07 0.06 0.01 0.12
p-value 0.02 0.03 0.14 0.03

R.supramarginal R.temppole
Coe"cient β̂1 0 0

β̂2 0.11 0.04
p-value 0.02 0.05

scan that measures brain gray matter cortical thickness. We map
both types of images to a common brain atlas from Free Surfer,
then summarize each PET and MRI image by a 58-dimensional
vector, with each entry measuring the tau accumulation and
cortical thickness of a particular brain region-of-interest (ROI),
respectively. We remove some regions with quality issues for
the PET images, which result in p1 = 51 ROIs for PET, and
p2 = 58 ROIs for MRI, for each subject. In our integrative
analysis, the tau and cortical thickness measurements form the
two modalities x1 and x2. Memory score is a critical measure
of cognitive decline for AD, and in our analysis, the memory
score a!er removing potential age and sex e#ects is the response
variable y.

We estimate the number of latent factors using the method of
Bai and Li (2012), which concludes that there are K̂1 = 3 factors
in the tau modality and K̂2 = 1 factor in the cortical thickness
modality. We then estimate β∗ and γ ∗ using Equation (5) with
a SCAD penalty, where the tuning parameter was chosen by
cross-validation. We then apply the three methods we develop in
this article. We "rst test the signi"cance of the entire modality
using the factor-adjusted score test in Section 4. The p-values
are 4.9 × 10−7 and 1.2 × 10−3, for testing the signi"cance of
tau and cortical thickness modality, respectively. As such, both
modalities are clearly signi"cantly associated with the memory
outcome. We then report the estimated nonzero coe$cients
from our integrative factor model and their corresponding brain
regions in Table 2. We further carry out the factor-adjusted
Wald test in Section 5 to evaluate if the identi"ed regions are
signi"cantly correlated with the outcome in either modality. We
report the corresponding p-values in Table 2 as well. Our "nd-
ings agree with the AD literature. For instance, the ROI with the
smallest p-value we found is inferior parietal lobe, which is one
of brain regions that is known to be associated with progression
from healthy aging to AD (Greene and Killiany 2010). Another
signi"cant ROI is parahippocampal gyrus, and cortical thinning
of this region has been identi"ed as an early biomarker of AD
(Echávarri et al. 2011; Krumm et al. 2016). Finally, we evaluate
the contribution of each individual modality. If we include the
tau modality x1 in the model "rst, and add the cortical thickness
modality x2 next, then we have σ̂ 2

1 = ˆvar(x′
1β

∗
1) = 0.11, and

σ̂ 2
2|1 = ˆvar(x′

2β
∗
2|x1) = 0.18. Correspondingly, σ̂ 2

1 /σ̂ 2
y = 14%,

and σ̂ 2
2|1/σ̂

2
y = 24%. In other words, the tau modality explains

14% total variation in the response, and adding the cortical
thickness modality explains an additional 24% total variation.
On the other hand, if we include the cortical thickness modality
x2 in the model "rst, and add the tau modality x1 next, we

have σ̂ 2
2 = ˆvar(x′

2β
∗
2) = 0.19, and σ̂ 2

1|2 = ˆvar(x′
1β

∗
1|x2) =

0.08. Correspondingly, σ̂ 2
2 /σ̂ 2

y = 25%, and σ̂ 2
1|2/σ̂

2
y = 11%.

In other words, the cortical thickness modality explains 25%
total variation in the response, and adding the tau modality
explains an additional 11% total variation. We also note that,
the explained variation depends on which modality is already
included in the model, and the total explained variations do
not necessarily match if the two modalities enter the model in
di#erent orders.

8. Discussion

In recent years, high-dimensional inference has seen many fruit-
ful results. Particularly, Javanmard and Lee (2020), Cai and Guo
(2017), and Zhu and Bradic (2017) have developed a family of
%exible debiased methods to test the hypothesis of the form
β∗ ∈ C, where C is a general set. By choosing di#erent C,
these methods can handle a wide range of inference problems,
and can potentially address the inference questions we target
in this paper too. We view the proposed solution and the debi-
ased method as two legitimate and complementary inferential
approaches, each with its own strength and limitation. Speci"-
cally, the debiased method does not require the beta-min con-
dition that is di$cult to check in practice, but instead requires
the eigenvalues of var(x) to be bounded. Besides, it can test
the linear combination of the whole p-dimensional parameters
β∗, while the existing work so far focuses on a single linear
combination. By contrast, our proposal assumes the variables
are driven by latent factors that satisfy a pervasive condition,
and thus allows the largest eigenvalue of var(x) to diverge. This
may be desirable in the context of multimodal data analysis,
as the predictor covariance matrix can have spiked eigenvalues.
Nevertheless, our proposal requires the beta-min condition. In
addition, we aim at testing multiple linear combinations, but
require the number of linear combinations r and the number
of involved parameters t in Equation (9) to be smaller than the
sample size. In conclusion, we believe our proposal o#ers a use-
ful solution to address some important inference questions in
multimodal data analysis. Meanwhile, developing the debiased
counterpart provides an important alternative, and is warranted
for future research.
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