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S1 Proof of Theorem 1

Proof. We first prove the case when o? is known, then prove it when ¢? is unknown. Let
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We first show that, under Hy, when o2 is known,

To prove (S1), we show the following two results:
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Then given (S2) and (S3), we obtain (S1) by applying Slutsky’s Theorem.
To prove (52), define
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Noting that W* = E(x?,,) ™" E(x; - fi ), we have
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For the second summand on the right-hand-side of (S4), by Lemma 8, for each k € [K,,],
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where s; = |supp(wj)|. For the third summand on the right-hand-side of (S4), let (ﬁ‘m)k
denote the kth column of F',,. By Lemmas 6 and 7, for each k € [K,,],
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Together with the central limit theorem of \/nI7, |5 S(BZ,,,0), we prove (S2).
To prove (S3), since the dimension K, is fixed, all matrix norms are equivalent. In
particular, we show that

1Ty6 .. — T 15 llo=o0p(1). (S7)

Let (Tvmlﬁ_m — I’ |5_ )i denote the kth row of jvmlﬁ_m — I’ |5_ . By the definition of
the information matrix I, 5 , the identifiability assumption that E( f@i) = Ik, , and

furthermore the fact that (1/n)> ", ?;@i = I, , we have
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For the first term, let ﬁ,mh be the hth element of /f
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where s, = | supp(w})|, and the second-to-last equality follows from Lemma 8, and the fact
that the dominating term in the bracket is ||E(z; —ma] _,,w})||c = O(1). For the second
term,
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where the second-to-last equality follows from (S31), and the sub-Gaussian assumption on
Xij and x;, 'wh, which is implied by (1 ) and Condition 1.
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Next, When o2 is unknown, we have T, — T, = T, (c./5.—1) = op (1), which is implied
by Condition 5. Then, applying Slutsky’s Theorem completes the proof. O

S2 Proof of Theorem 2

Proof. We divide the proof into two main steps.
: * *71/2 * * * * *
In Step 1, letting T, = \/nlI7, |5 {S(ﬁ ) — I s 'ym} and QF = (T,)'T;,, we

—m

show that @, = Q% + op (1). First, recall T, as defined in (S1), we have

T, = (05T, =T, + 2

O T, +op (1), (S8)
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where the last equality follows from Condition 5, and the op statement applies to each

clement of T',,. Next, we show that T',, = T +op (1). Letting T! = /nI 71‘/; S(B*,,,0),

we have that
T,=T! +n I,
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5 AS(B_,0) = S(B%,, 0} +Va{l, |y —I5 5 18(8_,,0).

By Lemmas 9 and 10, uniformly for all 8* € N, we have that
Vil 5 {8(B,.0) ~ S(87,,0)} = op (1),



VL, 1 Y8(B,,0) = on (1).
Therefore, T,, = T, +op (1). Recall that S(8",7%,) = (102) 'S0 & (Fim — W¥Ei ).
Henceforth, we have
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where the second equality follows from Lemma 11. Therefore, we have T, = T + op (1).
Together with (S8) and the continuous mapping theorem, we have @,, = Q* +op (1), which
completes Step 1.
In Step 2, we derive the x? approximation of Q%. By definition,
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where €&, = (\/ﬁaf)‘lIi’;:(;imei(fi’m — W¥x; ). By direct calculation, we have that
E(&) =0, and ), Var(§;) = Ig,,. By Conditions 1 and 6, we have
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Then, by Lemma 4, we have that
sup [Pr() &, €C) —Pr(Z €C)| -0, (S9)
¢ i=1

where Z ~ N(0, K,,), and the supremum is taken over all convex sets C € R¥=. Consider
a special subset C, of C, such that C, = {z € R¥™ : ||z — \/_Ivmlﬁ Yill3 < x}. It then
follows from (S9) that

sup [Pr(QF < x) — Pr(x*(1, h,) < 2)| = sup|Pr ZE €C,)—Pr(ZeC,)| —0,

=1

where h, = nv;,'I7, 15 ;. Since Q, = Q;, + op (1). For any z and £ > 0, we have

Pr(x*(1,h,) <z —¢) +0o(1) < Pr(Qf <x—¢)+0(1) < Pr(Q, <)
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In addition, by Lemma 5, we have
lir% limsup |Pr{x*(1, h,) < x4+ e} — Pr{x*(1,h,) <z —e}| = 0.
E—> n

Together, we have
sup |Pr(Q, < z) — Pr(x*(1, hy) < 2)| = 0.

This completes the proof. O

S3 Proof of Corollary 1

Proof. We only prove (b) when ¢, = 1/2. The proofs of (a) and (c) are similar.
Note that

Pr(Qn < z) = Pr(x*(Km, h) < z)]
< [Pr(Q, <) — PT(XQ(KWM hin,) < )| + |Pr<X2(Km7 hin,) < ) — PT(XQ(Kma h) < )
Then, by Theorem 2, it suffices to prove that
lim sup |[Pr(x*(Km, b, ) < 2) — Pr(x*(K,, h) < x)| = 0.

n—o0 >0

Let F(z; k, \) denote the cumulative distribution function of the non-central y*-distribution
with k degrees of freedom and non-centrality parameter A, and F'(x; k) that of the central
y2-distribution with k degrees of freedom. Then,

F(ak,\) =e 2y —()\§‘ ) F(z;k + 27),
=t
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Then, as n — oo,

sup [Pr(x*(Kom, hin,) < @) = Pr(x*(Km, h) < )

x>0

< Jehmal? — M2 gup {F(a:; Kn)+ ). #F(ﬂf; Ky + 2]')}
j=1

o x>0 J:

>0

sup{z (7 (h/2> |F($;Km+2j>}

< Jehmn/2 _ gmh/2|hma/2 4 ooh/2 Z !(hmn/Q)J.‘— (h/2)] N
j=1 J:
This completes the proof. O



S4 Proof of Theorem 3

Proof. We first prove (a) to (c) of the theorem. Our main idea is to show that, by Lemma
2, F is consistent to HF' for some nonsingular matrix H. Moreover, U is consistent
to U. Then solving (10) is equivalent to solving the same problem by replacing (F,U)

with (F,U). More precisely, by the Karush-Kuhn-Tucker conditions, any vector (v,, 3,)
satisfying the following equations is a solution to (10):

1 -~/ =~ . ~ ~
(Y - 3, - UnusBarus,) =0 (s11)
1 ~/ ~ _ ~ ~
EUT(Y - F7a - UTUSaIBa,TUSa) = 07 (812)
1 -~/ o~ ) N . A~ ~
EUSQ(Y —F~,— UTUSaﬁa,TUSa> = )\ap(wa,sa‘)f(ﬁa,sa > 0); (S13)
1~ ~ o~ o ,
|- T tusr (¥ = P, = Orus,Bugus,) | < dap(0+). (S14)

where p(-) is a vector of first derivatives of p(-), and I(-) is a vector of indicator functions
applied to each coordinate of ,B'a’ s,

We divide the proof into two main steps. In Step 1, letting M = {(v,8) : ||v —
H'v*||oo < Cy, [|B—B7us, |l < C9,} for some constant C, we show that, with probability

tending to 1, there exists a vector (7,, B, rus,) in M that satisfies (S11), (S12) and (S13).
In Step 2, we set 3, = (Ba,Tusaa 0), and show that (7,,03,) satisfies (S14). Together these
two steps prove (a) and (b) of the theorem. Then (c) follows from ||Ba,TUSa — Brus,ll2 <

Vi+ Sa||/8a,TUSa - IB;“USG oo N R R
For Step 1, by (1), (2), and ¢ = Fvy* — F5, + (Urus, — Urus,)Barus,, We have

Y - F:)\/a - UTUSaﬁa,TUSa = UTUSa (ﬁ}usa - ﬁa,TuSa) +e+¢.

Therefore,
1 (U, P
E (ﬁs ) <Y - F’Ya - UTUS /Ba,TUSa>
! UUr UyUs, \ ( Br —Bur . Usle+)
US Ur US Ugs, /Bsa Ba.s Us (e+¢)
k[ BB (o >+1 (Or ~Urye+ U
Bs, —Bas,) 1 \Us (Usa—Us)€+UsC
1 (UT_gT)/UT (UT_ﬁT)US }—ﬁ:aa;p
n\(Us, —Us,)Ur (Us, —Us,)Us, ) \B%, — Bus.
5 ) ()
= Kn " N + — / + ) S15
(5&1 — Buas, n 5, € Rg, (815)
where

1 - * -y * o -
Rrus, = - {(UTUSa ~Urus,)'Urus,Bros, + Urus, (FY" — F5,) + (Urus, — UTUSa)/E} -
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By Lemma 12, we have

_ logp (1 't
| Rrus, [l = Op (\/7 (% N v/ Pmin .

In addition, by Condition 1, Ujj€; is sub-exponential. Therefore, by Bernstein inequality

and the union bound, we have [|[n"'U7 g €|lc = Op ( (logp)/n). Together,

Lo
|~Uus, €l + | Bros. [l = Op (3n) , where 6, = /(logp) /n{1V (n'/"//pmin)}. (S16)

By Condition 7 and the sub-Gaussian assumption on w, it holds with probability tending to

~

1 that Apin(K ) is bounded away from 0. Then by (S15), there exists 3, » € M that solves
(S12). By the assumption that \/nA.p(d,) = o(1), we have A\op(|B,.s,1) < AaP(dn) = 0(dn)

~

for all 8,5 € M. Then, by (515), there exists 3, 5, € M that solves (S13). Finally, as

we show in Lemma 13, ||n*1ﬁ’/(Y —UB, — FH'v")||s = Op (6,), and thus there exists
B..s, € M that solves (S11), which completes Step 1.
For Step 2, let ¢, = (0, Xp(|B,5,)1(By s, > 0)), we have

o~/ =~ o~ o~
nflU(Tusa)c(Y —Fy,— UTUSa/Ba,TUSa)
o ~/ % ~ _ ~/ _ ~/
= 07U s, Urus, (Brus, = Barus,) 17 Urus,)c€ + 17U (pug,)e€
= 0 'Ulrus, Urus, K {erus, —n ' Urus,€ — Rrus, }
~/ ~/ ~ I ~ *
+07 U (g, y0€ + 107 U (pus,)e (FY* = FA,) + 07U rus,)e(Urus, — Urus,)Bros,
y Condition 9 and the sub-Gaussian assumption on U, with probability tending to 1, we
By Condition 9 and th b-G i i U, with babili di 1
have ||n~! /(Tusa)cUTuSaKr_LlHLoo = O(1). Therefore, by (516), we have
)‘;1HnilU,(TuSa)CUTUSaKgl{nilU/TUS,le + Ryus, }Hloso
< AT Ulrus) Uros, K e In™ ' Ufug, € + Raus, [l
== Op (571)\;1) == Op(l).
Next,

A I U s, Uros, K Aab(18a0s, Do S (180 r0s, ) < Bldn) < (0+).

Moreover, by Lemma 12,

— — =5/ -ty * T~ - ry *
At 1||U(TUS(,)C€ + U rusye(FY — F¥,) + Urus,)-(Urus, — Urus,)Brus, |l
== Op (6n)\;1) = 0p(1>.

Putting together the above results, we have that ,@ satisfies (S14), which completes Step 2.
Finally, we prove (d) of the theorem. By Lemma 12, when puin > n%/2, || Rrus]lee =
op (n™1/?). Then, it follows from (S12), (S14) and (S15) that

VilBog —B7) = =K 'Uhe+op(1).

7



1
vn
Since v/nAp(|Bas,|) < vAAap(dy) = o(1). Therefore,

K 'Vidap(|B,s]) = Op (Vadap(dn)) = op (1) .

ViBus, —Bs) = K,'Us e — K" Vn\p(1B,s,)1(B,s, > 0) +op(1).

This completes the proof. O

S5 Proof of Theorem 4

Proof. We divide the proof into two main steps.
In Step 1, define T} as

Ty = 0. *(wp + Vnhy,) ¥ (w, + vnhy,),

where h, = A" —b, ¥ = AQrA’, Q7 is the the submatrix of Qpg, = E;}Tusa with rows
and columns in 7', and Z;}usa is inverse of the submatrix of 3, with rows and columns
in TUS,, and w, =n"'?(A 0) K,'U} g4 €. We first show that T,,/r = Ty/r + op (1).
By Theorem 3, we have

2 1 '
(G ) = G (o) o
for some remainder term R, such that ||R,||2 = op (1). Then we have
ViA(B,r — B7) = w. + AR,
where R, 1 is the subvector of R, with indices in 7. By definition, AB3} — b = h,,. Then,
Vi(AB,r —b) = w, + AR, 1 + V/nh,,.

Let ¥, = A(K,")p A, where (K

" -1 is submatrix of K ! with rows and columns in 7.
We have

V¥, 2 (AB, ; — b) = ¥, (w, + AR, 1 + Vih,). (S17)

Next, we bound ||\/ﬁ\Il;1/2(ABa,T—b)||2. By Lemmas 3 and 12, || 2A|, = Op (1), and
|Rar||2 = op (1). Then it follows that

19, 2AR, rll: < (|9, Allol| Rzl = 0p (1) (S18)
Therefore, \/ﬁ\II;I/Q(ABa,T —b) = ¥ Y%(w, + \/nh,) + op (1). We further note that,

€

Bl 2w} = tr B {9, 2B (w0, ) 9,2} = 707



Then, by Markov’s inequality, |[®;%w,|ls = Op(y/r). By Lemma 3, Ama(¥,') =
Op (1). By Condition 11, ||k, |2 = O(y/7/n), so that ||/n®,?h,||; = Op (v/r). There-
fore, [|/n®,"*(AB, 7 = bl = Op (V). By Lemma 3, | }/*(AQrA") 19,/ — I|; =
Op (4 + t)/+/n), where Q7 is the first T rows and columns of the matrix

~] o~ —1
&, —n(Tr0r DaUs )
“ US UT UsU

Therefore, under the assumption that s, +t = o(n'/?), we have

VY, 2(AB, 7 — b)Y {02 (AQr A)) L2 — I {/n®;, 2 (AB, 1 — b)}|2
< | OYAAQrA) I, — I||||V®, 2 (AB, - — b)|3

- 0n (1 E0) ) s

Let Tyo = 8;2n(ABa7T - b)’\Ilgl(AB&T —b). By T,’s definition and (S19), we have
02Ty — Twwol = op (r). Condition 5 implies 1/62 = Op(1). Therefore, |T,, — Ty 0| = 0p (7).
Next, we show that |1, 0 — To| = op (r). Let T)y1 = E;2||l1’_1/2wn + \/ﬁ\I’_l/thHQ. B
(S17) and (S18), we have
i o = ¥, w, + V¥, Phy, +op (V)]
= || @ 2w, + v V2h, |12 + op (1) + op ( 2w, + \/ﬁhn)>

= ||, Pw, + vn¥, ?h,|3 + op (1) +op (7)
= 0°Ty1 + (W, + vnh,) (¥, — O ) (w, + /nh,) +op (r).

By Lemma 3, we have that |[® ' — @~ !||, = 0p(1). Since ||wy 2 < T2 ¥, 2w, =
Op (y/7), and by Condition 11, ||\/nh,||2 = Op (/7). Therefore, |w,+/nh,|s = Op(y/T).
Considering that 1/52 = O(1), we have T, o = T, 1 + op (). Finally, we have
Ts — Tp| = 57 — 02| o1/2 w2 ||, —
w,1 0|—W|| w, +/n nlla =op(r).

Therefore |1, 0 — To| = op (7).

Combining the results |1, — T\, 0| = op (r) and |T3, 0 — To| = op () completes Step 1.

In Step 2, we show that the x? approximation holds for Ty. Recall the definition of Ty,
which can be written as Ty = 06_2||\Il_1/2wn + v/n®~2h,||2. By the definition of w,,

06_1‘1’_1/20171 Z 1/2 A O) QTUS’ U; ,TUS, €1 = ZSZ

By direct calculation, we have Z?:I Var(§,;) = I,.. Because of the sub-Gaussian assumption
on € in Condition 1, we have E|e|*> < co. Then,

1/4
1/4ZEH€ Hz = —g,/QZEH‘I’ 1/ (A O)QTUSaUzTUSaQHQ



n
rl/4

= —3/2E|€|3 ZEH‘I’A/Z (A 0) Qrus,Uirus. |l
i—1

(noe)

1/4

r - _ 1/2 1/2
e Y CR{[®2 (A 0) Q% 131970, Uirus, I3}
=1

(no)®? 4

N

ple
S o2y BIU! 15, Qr0s. Ui rus, |2,
€ 1

174 - ,
S n1/2E’uérusaQTuSauTusa\d/Q = o(1),

where the third-to-last relation is due to the fact that
122 (A 0) Q% (|2 = A [tr{q:—l/z (A 0)Qrus, (ﬁ) \11—1/2” =,
and the last equality follows from Condition 12. Then by Lemma 4, we have
Slclp ‘Pr{aﬁ_llIfl/zwn eC}—Pr(Z e C)‘ — 0, (520)

where Z ~ N(0, I,) and the supremum is taken over all convex sets C € R".
Consider a special subset C, of C, where

Co={z€R" ||z +/n/o2® V2|2 < z}.

It follows from (S20) that

sup |Pr{(no?)"Y?®"2w, € C,} — Pr(Z € C,)| = sup |Pr(Ty < 2) — Pr(3*(r,vy) < )| =0,

where v, = no 2h., ¥ 'h,,.

Consider any statistic T = Ty 4 op (). For any x and € > 0, we have

Pr(x*(r, v,) x—re)+o(l) <Pr(Ty <x—re)+o(l) < Pr(T" < x)

<
< Pr(Ty <z +re)+o(1) <Pr{x’(r,v,) <az+re}+o(l).
In addition, by Lemma 5, we have

lin(l) limsup |Pr{x*(r,v,) <z +re} — Pr{x’(r,v,) <z —re}| — 0.
E— n

Together, we have
sup |Pr(T* < ) — Pr(x*(r,v) < x)| — 0.

This completes Step 2.
Combining the results of Step 1 and Step 2 completes the proof. n
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S6 Consistence of 5>

Recall the estimator for o, in Section 3, 62 = n~! Z?zl(yi—a:ﬁﬂ where 3 = argming(2n)~"

S (yi — 2iB)? + Ac||Bl1. The next proposition shows that o2 is a consistent estimator of
o2, and thus 72 satisfies Condition 5.

Proposition S1. Suppose x,, satisfies the factor decomposition in (1) for m € [M], and
Conditions 1 and 3 hold. Suppose s*(logp)/n = o(1), where s* = |supp(8¥)|, and A\ =
C+/(logp)/n, where C is a positive constant. Then 62 = o2 + op (1).

Proof. Letting H, =n~'>""  x%* and A = 3 — 3", we have

1 " —~7 —~ ~/ 2 n
oot @4 AHA-A (2 qa ). 321
O, O, n €; o, + n €T ( )

i=1 i=1

By the sub-Gaussian assumption on ¢; in Condition 1, it follows from the standard concen-
tration result (e.g., Ning and Liu, 2017, Lemma H.2) that

%ie?—O’?:OP (\/W)

Condition 3 implies that Ayin (E(25?)) > Amin(E(u$?)) > c. Then, it follows from Raskutti
et al. (2011, Proposition 1) that the restricted eigenvalue condition holds for H,. Then,
following a similar argument as in the proof of Ning and Liu (2017, Lemma B.3), we have

A'H,A = 0p (s*(logp)/n). (S22)

Moreover, €;z;; = €i(ZkK:1 Nk fie + wij), where X\ is the (j,k)th element of A. It
follows from Conditions 1 and 3 that z;; is also sub-Gaussian. Therefore, €;z;; is sub-

exponential. This implies that [[n™' Y " | €&l = Op(y/(logp)/n). By the well-known
estimation error of the Lasso estimator (e.g., Negahban et al., 2012, Corollary 2), it holds

that |Al, = Op (s* (logp) /n). Therefore,

. n R n
(2/n)AY x| < |A[L(2/n) Y el = Op (s (logp)/n). (523)
i=1 i=1
Putting (S21), (S22) and (S23) together completes the proof. O

S7 Proof of Proposition 1

Proof. To prove (a), consider regressing y using all but the mth modality. Letting P_,, =
X (X', X ,,)'X" ,thenY_,,=P_,Y. Letting £ = X,,3", + €, then

IY =Y |3 =Y'(I, - P_,)Y =€ (I,— P_,)¢
=€, — P_p)e+2(X,.0;,) (I, — P_n)e+ (XnB,,) (I~ P_) X6,

11



Taking the expectation on both sides, and noting that,

E{el(In - P—m)e} = (n - p—m)0527
E{2(X,.8;,) (In — P-n)e} = 0,

E{(XnB,) In — P-m)X B} = E
B

x

m_m[Emmlmﬂn{(XmB;)/(In - P*m>Xm/8;kn}]
nltt{(Tn = Po) o] = (0 = Do) 0y -

To prove (b), note that EHY—IA/H% = (n—p)o? when regressing y on all data modalities.

Then a direct calculation proves (b).

To prove (c), by factor decomposition, we have x,, = A, f + u,, and x_,,, = A_,, f +

Uu_,,. Then

U_p, 0 Y, X,
()= (0) Gz 5,
where 3, =A_,A"  +3, . Consequently,

E(u_plz_p) =%, .5, ., Var(u_ple_,)=%,,—-%, .3 ' %, .

AsA_,f=x_,—u_p,, then f =D} A" (x_,,—u_,,), where D_,, = A’ A_,,. Then,

T8, = AL+ un B, = (o — Un) C By, + By,

where C,,, = A_,, D~} A’ . Therefore, we have

E(@), B0 |e) = {2 — B(u_n|e_)YCB, = 2 (I~ £, 5, VCou ;.

Moreover,

Var(z,, 8% ,.|z—m) = B8,{C,Var(u_,|®_,)Cp + 2, )6,
= ﬁfn/{C;n(Zu_m - Eu_mzaj,lmzu_m)cm + Zum}ﬁjn

Then, by Woodbury matrix identity, we have
3, =20, -8 AT+ AL S A TAL S
Then we have,

C.,(Z - X E;_lmzu—m)cm = An(Ix+ A/—ng_lmAfmylA;n-

U—m U—m

Plugging these equalities into (S25) gives
Val"(wﬁnﬁ’im@—m) = B;kn/{Am(IK + A/—mij_lmAfm>71A;n + X3, 1B

which completes the proof of (c).
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S8 Additional technical lemmas

Lemma 1. Suppose Conditions 1-8 hold. For any m € [M], there ezists a nonsingular
matriz H,, € RE~*En such that

(@) maxyeqx, ) (1/n) i, (FoH )ik — fim, |2 = Op (1/n+ 1/py,), where (FoH )y is the
(i,k)th element of FH ., and fi,, is the kth element of f, ..

(b) maxicpull|F5m = Hunfimllz = Op (1/v/n+ 0" /).

(¢c) Mk, — HunH,|2=0p (1/vn+1/\/bn).

(d) maXie(n] jefp,) [Ui; — ij| = Op ( (logn)/n +n'/*/ \/pm>'

Proof. The results of (a) and (b) follow from Lemma C.9 of Fan et al. (2013). The results
of (¢) and (d) follow from Lemmas 3 and A.3 of Li et al. (2018). O

Lemma 2. Let F = (F4,...,Fy), F = (IA'H,...,?M), where IAWm is obtained by run-
ning PCA on the mth modality, H = diag(H,,...,Hy), U = (Uy,...,U,,), U =
(U1, ..., Un), and pmin = mily,eia Pm- Then the following results hold:

(a) maxicp || f; — HF,ll2 = Op (1/v/0 + 0"/ /Praim) -
(b) |[Ix — HH'||y = Op (1/5/7 + 1/\/Doim) -

(¢) maxiep jepp) [Uiy — uij| = Op ( (logn)/n + n1/4/\/pmin>'

Proof. The results follow given Lemma 1 and the fact that the convergence rate depends
on the slowest one among all M modalities. O]

Lemma 3. Suppose the conditions of Theorem 4 hold. Then the following results hold:
(a) |2, 2A]l = Op (1).

(6) Ve, Ryl = Op (V7).

(c) 1%,/ (AQrA) 7 W/” — Il = Op ((t + sa)/V/n).

(@) @, — ¥ =op (1).

Proof. The results of (a)—(c) follow from (5.4), (5.5) and (5.6) of Shi et al. (2019).
For (d), we have ¥, ! — U~ = ¥ (W — W )& Therefore, ¥ ' — T |, < || ¥ —
W, ||2. Moreover,

1@ — @, [l2 = [ A{Qr — (K, )} Al S 190 — (K )zl < 13,705, — K 2,

where ¥, 7yg, is the submatrix of 3, with rows and columns in 7US,,. By the sub-Gaussian
assumption on u, we have | K, — 3, 7us,||cc = Op <\/{log(t + sa)}/n> Then,

||Kn - Eu,TUSaHZ S (t + Sa)HKn - z]u7TU$'a||c>o = op (1) .

13



Consequently,
1 — Tl S 120 70s, — Kotz < K 20120 rus, 2 K — Surus,ll = op (1)
This completes the proof. O

Lemma 4. Let { X}, denote independent p-dimensional random vectors, with E(X;) =
0 and Y, Var(X;) = I,. Let Z denote a p-dimensional multivariate normal vector, with
mean 0 and covariance matriz I,. Then,

P(iXieO) —P(Ze()

for some constant cqo, where the supremum is taken over all convex subsets in RP.

sup

. < Y B(IXD).

=1

Proof. The result follows from Lemma S6 of Shi et al. (2019), which was originally given
in Theorem 1 of Bentkus (2005). O

Lemma 5. Let x*(r,7) denote a x* random wvariable with r degrees of freedom and the
non-centrality parameter y. Then,

lim sup |P(X2(7", v) <z +re)— P(X2(7", v) <z —re)| = 0.
=0+ 1r>1 >0

Proof. The result follows from Lemma S7 of Shi et al. (2019). O

Lemma 6. Suppose Conditions 1-3 hold, and \; < \/(logp_,)/n+ 1/\/Pm. Then,

1B = Bl = 0p (52, {V/(ogp_w)/n+1/Vim )

Proof. Recall that

n

-~ ~/

(Igfmv %m) = argmin 2_ Z(yl - w;,—m/ﬁfm - fi,m’Ym)Q + )\1||/6||1 (826)

(ﬁ—m77m) n =1

By Lemma 1, there exists a nonsingular matrix H,, € R¥m*Emn guch that F,, = F mH
is a consistent estimator of F',,. We note that (S26) is equivalent to

n

~ ~1

(B—m? :?m) = argmin o Z(yl - w;,fmﬁ—m - fi,m'Ym)Z + )\1H/8H17 (S27>

(ﬁfma’)/m) 2n =1

where }:m is the ith row of F,,. Then, solving (S27) is equivalent as replacing ;‘Zm with
Ji.m, which becomes a standard M-estimation problem.

Let Q = (X _, F), CAQ = (X_m,l?‘m), and é = Qﬁ, where H = diag(I, ,,,H) €
RI-m*4-m ig a block-diagonal matrix, and ¢_,, = p_,, + K,,,. Let 9 = (8",,,,7,,) € R,

Y = (B,,m,‘)\/;n)’ € R%m denote the solution of (S26), ¥ = H 9eRmandd =

14



ﬁ_l(,@im, ~<) € R4-m. By direct calculation, we can verify that B_m = ﬁ[pfm] =I5

where 9 = (B/_m,:ﬂn)’ solves (S27). Then, it follows that

1B = Bl = 194 = g, gl < 19 =9 1,

To bound |9 — 'E‘*Hl, we turn to bound ||V/(1)||, and check the restricted eigenvalue
~1

condition on V2{(), where £(9) = (2n) "' 37" (i — &} 0B — FimYm)*-
To bound ||V{()]|s, we aim to show that

o] = [E3ae] —or (== o).
i=1 m

where CNQZ is the ith row of CNQ Indeed,

3= -
=1 i=1

0 jE[g-m]

+ max
JElg—m]

Z Qij€i

By Condition 1 and Bernstein inequality;,

1 10g ¢_m
P(— 0y =21 ><qu0rall]€[ ]
n n
Then, by the union bound,

ZQz‘jGi >
1 n
ﬁ Z QijEi =Op
i=1

where the last equality is due to the fact that, since K, is fixed, ¢_,, < p_,,. We choose to
present the results using p_,, in order to unify the presentation. Then by Cauchy-Schwatz

max
J€lg—m]

(Vlogg—)/n) = Op (Vlogp-p)/n),  (s29)

inequality,
n Lo 1/2 Lo 1/2
max Qi — Qij)es| < max | — Qii — Qii)? —y ¢
J€lg—m] ; ’ ! J€lg—m] ( ZZ;< ! i) n ;

If we use the mth modality to obtain } it follows from Lemma 1 that

ma (1/n) Z| ~ o= On (n +1/p,)

where (ﬁ’mHm)Zk is the (i, k)th element of f‘mHm and f;n, is the kth element of f; .
This implies that

n 1/2
max (% > Q- Qij)2> = Op (1/vV/n+1/\/amn) = Op (1/v/n + 1/+/Dm) -

il
J€lg—ml] i=1
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Since (n7' Y1, €2)1/2 = Op (1), we have

zlz

max = Z(@U — Qi)

je[qu] n

= Op (1/v/n+1/\/pm) (S30)

Combining (529) and (S30) together proves (S28).

To check the restricted eigenvalue condition, it follows from Condition 3 and the fac-
tor decomposition (1) that Ay (E(2®2)) > Ann(E(u®2)) > c¢. In addition, the sub-
Gaussian assumptions on f_, and w_,, imply that x_,, is also sub-Gaussian. Since
V%s,mﬂs,mg(ﬁ) =n 'y, mf?;fm, where S_,,, = {j € [p_m] : B; # 0}. Then, it fol-
lows from Proposition 1 of Raskutti et al. (2011) that the restricted eigenvalue condition
holds with high probability.

Given that both (S28) and the restricted eigenvalue condition hold, the rest of the proof
follows the standard arguments of the high-dimensional M-estimator (Negahban et al.,

2012, Theorem 1). A relevant proof in the context of factor model can be found in Theorem
4.2 of Fan et al. (2016). This completes the proof. O

Lemma 7. Suppose Conditions 1-3 hold. Then,

[ 2o =il = (\/logg;—m (1 F))

Proof. By definition, it suffices to show that, if we choose Ay = C/(logp_,)/n{l Vv
(n**/,/pm)} for some large enough constant C, wj is in the feasible set with high proba-
bility; i.e.,

1 n
=Y @i, — @)
=1

Lo < C/(10g p-m)/n{1V (n**/ /D) }. (831)
We have

I ~
_Zwl mfzmk_ i,—m Z)Zﬁzmi,—m<fi,mk zmk Zml —-m zmk_w;,—mw;;)?
=1

where fim = H,f,,, for some non-singular matrix H,, € R**¥ and fimk is the kth
element of fIm The sub-Gaussian assumption in Condition 1 implies that X;; fz’tmk and
Xijx; _,,wy, are sub-exponential. Then, by Bernstein inequality and the union bound,

1 — log p_
— x; _m(f — X, W =0p .
Hn — ’ ( R ' k) o0 ( n

On the other hand, we have

1 & ~
.|.

)oo S (I?Sa;LX|fl,mk zmk ) H_sz mH



~ 1 « 1 nl/4 log p_p,
< (I?Sa;LX|’fi,m - f;r,mH2> HE;%me =Op (% + \/%) Op (\/ - ) :

where the last equality follows from Lemma 1. This completes the proof. n

Lemma 8. Suppose Conditions 1-38 hold, and Ay < \/(logp_p)/n{1V (n'/*//pm)}. Then,

N . ) [logpom n'/t

Proof. Recall that, for the kth column of W, we solve

_ . RS >
wy, = argmin||wy||;, such that Hﬁ E i o (fim, — m;_mwk)H < Ao,
i=1

o0

where f:mk is the kth element of }Zm Let Sy = supp(wj}), where wj, is the kth column
of W* = E(x?, ) "E(x;—nf;,,). Then, we have ||w} ||y > ||ws,|l1 + [|@s¢]l;. By the
triangle inequality, we have [|wge|[; > [|lw¥, [[1 — ||ws, — w3, [|1. Let Ay = Wy, — wj. Then,
1 =0, we have [|Ag, ||| > [|Ag

by noting that ||wke. 1. It follows from Lemma 7 that
k

1 « -~ N [1og p_m n'/4
=Y @i _pm(fim, — ;W H =0 = (1 V .
H n ; ( F ’ k> 0o F ( n vV Pm

Denote H, =n~ >0 x H,;=n"'Y" @i _mfim, and Ay, = @), — wj. Then,

i,—m)

N -~ 1ng—m TLl/4
Hoby | [ B = |+ [y~ B V)]

Together with || Ay < 2[|As, 1 < 2v/5%|Ak|2, we have

N N logp_m n'/4
H,A H — 05| 1A (1\/
| =or (H iy 22 N
~ sy logp_m n'/4 >
= 0 A k (1v . S32
P (H el /= N (S32)

Note that Condition 1 and (1) imply that x_,, is sub-Gaussian. In addition, Condition
3 implies that Ay (E(?,)) > ¢. Then, it follows from Proposition 1 of Raskutti et al.
(2011) that the restricted eigenvalue condition holds for H, with high probability, i.e.,
AH, A, > /i”&]g”% for some £ > 0 and all Ay, such that HAS,“; 1 < H&gkﬂl This result,

together with (S32), implies that

A 1A flogp (|, n*
[AL]l1 < 2¢/spl|Aklla = Op (Sk - ( V =

This completes the proof. O

AH, A, < ||Auh
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Lemma 9. Suppose the conditions of Theorem 2 hold. Then, uniformly for all 3* € N,

1/2 —1/2

IV, s =I5 15 )S(Bo 0)l2 = 0p(1):

Proof. First, we note that

—1/2 1/2 1/2 ~1/2 ~—1/2
P o PR im\ﬁ_ =1Ly 15,015,062
1/2 ~1/2 1/2
< || :‘;nL‘Bf’m B I77rL‘ﬁ ||2 < HI*WL‘B— A/m‘ﬁ || < ”I*'m|ﬁ—7n 'leﬁ || /

<SVEulI 5. = Iy, 147 = op(1),

where < follows from Condition 6, and the last equality follows from (S7) and that K, is
fixed. Lemma 10 implies that [|\/nS(B_,,,0)|2 = op (1). Therefore,

1/2 —1/2

IV, s, —I5 05 8By 0)]lz < ||I~ym|g, BIVRS (B, 0)]l2 = 0p (1).

This completes the proof. n

—1/2

Lemma 10. Suppose the conditions of Theorem 2 hold. Then, uniformly for all 3* € N,

Vi, s {S(B_,,0) - S(B",,.0)} = op(1).
Proof. By (S4), we have that
1

(W =W)X, (Y -~ X_.5",,)
1

no

(X~ WX X )B_y— B =1+ 11

€

For the term I, under H,, Y — X _,,8", = X .3, + €. Therefore,

. 1
XY - X 8 e =

no? 2
1 / 1 / * * Ing—m
S || QX—mEHOO + || QX—m(FmﬁYm + Umlgm)”OO = OP )
nog nog n

where the last equation follows from the sub-Gaussian assumption in Condition 1, and an
application of Bernstein inequality. A careful inspection of the proof of Lemma 8 shows
that the lemma still holds under H,. Therefore, following the same argument as in (S5),
for each k € [K,,], we have

|(nod) ™ (wi — i) X, (Y = XnB7,)| < [Jwi — @il (nod) (Y — X087, |

= O0p (1/\/%) .
(S33)

Therefore, I = op (1/y/n).
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For the term IT, we bound ||B_, — 8% |1 and [|(no?) ' F, X o — W X' X _llwe
respectively. To bound ||B_,, — 8%, ||1, under H,, we only need to replace ¢; in (S28)
with ¢, + U;,,8,,. Due to the sub-Gaussian assumption of U,,, in Condition 1, and
the fact that ¢; and U, ,, are uncorrelated, the bounds we have established in (529) and

(S30) still hold. Therefore, uniformly for all 3* € N, ||3_,, — 8|l has the same upper
bound as the one established in Lemma 6. In addition, the bound we have established for

I(no?) "' F X _,, — W X' X _,|le also holds uniformly for all 8* € . Then, it follows
from (S33) that 1T = op (1/4/n).
Combining the bounds of the terms I, I/, and Condition 6 completes the proof. O

Lemma 11. Suppose the conditions of Theorem 2 hold. Then, uniformly for all 3* € N,
S(B 7)) — S(B,,0) — I 15 ~h =o0p (n?).

Proof. By definition, we have
Vi{S(B".v,,) — S(BL,,0) — I 15 Vit

1 / * */ * *
= \/ﬁU? Z mi,mlgm(fLm -Ww wi,—m) - Iﬂym\ﬁfmﬂ)/m

=1
n

1 */ / * */ / *
- W Z[(fz,m -W mi,—m)-fi,m'ym - E{<fz,m -W wi,—m)fi,mpym}]
€ i=1

+

1 n
J/no? Z Ui B (Fim — W, ) =1+11.
€ i=1

For the term I, its kth element equals
1 . * * * *
W Z [(fl,mk - wklwi,—m) f;,mFYm -k { (fi,m - wklwi,—m) f;,mp)/m}} :
€ =1
By the sub-Gaussian assumptions on f; ,, and wj'; _,, in Condition 1, and the standard
concentration inequality (e.g., Ning and Liu, 2017, Lemma H.2), the kth element of I is
bounded by Op (||, |l2v/10gn) = op (1) for all k € [K,,], and this bound is uniform for
all B e N.
For the term I, its kth element satisfies that, uniformly for all 3* € NV,
1 a * *
iz 2 UtnlBin i, = w1’ n) = Op (Jlbm, l2/logn) = 0r (1),

=1

Combining the results for the terms I and I1 completes the proof. O
Lemma 12. Suppose the conditions of Theorem 3 hold. Then,

logp< 1 n'/4 >
R|l. =0 4 ,
|| || P( n \/ﬁ 4/ Pmin

where R =n"" {(ﬁ -U)UpB" + ﬁ/(F'y* —F3,)+ (U — U)’e}.
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Proof. First, we bound n‘lﬁ/(F'y* —~F7,). By Lemma 2, |U —U]|» = op (1). Therefore,

1~/ . S~
-U (pr _F’Ya)

1 ~
s |-uwEy - Fa,)
n 0 n 00

1 1 ~
< |Fu(Fy - FEHHEY)| + H—U’(FHH’ < FF)
n o) n 0o

(S34)

1 1 -
< |FuFray - HEH)Y| + H—U’(FHH"y* _F7,)
n oo n 0o

Let ¥ = (Ix — HH')~*. Then, ||¥|2 < |[Ix — HH'||s||v*|]2. By Lemma 2,
||IK — HH/||2 = OP (1/\/5%‘ ]-/\/pmin) .

Since ||v*[|3 < Var(f'y*) < oy = O(1), we have ]l < [I¥llz = Op (1/v/n +1/\/Purin)-
Then,

H—U F(Ix— HH')y

o j€[p]

= max‘—z l]Zfzk’Yk)
=1

By Condition 1, K is fixed, and ||7||2 = Op (1/\/5—1— 1/%), we have that Zszl fir Ve
is sub-Gaussian with variance bounded by O (1/n + 1/pmin). Moreover, U;; is also sub-
Gaussian and uncorrelated with f, for any & € [K]. Then, Uj; Ziil fir Yk is sub-exponential.
Applying Bernstein inequality, we have

'Y*OO—OP<\/E(\/1— ﬁ)) (S35)

. (936)

1
H—U’F(IK _HH)
n
On the other hand, we have
1 —~
S UEEY A
0o n

1 - | -
H “U(FHH'~v —F7,)| < H “U'(FH - F)H'~*
n 0o n

For the first term in (S36), we have

K

1

1 .
H—U’(FH _P)H~
n

n

(FH — F)o.(H'v") )H—

IN

Il (a7, F, ||2) H%ZU:

=1

= op<\/w>op(\/_ \2;) (S37)

where the last equality is implied by Lemma 1, and the fact that | H'y* ||z < ||H'||2||7*||2 =
O(1). For the second term in (S36), we have

o0

1.~ R 1 n
H—U’F(H’v* )| S H—U’F(H’v* —Ja)
n 0 n

< H - H_ 1)1
w_<£g%|( Y = Fo )k )Z Tl
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Since 74, € M, we have maxyex] |(HY* — 7,)kl = Op (6,). By Condition 1, for each
k € [K], Uy fir is sub-exponential. Then ||n U, fir|lcc = Op <\/(logp)/n>. Since K is
fixed, S0, 11U fulloe = Op (/Togp)/n). Then,

lo lo 1 nt/4
OO:OP((SH)OP< §p>=op< ip(%+ p.)>.

1.~ R
H—U'F(H"Y* — )
n

Therefore,
1 ~ logp (1 n'/4
~U'(FHH'~v* - F = — :
| vy - F3,)| 0P< " (ﬁ*m ($38)
Then, it follows from (S34), (S35) and (S38) that
1~ ~ logp (1 n'/4
U (Fy*— F =0 — . S39
|- ey~ P p< B (S o= (539)
For ||n~ (U — U)'€l|s, we have
N 1 & 1 logn n'/4
flU_U/ oo< Ai'_ i — il = —_— .
I~ nu_@yw]won;e @<ﬁ< By
(540)

where the last equality follows from Lemma 2, and n='> " &, = Op (1/y/n), since ¢; is
sub-Gaussian. Similarly, we have

e 1 logn ~ nt/*
n'(U—-U)UB|w=0p | — + : S41
o @ - UyUB p<ﬁ< By I (s11)
Combining (S39), (S40) and (S41) completes the proof. O

Lemma 13. Suppose the conditions of Theorem 3 hold. Then,

= Op (0n) -

(e 9]

H—f‘,(Y —UB, - FH'~")
n

Proof. The proof is similar to Lemma 12. We outline the key steps here. We have

JIN A~ =~ 1 = o
|-F(y-0B,-FH'y)|_s||>F{Fy -FHy +UB - UB, +¢}|

1 | ~
< H—F’{F'y* _ FHH'~" ‘ + H—F’(FH _F)H'~*
n o] n

1 1o |
+H—F’Uﬁ* n H—F’Uﬁa + H—F’e
n ') n 0 n

’ o

Similar to (S35), we have

1 1
H—F’{F'y*—FHH"y*} ) - H—F’F(IK—HH’)V*
n 00 n

o (V=R ()
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Figure S1: The heat map of the correlation matrix of the multimodal neuroimaging data.

Similar to (S37), we have

1 —~
H—F’(FH _F)H'~*
n

log K (1 1/4
o ({EEE (L),
Note that [|87[|5 < Var(z'8*) < o) = O(1), and Anax(Xy) = O(1). Therefore, U;3" is
sub-Gaussian with bounded variance. Since fj, is sub-Gaussian, f;,U.3" is exponential.

Then by Bernstein inequality, we have that ||[n ' F'UB"| = Op ( (log K)/ n) Similarly,
||n_1i?\‘/l7,['1*||OO =0Op ( (log K)/n) Finally, fire; is sub-exponential, then ||[n~1F'ello, =
Op ( (log K)/ n) Combining these results completes the proof. O

S9 Additional numerical results

Figure S1 shows the heat map of the correlation matrix of the multimodal neuroimaging
data analyzed in Section 7.3. It is seen that some covariates are highly correlated.
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