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ABSTRACT
Multi-group data, which include the same set of variables on separate groups of samples, are commonly
seen in practice. Such data structure consists of data from multiple groups and can be challenging to
analyze due to data heterogeneity. We propose a novel Joint and Individual Component Regression (JICO)
model to analyze multi-group data. Our proposed model decomposes the response into shared and group-
specific components, which are driven by low-rank approximations of joint and individual structures from
the predictors respectively. The joint structure has the same regression coefficients across multiple groups,
whereas individual structures have group-specific regression coefficients. We formulate this framework
under the representation of latent components and propose an iterative algorithm to solve for the joint
and individual scores. We us the Continuum Regression (CR) to estimate the latent scores, which provides
a unified framework that covers the Ordinary Least Squares (OLS), the Partial Least Squares (PLS), and
the Principal Component Regression (PCR) as its special cases. We show that JICO attains a good balance
between global and group-specific models and remains flexible due to the usage of CR. We conduct
simulation studies and analysis of an Alzheimer’s disease dataset to further demonstrate the effectiveness
of JICO. R package of JICO is available online at https://CRAN.R-project.org/package=JICO. Supplementary
materials for this article are available online.
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1. Introduction

Many fields of scientific research involve the analysis of het-
erogeneous data. In particular, data may appear in the form of
multiple matrices, with data heterogeneity arising from either
variables or samples. One example is the multi-view/source data,
which include different sets of variables on the same set of
samples. The sets of variables may come from different plat-
forms/sources/modalities. For instance, in genomics studies,
measurements are collected as different biomarkers, such as
mRNA and miRNA (Muniategui et al. 2013). Another example
is the multi-group data, which include the same set of variables
on disparate sets of samples, which leads to heterogenous sub-
populations/subgroups in the entire population. For instance, in
the Alzheimer’s Disease (AD) study, subjects can have different
subtypes, such as Normal Control (NC), Mild Cognitive Impair-
ment (MCI), and AD.

We study the classical regression problem with one contin-
uous response for multi-group data. Although there are many
well-established regression techniques for homogeneous data
(Hoerl and Kennard 1970; Tibshirani 1996), they may not be
suitable for multi-group data. One naive approach is to ignore
data heterogeneity and fit a global model using these techniques.
However, a single global model can be too restrictive because
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the diverse information from different subgroups may not be
identified. On the other hand, one can train separate group-
specific models. Despite its flexibility, the information that is
jointly shared across different groups is not sufficiently captured.
Therefore, it is desirable to build a flexible statistical model that
can simultaneously quantify the jointly shared global informa-
tion and individual group-specific information for heteroge-
neous data.

There are several existing methods in the literature under
the context of regression for multi-group data. Meinshausen
and Bühlmann (2015) took a conservative approach and
proposed a maxmin effect method that is reliable for all
possible subsets of the data. Zhao, Cheng, and Liu (2016)
proposed a partially linear regression framework for massive
heterogeneous data, and the goal is to extract common features
across all subpopulations while exploring heterogeneity of each
subpopulation. Tang and Song (2016), Ma and Huang (2017),
and Chen et al. (2021) proposed fused penalties to estimate
regression coefficients that capture subgroup structures in
a linear regression framework. Wang, Liu, and Shen (2018)
studied a locally-weighted penalized model to perform subject-
wise variable selection. Wang et al. (2023) proposed a factor
regression model for heterogeneous subpopulations under
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the high-dimensional factor decomposition. However, these
models either are not specifically designed to identify the
globally-shared and group-specific structures, or impose strong
theoretical assumptions on the covariates. On the other hand,
there exist some related works for multi-source data. Lock et al.
(2013) proposed JIVE to learn joint and individual structures
from multiple data matrices by low-rank approximations. Some
extensions of JIVE can be found in Feng et al. (2018) and
Gaynanova and Li (2019). All of these decomposition methods
are fully unsupervised. Recently, Li and Li (2021) proposed a
supervised integrative factor regression model for mult-source
data and studied its statistical properties with hypothesis tests.
Palzer et al. (2022) proposed sJIVE that extends JIVE with
supervision from the response. These methods are supervised,
but focused on regressions for multi-source data.

In this article, we consider the supervised learning problem
of predicting a response with multi-group data. We propose a
Joint and Individual COmponent Regression (JICO), a novel
latent component regression model that covers JIVE as a spe-
cial case. Our proposed model decomposes the response into
jointly shared and group-specific components, which are driven
by low-rank approximations of joint and individual structures
from the predictors respectively. The joint structure shares the
same coefficients across all groups, whereas individual struc-
tures have group-specific coefficients. Moreover, by choosing
different ranks of joint and individual structures, our model
covers global and group-specific models as special cases. To
estimate JICO, we propose an iterative algorithm to solve for
joint and individual scores using latent component represen-
tation. To construct the latent scores, we use the Continuum
Regression (CR) (Stone and Brooks 1990), which provides a
unified framework that covers OLS, PLS, and PCR as special
cases. Some follow-up studies and modern extensions of CR can
be found in Björkström and Sundberg (1996) and Lee and Liu
(2013). Embracing this flexibility and generaliziblity from CR,
our proposed JICO model extends to the heterogeneous data
setup and is able to achieve different model configurations on the
spectrum of CR under this more complicated setting. It attains
a good balance between global and group-specific models, and
further achieves its flexibility by extending CR.

A diagram illustration of JICO is shown in Figure 1. The
left side shows the decomposition of the data matrices into
the joint, individual and error matrices that share the same
column dimension. The joint and individual matrices are further
decomposed into the score and loading matrices. The right
side shows the decomposition of the response vector into the
joint, individual and error components. The joint and individual
components are further regressed on the score matrices to obtain
the joint and individual coefficients.

As noted by the reviewers of our paper, the success of JICO
relies on a good choice of tuning parameters, which is at the
cost of extra computational time. For that reason, we give more
details of tuning parameter selections in Appendix D of the sup-
plementary materials. We further study the impact of different
initial values on JICO in Appendix E, and its convergence and
computational time in Appendix F. We conclude that JICO is
robust to different choices of initial values and its extra compu-
tational time is affordable compared with traditional methods,
such as PCR and PLS. Given its superior performance than these

methods, we believe the extra computational cost is worthwhile.
More details on the tradeoffs between performance improve-
ment and computational cost can also be found in Appendix F.

The rest of this article is organized as follows. In Section 2, we
briefly review JIVE and introduce our proposed JICO model. We
further provide sufficient conditions to make JICO identifiable.
In Section 3, after two motivating special cases, we introduce
our iterative algorithm. In Sections 4 and 5, we evaluate the
performance of JICO by simulation studies and real data analysis
on the Alzheimer’s disease dataset, respectively. In Section 6, we
conclude this article with some discussion and possible exten-
sions. Proofs and additional details are provided in the supple-
mentary materials.

2. Motivation and Model Framework

Suppose we observe data pairs (Xg , Yg)G
g=1 from G groups,

where Xg ∈ Rng×p and Yg ∈ Rng are the data matrix and the
response vector for the gth group, respectively. Each data matrix
has the same set of p explanatory variables, whereas the samples
vary across groups. We let X = [X′

1, . . . , X′
G]′ ∈ Rn×p and

Y = [Y ′
1, . . . , Y ′

G]′ ∈ Rn, where n = ∑G
g=1 ng .

Our model is closely related to JIVE, which provides a general
formulation to decompose multiple data matrices into joint and
individual structures. The JIVE decomposes Xg as

Xg = Jg + Ag + Eg , (2.1)

where Jg ∈ Rng×p represents the joint structure of Xg , Ag ∈
Rng×p represents the individual structure of Xg , and Eg ∈
Rng×p is the error matrix. We consider that Yg has a similar
decomposition into joint and individual signals

Yg = JY
g + AY

g + eg , (2.2)

where eg ∈ Rng is the noise from the gth group. Let X̃g = Jg +Ag
and Ỹg = JY

g + AY
g be the noiseless counterparts of Xg and Yg .

Lemma 1 gives conditions to ensure that Jg , Ag , JY
g , and AY

g are
identifiable.

Lemma 1. Given {X̃g , Ỹg}G
g=1, where Ỹg ∈ col(X̃g). There exist

unique Jg and Ag such that:

(i) X̃g = Jg + Ag ;
(ii) row(J1) = · · · = row(JG) ⊂ row(X̃g);
(iii) row(Jg) ⊥ row(Ag), for g = 1, . . . , G;
(iv)

⋂G
g=1 row(Ag) = {0p×1}.

Moreover, if col(Jg) ⊥ col(Ag), then there exist unique JY
g and

AY
g such that Ỹg = JY

g + AY
g and they satisfy JY

g ∈ col(Jg) and
AY

g ∈ col(Ag).

Lemma 1 shows that X̃g can be uniquely decomposed into
the sum of Jg and Ag if we require them to satisfy conditions
(ii) − (iv), following similar statements as in Feng et al. (2018).
To ensure the unique decomposition of Ỹg , we need to further
require col(Jg) ⊥ col(Ag), which is different from Palzer et al.
(2022), that requires row(Jg) ⊥ row(Ag).

In practice, only Xg and Yg are observable. In Lemma 2, we
show in (a) that the identifiable conditions in Lemma 1 can still
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Figure 1. Diagram of JICO for two groups. Xg ∈ Rng×p : data matrix from group g. Jg ∈ Rng×p : submatrix of Xg corresponding to the joint structure. Ag ∈ Rng×p :
submatrix of Xg corresponding to the individual structures. Eg ∈ Rng×p : error matrix. Yg ∈ Rng : response from group g. JY

g ∈ Rng : subvector of Yg corresponding to
the joint component. AY

g ∈ Rng : subvector of Yg corresponding to the individual components. eg ∈ Rng : noise vector. Sg ∈ Rng×K : joint score matrix. U ∈ RK×p : joint
loading matrix. Tg ∈ Rng×Kg : individual score matrix. Ug ∈ RKg×p : individual loading matrix. α ∈ RK : coefficients for the joint component. αg ∈ RKg : coefficients for the
individual components.

be achieved given the observed {Xg , Yg}G
g=1, when we construct

X̃g and Ỹg under certain identifiability constraints. We achieve
this by finding an arbitrary set of bases w1, . . . , wK ∈ Rp that
span

⋂G
g=1 row(Xg) and wg,1, . . . , wg,Kg that spans the space

of solutions to (A.1) as shown in the proof of Lemma 2 in
Appendix A. Using these bases, we can construct Jg and Ag such
that they satisfy other identifiable conditions in Lemma 1, and
construct X̃g as X̃g = Jg + Ag . Moreover, in Lemma 2(b), we
show that if Jg and Ag are assumed to have low ranks, they can

be further decomposed as Jg = SgU, where Sg is a ng × K
score matrix, U is a K × p loading matrix, and K = rank(Jg);
and Ag = TgUg , where Tg is a ng × Kg score matrix and
Ug is a Kg × p loading matrix, and Kg = rank(Ag). Under
this formulation, if S′

gTg = 0K×Kg , then (2.1) and (2.2) can
be expressed as

Xg = SgU + TgUg + Eg , (2.3)
Yg = Sgα + Tgαg + eg , (2.4)
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where α ∈ RK and αg ∈ RKg are the coefficients of the joint and
individual components respectively. Model (2.4) gives a unified
framework to model multi-group data. When K = 0, the joint
term Sgα vanishes and (2.4) reduces to a group-specific model of
Yg = Tgαg + eg . On the other hand, when K1 = · · · = Kg = 0,
the individual term Tgαg vanishes and (2.4) reduces to a global
model of Yg = Sgα + eg . When K ̸= 0 and Kg ̸= 0, (2.4) has
both global and group-specific components, thus lies between
the above two extreme cases.

Lemma 2. Given {Xg , Yg}G
g=1, we can construct X̃g and Ỹg such

that

(a) There exist unique matrices Jg and Ag such that X̃g = Jg +
Ag , conditions (ii)− (iv) in Lemma 1 and col(Jg) ⊥ col(Ag)
still hold.

(b) There exist matrices U, Ug , Sg , Tg such that Jg and Ag can
be expressed as Jg = SgU and Ag = TgUg , where S′

gTg =
0K×Kg . Moreover, there exist JY

g and AY
g that gives Ỹg = JY

g +
AY

g and can be expressed as JY
g = Sgα and AY

g = Tgαg ,
where α = (S′S)−1S′Y and αg = (T′

gTg)−1T′
gYg , with S =

[S′
1, . . . , S′

G]′.

Corollary 1. There exist matrices W ∈ Rp×K and Wg ∈ Rp×Kg

such that Jg = SgU and Ag = TgUg defined by Sg = XgW,
Tg = XgWg , U = (W′W)−1W′ and Ug = (W′

gWg)−1W′
g as

in Lemma 2(b) satisfy conditions (ii) − (iv) in Lemma 1 and
col(Jg) ⊥ col(Ag), if W′Wg = 0 and W′X′

gXgWg = 0, for all g.

Corollary 1 follows directly from the proof of Lemma 2(b).
As a remark, the columns of W and Wg form the sets of bases
that span the row spaces of Jg and Ag , respectively. Hence,
W′Wg = 0 is a sufficient and necessary condition for row(Jg) ⊥
row(Ag). Moreover, note that in Lemma 2(b), S′

gTg = 0 directly
implies that A′

gJg = 0, the latter being a sufficient condition for
col(Jg) ⊥ col(Ag). Therefore, in Corollary 1, W′X′

gXgWg = 0
provides a sufficient condition for col(Jg) ⊥ col(Ag), which
satisfies one of the identifiability constraints for the unique
decomposition of Xg in Lemma 1. In Section 3, we describe the
algorithm to solve for W and Wg , respectively.

3. Model Estimation

The key to estimate (2.3) and (2.4) is the constructions of score
matrices Sg and Tg . To motivate our estimation procedure, in
Sections 3.1, we discuss the joint and individual score estimation
under two special cases, respectively. In Section 3.2, we intro-
duce an iterative algorithm for the general case.

3.1. Joint and Individual Score Estimation

We first consider a special case that Kg = 0, g = 1, . . . , G. Under
this setup, the individual components vanish and (2.3) and (2.4)
reduce to the following model:

X = SU + E, Y = Sα + e, (3.1)

where S = [S′
1, . . . , S′

G]′, E = [E′
1, . . . , E′

G]′, and e =
[e′

1, . . . , e′
G]′.

The formulation of (3.1) covers many existing classic
methods. For example, in PCR, S is chosen to be the score
matrix of the first K principal components of X′X. However,
the principal components are inherently unsupervised and
ignore the information from Y . Among the other supervised
methods, PLS regression is a popular approach that incorporates
regression on the latent scores. When K = 1 and p < n, the
standard OLS can also be cast under the above setup.

According to the proof of our Lemma 2, S can be constructed
with the basis matrix W. For the estimation of W, we use the
continuum regression (CR) (Stone and Brooks 1990) algorithm,
the result of which covers OLS, PLS, and PCR as special cases.
For k = 1, . . . , K, CR sequentially solves wk from the following
optimization problem:

max
w

cov(Xw, Y)2var(Xw)γ−1

s.t. w′w = 1, w′X′Xwj = 0; j = 1, . . . , k − 1 if k ≥ 2,
(3.2)

where cov(Xw, Y) = w′X′Y and var(Xw) = w′X′Xw, once
columns of X and Y are centralized to have mean zero. Here,
γ ≥ 0 is a tuning parameter that controls how much variability
of X is taken into account for the construction of S. When γ →
∞, the objective function in (3.2) is dominated by var(Xw)γ−1

and Y does not play a role. The CR solution of W then seeks
to find the principal component directions that maximize the
variation of X. It can be shown that (3.2) coincides with OLS
and PLS solutions when γ = 0 and 1, respectively.

Let Ŵ denote the solution to (3.2) and Ŝ = XŴ. Then α can
be estimated by α̂ = (Ŝ′Ŝ)−1Ŝ′Y . As illustrated in Lemma 2, Jg
is the projection of Xg onto the column space spanned by W.
Hence, we have Ĵg = XgŴ(Ŵ′Ŵ)−1Ŵ′, which further gives
Û = (Ŵ′Ŵ)−1Ŵ′.

Next we consider our model estimation under the special case
that K = 0. In this case, the joint component vanishes, and (2.3)
and (2.4) reduce to the following individual model:

Xg = TgUg + Eg , Yg = Tgαg + eg . (3.3)

Same as the above discussion for joint score estimation, we use
CR to construct Tg = XgWg as linear transformation of Xg ,
where Wg is a p×Kg basis matrix, whose columns span row(Ag).
Let Wg = [wg1, . . . , wgKg ]. Given group g, for k = 1, . . . , Kg ,
CR sequentially solves wgk from the following optimization
problem:

max
w

cov(Xgw, Yg)
2var(Xgw)γ−1

s.t. w′w = 1,
w′X′

gXgwgj = 0; j = 1, . . . , k − 1 if k ≥ 2.
(3.4)

Denote Ŵg the solution to (3.4). Similar to the joint estimation,
once T̂g = XgŴg is constructed, αg can be obtained as the least
square solution: α̂g = (T̂′

gT̂g)−1T̂′
gYg . Afterwards, we can have

Âg = XgŴg(Ŵ′
gŴg)−1Ŵ′

g and Ûg = (Ŵ′
gŴg)−1Ŵ′

g .

3.2. JICO Algorithm

In this section, we consider the general case where K or Kg can
be both nonzero. Since solving (3.2) and (3.4) simultaneously
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can be hard with both joint and individual structures specified
in the full model (2.3) and (2.4), we propose to iteratively solve
one of them while fixing the other. This leads to the following
iterative procedure.

• Given Ŵg , solve the following constrained problem sequen-
tially for w1, . . . , wK :

max
w

cov(XJointw, Y Joint)2var(XJointw)γ−1

s.t. w′w = 1,

w′XJoint′XJointwj = 0; j = 1, . . . , k − 1 if k ≥ 2,
Ŵ′

gw = 0Kg×1; g = 1, . . . , G,

Ŵ′
gXIndiv

g
′XJoint

g w = 0Kg×1; g = 1, . . . , G.
(3.5)

• Given Ŵ, for any 1 ≤ g ≤ G, solve the following constrained
problem sequentially for wg,1, . . . , wg,Kg :

max
w

cov(XIndiv
g w, YIndiv

g )2var(XIndiv
g w)γ−1

s.t. w′w = 1,

w′XIndiv
g

′XIndiv
g wgj = 0; j = 1, . . . , k − 1 if k ≥ 2,

Ŵ′w = 0K×1;

Ŵ′XJoint
g

′XIndiv
g w = 0.

(3.6)
• Repeat the above two procedures until convergence.

Note that in (3.5) and (3.6), we denote

XJoint =

⎡

⎢⎣
X1 − T1UG

...
XG − TGUG

⎤

⎥⎦ , Y Joint =

⎡

⎢⎣
Y1 − T1α1

...
YG − TGαG

⎤

⎥⎦ ,

and XIndiv
g = Xg − SgU, YIndiv

g = Yg − Sgα; g = 1, . . . , G.
Moreover, the last two constraints in (3.5) and (3.6) correspond
to the two sufficient conditions in Corollary 1 to satisfy the
identifiability conditions row(Jg) ⊥ row(Ag) and col(Jg) ⊥
col(Ag) needed in Lemma 1.

We formulate (3.5) and (3.6) into a generic CR problem, and
derive an algorithm to solve it in Appendix B of the supple-
mentary materials. Furthermore, we describe the convergence
criterion for the iterative procedure and give its pseudo code
in Appendix C. Empirically, the algorithm always meets our
convergence criteria, albeit there are no theoretical guarantees.
In practice, we recommend starting the algorithm with multi-
ple initial values and choose the one with the smallest cross-
validated mean squared error. To predict the response using
JICO estimates, we let Sg,test = Xg,testŴ and Tg,test = Xg,testŴg ,
where Xg,test is the test set. Then the prediction of response is
given by Sg,testα̂ + Tg,testα̂g .

In practice, we need to select tuning parameters K, Kg , and
γ . As a rule of thumb, we propose to select the optimal γ by
fine-tuning it in a wide range with a coarse grid search of ranks
K and Kg . For rank selection, we recommend tuning ranks by
performing an exhaustive search on K ∈ {0, 1, . . . , D1} and
K1 = · · · = KG ∈ {0, 1, . . . , D2}, where D1 and D2 are two user-
defined integers. We describe how to select the tuning parame-
ters in more details and perform a sensitivity study on how the

selection affects JICO’s numerical performance in Appendix D
of the supplementary materials.

Finally, we point out that our method includes JIVE-predict
(Kaplan and Lock 2017) as a special case. JIVE-predict is a two-
stage method that implements JIVE on X first and then regresses
the responses on the loading matrix. When we let γ → ∞ in
(3.2) and (3.4), JICO is equivalent as performing JIVE on X.
For that reason, our method in that case is equivalent to JIVE-
predict.

4. Simulation Studies

One significant advantage of our proposed model is its flexibility
of lying in between global and group-specific models. Moreover,
the choice of parameter γ in CR allows it to identify the model
that best fits the data. In this section, we conduct multiple
simulation studies to further demonstrate the advantage of our
proposed model.

We consider three simulation settings in this section. In the
first two settings, we generate data according to models that
contain both global and group-specific components. The data
are generated in a way that PCR and PLS solutions are favored,
respectively. In the last setting, we simulate data from two special
cases: a global model and a group-specific model. The data are
simulated so that the OLS is favored for both cases. For all
three settings, JICO can adaptively choose the correct model
parameter γ so that it has the optimal performance. Moreover,
we further illustrate how the rank selection impacts the per-
formance of JICO by examining the results using mis-specified
ranks.

We fix G = 2, p = 200, n1 = n2 = 50. In each replication, we
generate 100 training samples to train the models and evaluate
the corresponding Mean Squared Error (MSE) in an indepen-
dent test set of 100 samples. We repeat simulations for 50 times.

For g = 1, . . . , G, we generate Xg as iid samples from
N (0, Ip×p). For the sake of simplicity, we generate Yg by the
following model with two latent components:

Yg = αSg + αgTg + eg , (4.1)
where Sg = Xgw ∈ Rng is the joint latent score vector with an
coefficient α, Tg = Xgwg ∈ Rng is the individual latent score
vector with an coefficient αg , and eg is generated as iid samples
from N (0, 0.04). Here, w and wg are all p × 1 vectors, and are
constructed such that w′wg = 0. We vary the choices of w, wg ,
α, and αg , which will be discussed later.

4.1. PCR Setting

In this section, we simulate the model which favors γ = ∞.
In this case, CR solutions to (3.2) and (3.4) coincide with PCR,
which are essentially the top eigenvectors of the corresponding
covariance matrices.

To simulate this setup, given training data X = [X′
1, X′

2]′, we
let w be the top eigenvector corresponding to X′X. We further
set wg as the top eigenvector of X̃′

gX̃g , where X̃g = Xg(I−ww′) is
the data matrix after projecting Xg into the linear subspace that is
orthogonal to w. This projection ensures that the construction of
w and wg satisfies w′wg = 0. To generate Yg , we let α = 1, αg =
1, g = 1, 2.
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Figure 2. MSE curves for JICO models with different ranks under the PCR setting (a) and PLS setting (b).

We train JICO on a wide range of γ ∈ [0, ∞), using different
combinations of K, K1, K2, with 300 iterations. Figure 2(a)
demonstrates the MSEs evaluated on the test data over 50
repetitions. For better illustration, we plot MSE curves as a
function of a, with a = γ /(γ + 1), which is a one-to-one
monotone map from γ ∈ [0, ∞) to a ∈ [0, 1]. In particular,
when a = 0, 0.5 and 1, we have γ = 0, 1 and ∞, which
correspond to the cases of OLS, PLS and PCR respectively.
The solid curve demonstrates the model performance given
true ranks K = K1 = K2 = 1, whereas the gray curves
show the performance of models with mis-specified ranks. In
particular, we consider four mis-specified rank combinations.
Among them, two rank combinations (K = 1, K1 = K2 = 0;
K = 2, K1 = K2 = 0) correspond to joint models. The
other two combinations (K = 0, K1 = K2 = 1; K = 0,
K1 = K2 = 2) correspond to group-specific models. We can
see from Figure 2(a) that the absolute minimum is given by the
model with true ranks and a = 1, which refers to the underlying
true model. When we look at the curves on the spectrum of a as
a whole, the joint models with K = 1 or 2, K1 = K2 = 0 always
perform worse than the model with K = K1 = K2 = 1, because
they are unable to capture the group-specific information from
the underlying model. The model with true ranks performs
better than the individual models with K = 0, K1 = K2 = 1 or
2 for larger values of a, because the latter models cannot capture
as much global information as the former. However, the model
with K = K1 = K2 = 1 performs worse than the individual
models for smaller values of a, where the latter achieves much
more acceptable performances. This means that the choice of
optimal ranks for our model can be sensitive to the choice of
γ . For smaller γ values, individual models tend to be more
reliable under the PCR setting. We notice that the end of the
curve is not very smooth when K = 2, K1 = K2 = 0. One
possible reason is that the solution path of CR can sometimes
be discontinuous with respect to γ (Björkström and Sundberg
1996), consequently the CR algorithm may be numerically
unstable for certain γ values.

We further illustrate the performance of JICO by comparing
it with several existing methods. In particular, we include ridge
regression (Ridge), partial least squares (PLS) and principal
component regression (PCR). For JICO, we select the models
trained under true ranks K = K1 = K2 = 1 (performance
as illustrated by the solid curve in Figure 2(a)), with γ =
0, 1, ∞, which correspond to the cases of OLS, PLS, and PCR,

respectively. For a fair comparison, for PLS and PCR methods,
we fix the number of components to be 2 for both a global fit
and a group-specific fit. Table 1(a) summarizes the MSEs of
these methods. The numbers provided in the brackets repre-
sent the standard error. The first two columns summarize the
performance for each group (g = 1, 2), and the last column
summarizes the overall performance. The JICO model with γ =
∞ performs significantly better than the rest, because it agrees
with the underlying true model. Among other mis-specified
methods, group-specific PLS is relatively more robust to model
mis-specification.

4.2. PLS Setting

In this section, we consider the model setup that is more favor-
able to γ = 1. In this scenario, the CR solutions to (3.2) and (3.4)
coincide with the PLS solutions. Same as in Section 4.1, we still
consider the construction of weights as linear transformations
of the eigenvectors.

Given training data X = [X′
1, X′

2]′, denote Vp×q as the matrix
of top q eigenvectors of X′X. We let w = V1q/

√q, where 1q
denotes a q × 1 vector with elements all equal to 1. In this way,
the q top eigenvectors contribute equally to the construction of
Sg . Similarly, we let X̃g = Xg(I−ww′) and Vg be the p×qg matrix
of top qg eigenvectors of X̃′

gX̃g . Then we let wg = Vg1qg /
√qg .

To construct a model more favorable to PLS, in this section, we
let q = n/2 and qg = ng/2. We generate Yg from (4.1) by letting
α = 1 and αg = 0.5.

Similar to the PCR setting, in Figure 2(b), we illustrate the
MSE curves of JICO models with different rank combinations
on a spectrum of a, where γ = a/(1 − a). Again, the solid curve
represents the model with true ranks, while the gray curves rep-
resent models with mis-specified ranks. The absolute minimum
is given by the solid curve at a around 0.5, which corresponds
to the underlying true model. Moreover, the solid curve gives
almost uniformly the best performance on the spectrum of a
compared with the gray curves, except on a small range of a
close to 0. Hence, under the PLS setting, the optimal ranks can
be less sensitive to the choice of γ . At initial values of a, the solid
curve almost overlaps with the gray curve that represents the
joint model with K = 1, K1 = K2 = 0. This means that when
γ is close to 0, the individual signals identified by the full model
with K = K1 = K2 = 1 can be ignored. Therefore, the two
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Table 1. Groupwise and overall MSEs under the PCR, PLS, and OLS settings.

Method g = 1 g = 2 Overall

(a) PCR example JICO γ = 0 1.994(0.063) 2.012(0.068) 2.003(0.053)
γ = 1 0.679(0.018) 0.701(0.026) 0.69(0.017)
γ = ∞ 0.04(0.001) 0.04(0.001) 0.04(0.001)

Global Ridge 1.734(0.056) 1.78(0.065) 1.757(0.052)
PLS 1.163(0.033) 1.194(0.045) 1.178(0.031)
PCR 0.946(0.04) 0.977(0.044) 0.961(0.022)

Group-specific Ridge 0.252(0.009) 0.27(0.009) 0.261(0.005)
PLS 0.254(0.009) 0.272(0.009) 0.263(0.005)
PCR 0.68(0.042) 0.71(0.05) 0.695(0.032)

(b) PLS example JICO γ = 0 0.57(0.023) 0.567(0.021) 0.569(0.018)
γ = 1 0.211(0.008) 0.218(0.008) 0.215(0.006)
γ = ∞ 1.236(0.038) 1.277(0.037) 1.256(0.025)

Global Ridge 1.698(0.064) 1.742(0.06) 1.72(0.055)
PLS 0.3(0.011) 0.297(0.01) 0.299(0.008)
PCR 1.229(0.036) 1.298(0.041) 1.263(0.025)

Group-specific Ridge 0.375(0.013) 0.425(0.016) 0.4(0.01)
PLS 0.412(0.014) 0.406(0.016) 0.409(0.008)
PCR 1.234(0.037) 1.25(0.036) 1.242(0.024)

(c) OLS example (a) JICO γ = 0 0.082(0.002) 0.083(0.003) 0.082(0.002)
γ = 1 0.403(0.011) 0.419(0.011) 0.411(0.007)
γ = ∞ 1.006(0.031) 1.07(0.03) 1.038(0.02)

Global Ridge 0.084(0.004) 0.084(0.003) 0.084(0.003)
PLS 0.221(0.007) 0.226(0.006) 0.223(0.005)
PCR 0.991(0.032) 1.069(0.030) 1.030(0.020)

Group-specific Ridge 0.574(0.017) 0.599(0.024) 0.586(0.013)
PLS 0.572(0.016) 0.599(0.024) 0.585(0.013)
PCR 0.996(0.032) 1.061(0.030) 1.028(0.021)

(d) OLS example (b) JICO γ = 0 0.063(0.002) 0.066(0.004) 0.064(0.002)
γ = 1 0.257(0.009) 0.27(0.009) 0.264(0.006)
γ = ∞ 1.004(0.031) 1.002(0.03) 1.003(0.023)

Global Ridge 0.646(0.021) 0.673(0.024) 0.66(0.019)
PLS 0.957(0.027) 0.971(0.032) 0.964(0.022)
PCR 1.023(0.031) 1.016(0.031) 1.019(0.023)

Group-specific Ridge 0.076(0.004) 0.072(0.005) 0.074(0.003)
PLS 0.113(0.003) 0.116(0.005) 0.115(0.003)
PCR 0.978(0.03) 0.987(0.029) 0.983(0.022)

NOTE: Bolded values highlight the methods with the best performance. Numbers in brackets are standard errors.

group-specific models that capture more individual information
give the best performance in this case. For a values closer to 1,
the gray curve that represents the joint model with K = 2, K1 =
K2 = 0 is very close to the solid curve. This means that the effects
of individual components estimated by JICO tend to become
more similar across groups for larger γ .

In Table 1(b), we summarize the MSEs of JICO models
trained with true ranks K = K1 = K2 = 1 and γ = 0, 1, ∞,
along with other methods as described in Section 4.1. JICO with
γ = 1 shows the best performance among all methods, followed
by the global PLS method, since the true model favors PLS and
the coefficient αg = 0.5 for the group-specific component is
relatively small.

4.3. OLS Setting

In this section, we simulate the setting that favors γ = 0,
which corresponds to the case of OLS in CR. It is shown in
Stone and Brooks (1990) that when γ = 0, there is only one
nondegenerate direction that can be constructed from the CR
algorithm. Hence, under the JICO framework, the model that
favors γ = 0 embraces two special cases: a global model with
K = 1, Kg = 0 and a group-specific model with K = 0, Kg = 1.

For the two cases, we simulate Yg with (a) α = 1, αg = 0 and
(b) α = 0, αg = 1, respectively. The construction of w and wg is
the same as that in Section 4.2 with q = n and qg = ng .

Figure 3 illustrates MSE curves of the two cases, where (a)
represents the case of the global model and (b) represents the
case of the group-specific model. In both cases, the absolute
minimum can be found on the solid curves at a = 0, which
represents the MSE curves from the models with true ranks
K = 1, Kg = 0 and K = 0, Kg = 1, respectively. In (a), there
are two competitive models against the model with true ranks:
another global model with K = 2, Kg = 0 and the model with
K = K1 = K2 = 1. They both achieve the same performance
with the solid curve at a = 0, and stay low at larger values of
a. This is because, when γ is mis-specified, additional model
ranks help capture more information from data. The K = 2,
Kg = 0 model performs better because the underlying model is
a global model. This is also true for (b). The global minimum
can be found at a = 0 on the solid curve, while the K =
0, Kg = 2 model performs better when a gets larger. Again,
this is because larger Kg helps capture more information from
data. The K = K1 = K2 = 1 model does not perform as well,
because the estimated joint information dominates, which does
not agree with the true model. We observe some discontinuities
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Figure 3. MSE curves for JICO models with different ranks under OLS settings (a) and (b). (a) is generated under a global model and (b) is generated under a group-specific
model.

on the K = 2, Kg = 0 curve, since the CR solution path can
sometimes be discontinuous with respect to γ as discussed in
the PCR setting in Section 4.1.

In Table 1(c) and (d), we summarize the MSEs of JICO
models trained with the true ranks with γ = 0, 1, ∞ and other
methods described in Section 4.1. For a fair comparison, the
number of components for PCR and PLS is chosen to be 1 for
both global and group-specific fits. The JICO model with γ = 0,
along with Ridge always achieve better performance than all
other methods. It is interesting to notice that in (c), the JICO
models with γ = 1 and ∞ coincide with global PLS and PCR,
respectively, and hence they achieve the same performances.
Similarly, in (d), JICO models with γ = 1 and ∞ coincide
with group-specific PLS and PCR respectively, and they achieve
the same performance correspondingly. In addition, when K =
1, Kg = 0, the solution of CR algorithm coincides with the
global OLS model. Thus, the JICO model with γ = 0 and the
global Ridge have similar performance in (c). Similarly, when
K = 0, Kg = 1, the JICO model with γ = 0 and group-specific
Ridge have similar performance in (d).

5. Applications to ADNI Data Analysis

We apply our proposed method to analyze data from the
Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI). It
is well known that AD accounts for most forms of dementia
characterized by progressive cognitive and memory deficits.
The increasing incidence of AD makes it a very important health
issue and has attracted a lot of scientific attentions. To predict
the AD progression, it is very important and useful to develop
efficient methods for the prediction of disease status and clinical
scores (e.g., the Mini Mental State Examination (MMSE) score
and the AD Assessment Scale-Cognitive Subscale (ADAS-Cog)
score). In this analysis, we are interested in predicting the ADAS-
Cog score by features extracted from 93 brain regions scanned
from structural magnetic resonance imaging (MRI). All subjects
in our analysis are from the ADNI2 phase of the study. There
are 494 subjects in total in our analysis and three subgroups:
NC (178), eMCI (178), and AD (145), where the numbers in
parentheses indicate the sample sizes for each subgroup. As
a reminder, NC stands for the Normal Control, and eMCI
stands for the early stage of Mild Cognitive Impairment in AD
progression.

For each group, we randomly partition the data into two
parts: 80% for training the model and the rest for testing the
performance. We repeat the random split for 50 times. The test-
ing MSEs and the corresponding standard errors are reported
in Table 2. Both groupwise and overall performance are sum-
marized. We compare our proposed JICO model with ridge
regression (Ridge), PLS, and PCR. We perform both a global
and a group-specific fit for Ridge, PLS, and PCR, where the reg-
ularization parameter in Ridge and the number of components
in PCR or PLS are tuned by 10-fold cross validation (CV). For
our proposed JICO model, we demonstrate the result by fitting
the model with fixed γ = 0, 0.25, 1, ∞, or tuned γ , respectively.
In practice, using exhaustive search to select the optimal values
for K and Kg can be computationally cumbersome, because the
number of combinations grows exponentially with the number
of candidates for each parameter. Based on our numerical expe-
rience, we find that choosing Kg to be the same does not affect
the performance on prediction too much. Details are discussed
in Appendix D of the supplementary materials. Therefore, in
all these cases, the optimal ranks for JICO are chosen by an
exhaustive search in K ∈ {0, 1} and K1 = K2 = K3 ∈ {0, 1} to
see which combination gives the best MSE. We choose K and Kg
to be small to improve our model interpretations. The optimal
value of γ is chosen by 10-fold CV.

As shown in Table 2, JICO performs the best among all
competitors. Fitting JICO with γ = 0.25 yields the smallest
overall MSE. JICO with parameters chosen by CV performs
slightly worse, but is still better than the other global or group-
specific methods. The results of JICO with γ = 0, 1 and ∞,
which correspond to OLS, PLS, and PCR, are also provided in
Table 2. Even though their prediction is not the best, an interest-
ing observation is that they always have better performance than
their global or group-specific counterparts. For example, when
γ = 1, JICO has much better overall prediction than the group-
specific PLS. This indicates that it is beneficial to capture global
and individual structures for regression when subpopulations
exist in the data.

In Table 2, global models perform the worst, because they
do not take group heterogeneity into consideration. The group-
specific Ridge appears to be the most competitive one among
group-specific methods. Note that for the AD group, our JICO
model with γ = 0.25 or tuned γ outperforms the group-specific
Ridge method by a great margin.
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Table 2. Groupwise and overall MSEs on the ADNI data.

Method NC eMCI AD Overall

JICO γ = 0 6.671(0.137) 11.319(0.309) 55.798(1.556) 22.821(0.466)
γ = .25 6.316(0.121) 10.394(0.279) 40.853(1.294) 17.951(0.394)
γ = 1 6.443(0.124) 10.353(0.291) 44.054(1.449) 18.929(0.441)
γ = ∞ 6.608(0.138) 11.121(0.308) 49.997(1.832) 21.013(0.558)
CV 6.414(0.129) 10.333(0.289) 41.297(1.348) 18.096(0.401)

Global Ridge 23.450(0.751) 21.276(0.796) 63.989(2.657) 34.692(0.840)
PLS 26.310(0.787) 22.672(0.915) 68.193(3.183) 37.442(0.982)
PCR 25.228(0.771) 21.966(0.802) 69.541(2.969) 37.209(0.907)

Group-specific Ridge 6.336(0.116) 10.353(0.278) 42.271(1.315) 18.364(0.392)
PLS 6.656(0.136) 11.298(0.306) 48.434(1.725) 20.629(0.524)
PCR 6.656(0.136) 11.346(0.304) 47.357(1.484) 20.327(0.454)

NOTE: Bolded values highlight the methods with the best performance. Numbers in brackets are standard errors.

Figure 4. Heatmaps of joint and individual structures from NC and AD estimated from JICO.

To get our results more interpretable, we further apply the
JICO model to NC and AD groups. We run 50 replications of 10-
fold CV to see which combination of tuning parameters gives the
smallest overall MSE. The best choice is γ = ∞, K = 1, KNC =
KAD = 3. Then, we apply JICO using this choice and tuning
parameters and display the heatmaps of the estimated Ĵg (left
column) and Âg (right column) in Figure 4. Rows of heatmaps
represent samples and columns represent MRI features. We use
the Ward’s linkage to perform hierarchical clustering on the
rows of Ĵg , and arrange the rows of Ĵg and Âg in the same
order for each group. Moreover, we apply the same clustering

algorithm to the columns of Ĵg to arrange the columns in the
same order across the two disease groups for both joint and
individual structures. Figure 4 shows that JICO separates joint
and individual structures effectively. The joint structures across
different disease groups share a very similar pattern, whereas
the individual structures appear to be very distinct. We further
magnify the right column of Figure 4 in Figure 5 with the brain
region names listed. We find that the variation in Âg for the AD
group is much larger than the counterpart for the NC group. We
highlight the brain regions that differ the most between the two
groups. The highlighted regions play crucial roles in human’s
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Figure 5. Heatmaps of individual structures from NC and AD estimated from JICO with MRI feature names. The highlighted regions are frontal lobe WM, temporal lobe WM,
occipital lobe WM, parietal lobe WM, superior parietal lobule, middle temporal gyrus. The top row is from NC and the bottom row is from AD.

cognition, thus, are important in AD early diagnosis (Killiany
et al. 1993; Michon et al. 1994). For example, Michon et al.
(1994) suggested that anosognosia in AD results in part from
frontal dysfunction. Killiany et al. (1993) showed that the tem-
poral horn of the lateral ventricles can be used as antemortem
markers of AD.

6. Discussion

In this article, we propose JICO, a latent component regres-
sion model for multi-group heterogeneous data. Our proposed
model decomposes the response into jointly shared and group-
specific components, which are driven by low-rank approx-
imations of joint and individual structures from the predic-
tors, respectively. For model estimation, we propose an iterative
procedure to solve for model components, and use CR algo-
rithm that covers OLS, PLS, and PCR as special cases. As a
result, the proposed procedure is able to extend many regres-
sion algorithms covered by CR to the setting of heterogeneous
data. Extensive simulation studies and a real data analysis on
ADNI data further demonstrate the competitive performance
of JICO.

JICO is designed to be very flexible for multi-group data.
It is able to choose the optimal parameter to determine the
regression algorithm that suits the data the best, so that
the prediction power is guaranteed. At the same time, it is
also able to select the optimal joint and individual ranks

that best describe the degree of heterogeneity residing in
each subgroup. The JICO application to ADNI data has
effectively illustrated that our proposed model can provide
nice visualization on identifying joint and individual com-
ponents from the entire dataset without losing much of the
prediction power.

Supplementary Materials

Appendix: Proofs of all theoretical results, Algorithm details, and addi-
tional numerical results. (Supplement.pdf, pdf file)
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