
Supplementary Materials for “Joint and Individual Component

Regression”

A Proofs

Proof of Lemma 1. The proof of the first part of this lemma follows similar arguments

as in Feng et al. (2018). Define row(J) =
⋂G
g=1 row(X̃g). We assume that row(J) 6= {0} for

non-trivial cases. For each g, Jg and Ag can be obtained by projecting X̃g to row(J) and

its orthogonal complement in row(X̃g). Thus, by construction, we have X̃g = Jg + Ag and

row(Jg) ⊥ row(Ag). Since for all g, we have row(Ag) ⊥ row(J), then
⋂G
g=1 row(Ag) has a

zero projection matrix. Therefore, we have
⋂G
g=1 row(Ag) = {0}. On the other hand, since

row(Jg) ⊂ row(X̃g), the orthogonal projection of X̃g onto row(Jg) is unique. Therefore,

the matrices Jg and Ag are uniquely defined.

For the second part of Lemma 1, note that Ỹg ∈ col(X̃g) ⊂ col(Jg)+col(Ag). Then, JYg

and AY
g can be obtained by projecting Ỹg onto col(Jg) and col(Ag) respectively. Because

col(Jg) ⊥ col(Ag), J
Y
g and AY

g are uniquely defined.

Proof of Lemma 2. We explicitly describe how to find Jg, Ag, U, Ug, Sg, Tg, α, αg to

satisfy the requirements. First, Jg can be obtained by finding an arbitrary set of bases that

span
⋂G
g=1 row(Xg). Then, Ag can be obtained by solving a system of linear equations. We

prove that such Jg and Ag satisfy conditions (ii)–(iv) in Lemma 1 and col(Jg) ⊥ col(Ag).

Given Jg and Ag, we construct U,Ug,Sg,Tg, so that they satisfy Jg = SgU, Ag = TgUg

and S′gTg = 0K×Kg .

Let w1, . . . ,wK ∈ Rp be an arbitrary set of bases that span
⋂G
g=1 row(Xg). Denote

Wp×K = [w1, . . . ,wK ]. Let Jg = XgW(W′W)−1W′. Next, we show that Jg satisfies

condition (i) in Lemma 1 for any 0 ≤ g1 6= g2 ≤ G. It suffices to show that row(Jg1) ⊂

row(Jg2), i.e. there exists Cg2
g1,ng1×ng2

, such that Cg2
g1

Jg2 = Jg1 . Since the columns of W

form the bases of
⋂G
g=1 row(Xg), there exists Qg2

K×ng2
, such that Qg2Xg2 = W′. Then,

we have Qg2Jg2 = Qg2Xg2W(W′W)−1W′ = (W′W)(W′W)−1W′ = W′. Let Rg1 =

1



Xg1W(W′W)−1 and Cg2
g1

= Rg1Q
g2 , then we have

Cg2
g1

Jg2 = Rg1Q
g2Jg2 = Xg1W(W′W)−1W′ = Jg1 .

Given W, we propose to solve  W′

W′X′gXg

x = 0, (A.1)

where x ∈ Rp is unknown. We first show that (A.1) has non-zero solutions. Since QgXg =

W′, (A.1) can be rewritten as Q̃gBgXgx = 0, where

Q̃g =

Qg

Qg

 and Bg =

Ing×ng

XgX
′
g

 .

Since

rank(Q̃gBgXg) ≤ min{rank(Q̃g), rank(Bg), rank(Xg)} ≤ min{2K,ng, rank(Xg)} ≤ rank(Xg) < p,

(A.1) has non-zero solutions.

Let Wg = [wg,1, . . . ,wg,Kg ] be an arbitrary set of bases that spans the space of solutions

to (A.1). Let Ag = XgWg(W
′
gWg)

−1W′
g. Next we show that Ag satisfies (ii) − (iii) in

Lemma 1 and col(Ag) ⊥ col(Jg). Since columns of Wg satisfy (A.1), we have W′Wg = 0

and W′X′gXgWg = 0. Then, by definition, A′gJg = 0 and JgA
′
g = 0, which imply that

row(Ag) ⊥ row(Jg) and col(Ag) ⊥ col(Jg). Since for all g, row(Ag) is perpendicular to the

columns of W, then we have
⋂G
g=1 row(Ag) = {0}.

Finally, letting Sg = XgW, Tg = XgWg, U = (W′W)−1W′ and Ug = (W′
gWg)

−1W′
g,

we have S′gTg = 0. Let α = (S′S)−1S′Y and αg = (T′gTg)
−1T′gYg, where S = XW. Then

we obtain JYg and AY
g by letting JYg = Sgα ∈ col(Jg) and AY

g = Tgαg ∈ col(Ag).

2



B Derivation of the CR algorithm for solving (3.5) and

(3.6)

Consider the following CR problem that covers (3.5) and (3.6) as special cases:

max
w

cov(Xw,Y )2var(Xw)γ−1

s.t. w′w = 1,

w′X′Xwj = 0; j = 1, . . . , k − 1 if k ≥ 2,

Ŵ′w = 0;

Ŝ′Xw = 0,

(B.1)

where Ŵ, Ŝ, X and Y are given a priori.

The solution to (S2) resides in col(Ŵ)⊥, i.e. the space that is orthogonal to the columns

of Ŵ. Hence, we let P̂ = Ŵ(Ŵ′Ŵ)−1Ŵ′ and X̂ = X(I−P̂), the latter being the projection

of X into the space that is orthogonal to the columns of Ŵ. Let m be the rank of the matrix

X̂, and X̂ = UDV′ be the corresponding rank-m SVD decomposition, with U ∈ Rn×m,

V ∈ Rp×m, D the m×m diagonal matrix. Since the representation of the solution to (S2)

might not be unique, to avoid ambiguity, we write the solution as the linear combination

of the column vectors of V, i.e. w = Vz, for some z ∈ Rm. Note that all w = Vz

satisfies Ŵ′w = 0. Hence, the constraint Ŵ′w = 0 from (S2) can be satisfied under this

representation.

At step k + 1, the original optimization problem can be reformulated as follows:

max
z

(z′d)2(z′Ẽz)γ−1 s.t. z′z = 1, z′ẼZk = 0, and z′DU′Ŝ = 0, (B.2)

where d = V′X̂′Y , Zk = [z1, . . . , zk] and Ẽ = D2. To solve (B.2), we can expand the

objective to its Lagrangian form:

T ∗(z) = (z′d)2(z′Ẽz)γ−1 − λ0(z′z− 1)− 2z′[ẼZk DU′Ŝ]Λk,

3



where Λk = [λ1, . . . , λk+K ]′ and λ0, . . . , λk+K are Lagrange multipliers. To solve (B.2), we

take the derivative of T ∗ with respect to z, then the optimizer should be the solution to

the following:

∂T ∗

∂z
= 2(z′d)(z′Ẽz)γ−1d+2(γ−1)(z′d)2(z′Ẽz)γ−2Ẽz−2λ0z−2[ẼZk DU′Ŝ]Λk = 0. (B.3)

Left multiply z′ to (B.3) and apply the constraints then we can conclude that λ0 =

γ(z′d)2(z′Ẽz)γ−1. Plug this back to (B.3), and let τ = z′d and ρ = z′Ẽz, then we have

γτ 2ργ−1z + (1− γ)τ 2ργ−2Ẽz + [ẼZk DU′Ŝ]Λk = τργ−1d.

A simple reformulation of the above plus the constraints z′[ẼZk DU′Ŝ] = 0 yields the

following matrix form:  A B

B′ 0

 z

Λk

 =

 q

0

 , (B.4)

where A = τ 2[γργ−1I+(1−γ)ργ−2Ẽ], B = [ẼZk DU′Ŝ], and q = τργ−1d. By the standard

formula for inverse of a partitioned matrix and the constraint that z′z = 1, we obtain

z =
Mq

‖Mq‖
, (B.5)

where M = A−1−A−1B(B′A−1B)−1B′A−1. Note that M has a factor of τ−2 and q has a

factor of τ , hence Mq has a factor of τ−1 that gets canceled out during the normalization

in (B.5). Therefore, z does not rely on the quantity of τ . Without loss of generality, we

can choose τ = 1. Then the only unknown parameter is ρ. Hence, we can formulate (B.4)

and (B.5) as a fixed point problem of z(ρ)′Ẽz(ρ) as a function of ρ. More specifically, we

seek for ρ∗ that satisfies z(ρ∗)′Ẽz(ρ∗) = ρ∗. Afterwards, we obtain z∗ = M∗q∗/‖M∗q∗‖,

where M∗ and q∗ are computed from ρ∗. We summarize the procedure to solve (B.2) as in

the following two steps:

4



Step 1: Solve the fixed point ρ∗ for ρ = z(ρ)′Ẽz(ρ) with z(ρ) = Mq/‖Mq‖, where

M = A−1 −A−1B(B′A−1B)−1B′A−1,

A = γργ−1I + (1− γ)ργ−2Ẽ,

B = [ẼZk DU′Ŝ],

q = ργ−1d;

Step 2: Compute M∗ and q∗ from the fixed point ρ∗ in Step 2. The solution to (B.2)

is then given by z∗ = M∗q∗/‖M∗q∗‖.

The most challenging step is Step 2, where a nonlinear equation needs to be solved. This

can be done numerically by several existing algorithms. For example, we can use Newton’s

method (Kelley 2003), which is implemented by many optimization packages and gives fast

convergence in practice.

C JICO iterative algorithm

After each iteration, we obtain K joint objective values as a K × 1 vector:

L = diag(W′XJoint′XJointW)γ−1(W′XJoint′Y Joint)2, (C.1)

and Kg individual objective values as a Kg × 1 vector for g = 1, . . . , G:

Lg = diag(W′
gX

Indiv
g

′XIndiv
g Wg)

γ−1(W′
gX

Indiv
g

′Y Indiv
g )2, (C.2)

and compare them with the corresponding vectors obtained from the previous iteration

step. Our iterative procedure stops until the differences between two consecutive iteration

steps are under a certain tolerance level. Empirically, the algorithm have always met

convergence criteria, albeit there are no theoretical guarantees for it.

5



Data: {Xg,Yg}Gg=1;

Parameters: tolerance level τ ; joint rank K and individual rank Kg;
Initialize Tg = 0ng×Kg ; Ug = 0Kg×p; αg = 0Kg×1; ;
while Euclidian distance ‖∇L‖, ‖∇Lg‖ > τ do

XJoint
g = Xg −TgUg; Y

Joint
g = Yg −Tgαg;

Estimate W = (w1, . . . ,wK) from (3.2);
S = XJointW; U = (W′W)−1W′; α = (S′S)−1S′Y Joint;
for g = 1, . . . , G do

XIndiv
g = Xg − SgU; Y Indiv

g = Yg − Sgα;

Estimate Wg = (wg1, . . . ,wgKg) from (3.4);
Tg = XIndiv

g Wg; Ug = (W′
gWg)

−1W′
g; αg = (T′gTg)

−1T′gY
Indiv
g ;

end

W̃ = [W1, . . . ,WG];

end
Algorithm 1: JICO Algorithm

D Selection of tuning parameters

Based on our numerical experience, we find that JICO’s performance is more susceptible

to the choice of γ than the ranks. Thus, we propose to select the optimal γ by fine-tuning

it in a wide range with a coarse grid search of ranks K and Kg. For rank selection, we find

that JICO’s performance depends more on the choice of K but less on Kg, especially when

we slightly over-estimate the latter. Therefore, we propose to tune ranks by performing an

exhaustive search on K ∈ {0, 1, . . . , D1} and K1 = · · · = KG ∈ {0, 1, . . . , D2}, where D1

and D2 are two user-defined integers. To save computational costs, Kg’s from all groups

are kept at the same value. In this way, we need to try (D1 + 1)× (D2 + 1) combinations in

total. Since we assume Jg and Ag are both low-rank, we can set D1 and D2 to be relatively

small.

We perform simulation studies to support our previous claims on the parameter tuning.

We consider both PCR and PLS settings. For the PCR setting, we generate samples of

two groups, using the data model described in Section 4.1 with true ranks K = 2, K1 = 3

and K2 = 5. We implement the JICO method with K̂ = 1, 2, 3 and three combinations of

(K̂1, K̂2) = (3, 3), (5, 5), (3, 5), using γ = 1 and 1e10 respectively. For the PLS setting, we

generate samples of two groups, using the data model described in Section 4.2 with true

ranks K = 1, K1 = 1 and K2 = 2. Under this setting, we implement the JICO method

6



with K̂ = 0, 1, 2 and three combinations of (K̂1, K̂2) = (1, 1), (1, 2), (2, 2), using γ = 1 and

1e10 respectively. For both settings, we run the simulations for 50 times and report MSEs

of different JICO models in Tables D.1 and D.2 respectively.

K̂ γ K̂1 = 3, K̂2 = 3 K̂1 = 3, K̂2 = 5 K̂1 = 5, K̂2 = 5

1
1 5.1419 (0.7271) 5.1597 (0.7296) 5.1954 (0.7347)

1e10 4.5322 (0.6409) 2.7167 (0.3842) 1.9906 (0.2815)

2
1 8.4345 (1.1928) 8.4890 (1.1961) 8.4890 (1.2005)

1e10 2.1063 (0.2979) 0.0818 (0.0116) 0.0821 (0.0116)

3
1 10.6540 (1.5067) 10.6703 (1.5090) 10.6929 (1.5122)

1e10 2.7541 (0.3894) 1.5409 (0.2179) 1.4494 (0.2049)

Table D.1: MSEs of JICO model fit with different tuning parameters under the PCR
setting. Numbers in brackets are standard errors. The MSE with the correct choice of
tuning parameters is in boldface.

K̂ γ K̂1 = 1, K̂2 = 1 K̂1 = 1, K̂2 = 2 K̂1 = 2, K̂2 = 2

0
1 1.0322 (0.0241) 0.9226 (0.0191) 0.8396 (0.0170)

1e10 2.9912 (0.0676) 2.970 (0.066) 2.926 (0.0627)

1
1 0.6594 (0.0185) 0.6415 (0.0183) 0.6259 (0.0187)

1e10 2.9410 (0.0650) 2.9215 (0.0647) 2.9002 (0.0640)

2
1 0.9770 (0.0280) 0.9753 (0.0275) 0.9761 (0.0275)

1e10 2.9210 (0.0658) 2.8767 (0.0677) 2.8486 (0.0683)

Table D.2: MSEs of JICO model fit with different tuning parameters under the PLS setting.
Numbers in brackets are standard errors. The MSE with the correct choice of tuning
parameters is in boldface.

First, we observe that the choice of γ greatly impacts the JICO’s performance. As can

be seen in Table D.1, in the PCR setting, all models with γ = 1 are worse than those

with γ = 1e10 by a great margin, even when the latter uses wrong choices of K and Kg.

Similarly, in the PLS setting, all models with γ = 1e10 are worse than those with γ = 1

by a great margin as shown in Table D.2. Hence, we recommend users focusing more on

tuning γ, by doing a fine grid search in a relatively large range.

Second, we observe that if we use the good γ (i.e., γ = 1e10 for the PCR setting and

γ = 1 for the PLS setting), JICO’s performance depends more on the choice of K but less

on Kg, especially if we slightly over-estimate the latter. In Table D.1, with γ = 1e10, the

MSEs with K̂ = 2 and different K̂g’s are all smaller than the counterparts with K̂ = 1

7



or 3. This suggests that tuning K is more crucial than tuning Kg. On the other hand,

when we choose K̂ = 2, K̂1 = 5 and K̂2 = 5, its performance is not much worse than

the choice of K̂ = 2, K̂1 = 3 and K̂2 = 5. However, if we choose K̂ = 2, K̂1 = 3 and

K̂2 = 3, its performance becomes worse. Therefore, to save the tuning time, we suggest a

two-dimensional grid search of K and Kg, by enforcing K1 = · · · = KG. From Table D.2,

we see that the same conclusions can also be drawn under the PLS setting.

Finally, we point out that the goal of our algorithm is to approximate the joint and

individual structure of the data by some low-rank matrices, and use the resulting low-rank

matrices for prediction. Therefore, when the individual and joint matrices are too complex

and cannot be approximated by some low-rank matrices, we suggest to use alternative

methods to solve the problem. In addition, our method relies on proper tuning of γ and

ranks. If the differences between the ranks of individual matrices and the joint matrix are

large, our algorithm may take a long time to compute.

E The impact of using different initial values of Ig

The following simulation study illustrates the impact of using different matrices as the

initial value for our algorithm.

We use the same data generating scheme as described in Section 4. We fix G = 2, p =

200, n1 = n2 = 50. In each replication, we generate 100 training samples to train the

models and evaluate the corresponding Mean Squared Error (MSE) in an independent test

set of 100 samples. We also record the objective functions as described below:

• When γ = 0, we record the individual objective function as defined in (C.2) for

g = 1, 2. The joint rank is zero in this case.

• When γ = 1, we record the joint objective function cov(XJointw,Y Joint)2 and the

individual objective function cov(XIndiv
g w,Y Indiv

g )2 for g = 1, 2.

• When γ =∞, we record the joint objective function var(XJointw) and the individual

objective function var(XIndiv
g w) for g = 1, 2.

8



We compare the performance of our algorithm by giving the boxplots of the MSEs and

the converged objective values using different initial values. We repeat the simulation for

50 times, with three choices of initial values of the individual matrices Ig as follows:

• Zero matrix: In this setting, our algorithm starts with zero matrices as the initial

value, where all entries in Ig are equal to 0.

• Large matrix: In this setting, our algorithm starts with matrices with large entries

as the initial value, where all entries in Ig are equal to 3.

• Joint matrix: In this setting, our algorithm starts with the estimated joint matrices

Ĵg as the initial value, where Ĵg are derived from our first setting, that is using zero

matrices as the initial value.

Figures E.2 shows the converged value of the joint objective function under three choices

of Ig mentioned above. Figures E.3 and E.4 show the converged value of the first and the

second group’s objective function under the three different initial values, respectively. The

results show that our algorithm may not converge to the same objective function value

using different initial values when γ = 1, but Figure E.1 shows that our algorithm tends to

have similar performance in terms of prediction error, no matter how we choose the initial

individual matrices. To ensure better performance, we recommend running our algorithm

on the same dataset multiple times with different initial values, and then choose the result

with the best performance.

F Convergence and computational time of JICO

In this section, we perform additional numerical studies using the same simulated model

as in Appendix E, but with a focus on understanding the algorithm’s convergence and

computational time.

In the first numerical study, we investigate how fast the objective functions converge

with different initial values. The definitions of objective functions can be found in Appendix

E. We generate the data under PLS and PCR settings as described in Appendix E and

9



Figure E.1: The impact of using different initial individual matrix on MSE under different
settings.

Figure E.2: The impact of using different initial individual matrix on converged value of
the joint objective function under different settings.

10



Figure E.3: The impact of using different initial individual matrix on converged value of
the first group’s individual objective function under different settings.

Figure E.4: The impact of using different initial individual matrix on converged value of
the second group’s individual objective function under different settings.

11



Figure F.1: Numerical convergence of JICO under PCR setting. Models are fit with γ =
1e10.

Figure F.2: Numerical convergence of JICO under PLS setting. Models are fit with γ = 1.

repeat the simulation for 20 times. We fit the JICO models with γ = 1e10 for the PCR

setting and with γ = 1 for the PLS setting. We consider the same three different initial

values of the individual matrix Ig as in Appendix E.

We plot the objective function values against iterations under different initial values

in Figures F.1 (PCR setting) and F.2 (PLS setting). As can be seen in these plots, our

algorithm converges quickly in less than 10 iterations in both settings, regardless of the

initial choice of Ig.

In the second numerical study, we investigate if our algorithm can give stable predictions

when it starts with different initial values. To this end, we repeat our simulations 30 times

12



(a) PCR Example (b) PLS Example

Figure F.3: MSE curves of JICO with randomly initialized values on Ig under the PCR
setting (a) and PLS setting (b). The red solid curve gives the mean MSE and the shadow
gives the standard errors. Here a = 0.5 and 1 correspond to PLS and PCR respectively.

using the same data settings as described above. For each time, we run our algorithm with

10 randomly initialized values Ig ∼ N(0, 1) and then choose the best model that gives the

smallest MSE. Then, we evaluate the MSE given by the best model on an independent

test set. Figures F.3(a) and F.3(b) demonstrate the MSEs evaluated on the test set over

these 30 repetitions under (a) PCR setting and (b) PLS setting. We can see that the

performance of our algorithm is quite stable, especially when γ approaches ∞ or equals 1

for the PCR and PLS settings, respectively. It shows that JICO can give stable predictions

with different initial values of Ig.

Finally, we perform a numerical study to compare the computational time of JICO

with OLS, PLS and PCR, which includes the tuning time for finding the optimal γ, K

and Kg, as well as the training time with multiple initial values, using the optimal tuning

parameters.

In this numerical study, we generate 100 samples in each group and 200 variables using

the same PCR setting as described above and we repeat the same process for 100 times.

We fit the data with all mentioned methods. We tuned JICO with 10 different γ’s and 3

combinations of K and Kg using 3-fold cross-validation. We tune PLS and PCR methods

with the same choices of ranks using 3-fold cross-validation. The averaged training and

tuning time and their standard errors are summarized in Table F.3. Note that the training

13



of JICO is not much slower than the three non-iterative methods. The tuning for JICO

takes longer as it requires additional tuning of γ, whereas PCR and PLS only need to tune

ranks.

OLS PLS PCR
JICO

zero matrix random matrix large matrix

training time 0.01(0.0001) 0.05(0.0013) 0.04(0.0014) 0.12(0.0130) 0.23(0.0252) 0.13(0.0128)

tuning time - 0.25(0.0044) 0.14(0.0022) 10.34(0.0214) 101.20(3.2217) 35.06(0.0266)

Table F.3: Average training and tuning time needed for each method. Numbers in paren-

thesis are standard errors. (unit: second)

In general, we find that the tuning and training time of JICO is still quite acceptable.

Compared with OLS, PLS and PCR, the additional computation cost of JICO is not too

expensive, yet it is more flexible and gives better numerical performance. We hope that

the simulation results and Table F.3 can serve as a general reference for people to be aware

of JICO’s trade-offs between model accuracy versus computational cost.

G More simulation results

We conduct more simulations to demonstrate the performance of JICO. The simulation

settings are the same as described in Section 4 except for the following changes. We now

generate the error term eg in (4.1) from N (0, 1). We also change α and αg in (4.1). In

the PCR Example, we set α = 3 and αg = 3. In the PLS Example, we set α = 2 and

αg = 1. In the OLS Example (a), we set α = 3 and αg = 0. In the OLS Example (b), we

set α = 0, αg = 3. Table G.4 reports the MSEs of JICO along with other methods. We

see that the same conclusion can be drawn as for Table 1. That is, the JICO model with

the right choice of γ consistently outperforms other methods in all examples. Since the

signal-to-noise ratios in the new settings are lower than the counterparts in the Section 4,

the MSEs all enlarge, which is reasonable.

14



Method g = 1 g = 2 Overall

(a) PCR Example

JICO

γ = 0 3.226(0.504) 2.156(0.398) 5.382(0.642)

γ = 1 3.702(0.650) 2.260(0.385) 5.962(0.755)

γ =∞ 1.358(0.286) 1.179(0.271) 2.537(0.394)

Global

Ridge 7.622(1.461) 8.047(2.160) 15.669(2.608)

PLS 11.340(2.185) 12.146(2.713) 23.486(3.484)

PCR 5.241(1.073) 9.831(1.979) 15.072(2.251)

Group-specific

Ridge 5.520(1.048) 5.710(1.083) 11.229(1.507)

PLS 3.310(0.502) 1.906(0.333) 5.216(0.602)

PCR 6.708(1.163) 6.158(0.989) 12.866(1.527)

(b) PLS Example

JICO

γ = 0 3.127(0.595) 3.041(0.476) 6.167(0.762)

γ = 1 2.209(0.350) 2.174(0.366) 4.383(0.506)

γ =∞ 6.848(1.307) 7.043(1.252) 13.892(1.810)

Global

Ridge 3.815(0.710) 3.412(0.549) 7.226(0.898)

PLS 2.779(0.494) 2.592(0.467) 5.371(0.680)

PCR 6.870(1.356) 6.770(1.254) 13.640(1.847)

Group-specific

Ridge 3.915(0.765) 3.901(0.670) 7.816(1.017)

PLS 2.854(0.551) 2.788(0.478) 5.641(0.730)

PCR 6.848(1.307) 7.044(1.252) 13.892(1.810)

(c) OLS Example (a)

JICO

γ = 0 3.413(0.589) 2.008(0.360) 5.421(0.690)

γ = 1 4.247(0.652) 3.033(0.590) 7.281(0.879)

γ =∞ 13.586(2.676) 11.757(2.400) 25.344(3.595)

Global

Ridge 8.072(1.500) 6.818(1.366) 14.890(2.029)

PLS 6.459(0.652) 4.727(0.590) 11.186(0.879)

PCR 13.550(2.718) 12.780(2.307) 26.330(3.565)

Group-specific

Ridge 9.836(1.978) 9.990(1.956) 19.826(2.782)

PLS 9.680(1.507) 9.274(1.757) 18.954(2.315)

PCR 13.638(2.713) 13.102(2.545) 26.740(3.720)

(d) OLS Example (b)

JICO

γ = 0 1.755(0.310) 1.542(0.303) 3.297(0.433)

γ = 1 2.026(0.444) 2.014(0.347) 4.040(0.564)

γ =∞ 10.850(1.902) 8.231(1.598) 19.081(2.485)

Global

Ridge 7.190(1.355) 6.478(1.046) 13.668(1.711)

PLS 7.509(1.821) 7.424(2.004) 14.934(2.708)

PCR 11.194(2.047) 8.117(1.528) 19.310(2.554)

Group-specific

Ridge 4.870(0.945) 4.030(0.789) 8.901(1.232)

PLS 3.518(0.444) 3.450(0.347) 6.968(0.564)

PCR 11.071(1.903) 8.231(1.594) 19.302(2.482)

Table G.4: Groupwise and overall MSEs under the PCR, PLS and OLS settings. Numbers
in brackets are standard errors.

15



References

Feng, Q., Jiang, M., Hannig, J. & Marron, J. (2018), ‘Angle-based joint and individual

variation explained’, Journal of Multivariate Analysis 166, 241–265.

Kelley, C. T. (2003), Solving nonlinear equations with Newton’s method, Vol. 1, Siam.

16


