# Supplementary Materials for "Dynamic Classification of *Plasmodium vivax* Malaria Recurrence: An Application of Classifying Unknown Cause of Failure in Competing Risks"

YUTONG LIU<sup>1</sup>, FENG-CHANG LIN<sup>1</sup>, JESSICA T. LIN<sup>2</sup>, AND QUEFENG LI \*1

<sup>1</sup>Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.

<sup>2</sup>Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.

## S1 Additional simulation results

### S1.1 Simulation results of the method by Lin et al. (2020) for binary covariates

We apply the method proposed by Lin et al. (2020) to the same data generated in Section 5.1. The classification results are given in Tables S1 and S2. Their method requires the reinfection rate to be known a priori. We set the infection rate to be 0.05, the same as Lin et al. (2020). Under the low-dimensional setting, we could see that their first classifier always classifies events to relapse, which leads to a 100% sensitivity and 0% specificity. Its poor performance is due to the fact that such a classifier does not use the time-to-event information for classification. Moreover, their second classifier's performance is still worse than our classifier. Again, this is due to not using time-to-event information. We also observe that under both scenarios, for fixed n and J as  $\tau$  gets larger the classifier's sensitivity increases while specificity decreases. The overall accuracy increases when  $\tau$  gets larger. Comparing the two scenarios, the specificity does not differ much but the sensitivity and overall accuracy are both higher in the scenario when the association between baseline and recurrent covariates is strong. Comparing Tables 1 and 2 with Tables S1 and S2, we can see that our classifier's perform uniformly better than those proposed in Lin et al. (2020).

#### S1.2 Simulation results for misspecified hazard functions

To investigate how our classifiers perform when the proportional hazard assumption is violated, we repeat the simulation studies in Section 5 with additive hazard models. For reinfection, we assume its hazard function is  $\lambda_0(t) + \exp(\alpha)$ . For relapse, we assume its hazard function is  $\lambda_0(t) + \exp(\beta' X_i)$ . In both cases, we choose  $\lambda_0(t) = \exp(\tau)$ , for  $\tau = -0.5$ , 0 and 0.5. We keep all other settings the same as in Section 5 and repeat simulations for both binary and normal covariates under low- and high-dimensional scenarios. Tables S3–S6 give the classification results in each scenario. Comparing the classification accuracy of the two classifiers, we find that the second classifier's overall accuracy is much better than the first one in every scenario. Also, when the association between baseline and recurrence covariates becomes larger, the improvement becomes more profound. This result suggests that considering transition likelihood benefits classification even if the time-to-event model is misspecified. On the other hand, comparing these tables with the ones in Section 5, we find that when the hazard functions are misspecified,

<sup>\*</sup>quefeng@email.unc.edu

|          |      |           |             | $I(\hat{\xi}_i^{(0)} > 0.5)$ |            |             | $I(\hat{\xi}_i^{(1)} > 0.5)$ |                |
|----------|------|-----------|-------------|------------------------------|------------|-------------|------------------------------|----------------|
| Scenario | au   | (n,~J)    | Sensitivity | Specificity                  | Overall    | Sensitivity | Specificity                  | Overall        |
| 1        | -0.5 | (400, 10) | 100 (0)     | 0 (0)                        | 63.5(0.5)  | 66.7(1.1)   | 9.9(1.8)                     | 45.9(0.3)      |
|          |      | (800, 20) | 100(0)      | 0 (0)                        | 63.2(0.1)  | 83.7(0.9)   | 4.1(0.1)                     | 54.4(0.5)      |
|          | 0    | (400, 10) | 100(0)      | 0 (0)                        | 60.3(0.7)  | 77.9(1.1)   | 4.5(0.4)                     | 48.8(1.0)      |
|          |      | (800, 20) | 100(0)      | 0 (0)                        | 63.5 (0.9) | 90.6(0.4)   | 1.9(0)                       | 58.2(1.1)      |
|          | 0.5  | (400, 10) | 100(0)      | 0 (0)                        | 60.7 (0.2) | 87.7(1.4)   | 0.3 (0.9)                    | 53.3(0.4)      |
|          |      | (800, 20) | 100(0)      | 0 (0)                        | 64.8(0.4)  | 97.0(0.4)   | 1.0(0.2)                     | 63.3 (0.7)     |
| 2        | -0.5 | (400, 10) | 100(0)      | 0 (0)                        | 63.6 (0.2) | 43.6(0.6)   | 10.2(0.9)                    | 30.8(0.1)      |
|          |      | (800, 20) | 100(0)      | 0 (0)                        | 63.2(0.1)  | 72.5(2.2)   | 4.8(0.2)                     | 47.6(1.2)      |
|          | 0    | (400, 10) | 100(0)      | 0 (0)                        | 60.3(0.7)  | 62.3(0.2)   | 4.5(0.4)                     | 39.4(0.3)      |
|          |      | (800, 20) | 100(0)      | 0 (0)                        | 63.5(0.9)  | 81.1(1.5)   | 1.9(0.0)                     | 52.2(1.8)      |
|          | 0.5  | (400, 10) | 100(0)      | 0 (0)                        | 60.2(1.4)  | 77.0(3.6)   | $0.1 \ (0.2)$                | 46.4(3.1)      |
|          |      | (800, 20) | 100(0)      | 0 (0)                        | 64.8(0.4)  | 93.8~(0.6)  | 1.0(0.2)                     | $61.1 \ (0.9)$ |

Table S1: Classification performance of classifiers from Lin et al. (2020) with low-dimensional binary covariates.

Reported values are means and standard deviations over 500 simulations.

the classification accuracy is not as good as when the hazard functions are correctly specified. These results are not surprising as our classifiers rely on the time-to-event information to classify causes.

|          |      |            |             | $I(\hat{\xi}_i^{(0)} > 0.5)$ |           |             |             |            |
|----------|------|------------|-------------|------------------------------|-----------|-------------|-------------|------------|
| Scenario | au   | (n, J)     | Sensitivity | Specificity                  | Overall   | Sensitivity | Specificity | Overall    |
| 1        | -0.5 | (100, 200) | 100(0)      | 0 (0)                        | 76.4(4.5) | 61.3(45.9)  | 39.2(46.5)  | 65.4(24.5) |
|          |      | (200, 400) | 100(0)      | 0 (0)                        | 75.8(2.9) | 52.0(50.1)  | 48.0(50.1)  | 51.5(25.9) |
|          | 0    | (100, 200) | 100(0)      | 0(0)                         | 75.7(4.2) | 81.0(35.0)  | 19.8(36.0)  | 66.6(17.7) |
|          |      | (200, 400) | 100(0)      | 0 (0)                        | 75.9(2.7) | 85.8(34.8)  | 14.1 (34.9) | 68.8(17.9) |
|          | 0.5  | (100, 200) | 100(0)      | 0 (0)                        | 76.1(4.4) | 89.2(21.5)  | 11.0(22.4)  | 70.4(11.6) |
|          |      | (200, 400) | 100(0)      | 0 (0)                        | 76.1(2.8) | 83.2(36.8)  | 17.0(36.9)  | 67.7(19.1) |
| 2        | -0.5 | (100, 200) | 100(0)      | 0 (0)                        | 76.0(4.9) | 58.0(49.3)  | 39.3(46.9)  | 53.4(26.8) |
|          |      | (200, 400) | 100(0)      | 0 (0)                        | 76.6(3.3) | 47.5(49.8)  | 52.1 (49.9) | 49.0(26.7) |
|          | 0    | (100, 200) | 100(0)      | 0 (0)                        | 75.1(4.1) | 74.0(44.1)  | 18.2(32.5)  | 59.4(26.0) |
|          |      | (200, 400) | 100(0)      | 0 (0)                        | 75.9(2.9) | 83.0(37.7)  | 16.9(37.5)  | 66.8(20.0) |
|          | 0.5  | (100, 200) | 100(0)      | 0 (0)                        | 75.4(4.7) | 68.2(46.8)  | 18.5(28.7)  | 55.7(29.0) |
|          |      | (200, 400) | 100(0)      | 0 (0)                        | 76.2(2.8) | 78.2(41.4)  | 21.3(40.7)  | 64.3(22.3) |

Table S2: Classification performance of classifiers from Lin et al. (2020) with high-dimensional binary covariates.

Reported values are means and standard deviations over 500 simulations.

### S1.3 Parameter estimation for low-dimensional binary covariates model

For two low-dimensional settings in Section 5, we represent their parameter estimation accuracy in Tables S7 and S8.

# S2 Additional results of *Plasmodium vivax* malaria infection study

We here give more details about the *Plasmodium vivax* Malaria Infection study. Figure S1 shows the 23 subjects' time to first recurrence infection. Table S9 shows the classification results given by our method when using 67 haplotypes and  $\nu = 0.8$ . Figure S2 is the BIC curve when analyzing the *P. vivax* malaria data. Table S10 details the haplotypes that were collapsed with other haplotypes. Any other haplotypes not shown in the first column of the table were not collapsed. Table S11 shows the classification results given by our method when using 32 haplotypes, in which case the BIC attains its minimum at  $\nu = 1.6$ . Figure S3 shows the goodness-of-fit test result when using  $\nu = 0.8$ . The test statistics are point-wisely within the simulated processes, with no significant pattern of model violation.

|          |      |           |             | $I(\widehat{\xi}_i^{(0)} > 0.5)$ |           | -           | $I(\widehat{\xi}_i^{(1)} > 0.5)$ |            |
|----------|------|-----------|-------------|----------------------------------|-----------|-------------|----------------------------------|------------|
| Scenario | au   | (n, J)    | Sensitivity | Specificity                      | Overall   | Sensitivity | Specificity                      | Overall    |
| 1        | -0.5 | (400, 10) | 40.6 (11.6) | 45.3 (10.9)                      | 41.4(3.1) | 84.9 (3.1)  | 89.9(1.9)                        | 87.0 (1.7) |
|          |      | (800, 20) | 33.1(22.5)  | 48.8(21.8)                       | 38.8(3.7) | 91.9(2.3)   | 93.5~(0.9)                       | 92.6(1.2)  |
|          | 0    | (400, 10) | 35.2(12.1)  | 49.3(11.1)                       | 40.5(3.3) | 84.5(3.0)   | 90.2(1.9)                        | 86.9(1.6)  |
|          |      | (800, 20) | 28.0(19.6)  | 53.6(18.8)                       | 38.5(2.9) | 91.6(2.3)   | 93.6(0.8)                        | 92.5(1.2)  |
|          | 0.5  | (400, 10) | 31.7(11.3)  | 51.9(10.9)                       | 40.1(2.8) | 84.2(3.0)   | 90.7(1.9)                        | 86.8(1.7)  |
|          |      | (800, 20) | 27.0(19.8)  | 53.9(19.1)                       | 38.3(2.6) | 91.1(1.5)   | 93.6(0.7)                        | 92.1 (0.7) |
| 2        | -0.5 | (400, 10) | 37.9(11.1)  | 48.0(11.5)                       | 41.0(3.0) | 43.2(5.4)   | 57.7(3.7)                        | 49.5(2.7)  |
|          |      | (800, 20) | 33.5(20.8)  | 48.7(19.8)                       | 38.8(3.8) | 49.5(12.5)  | 64.0(3.5)                        | 55.8(6.0)  |
|          | 0    | (400, 10) | 34.6(11.3)  | 50.4(11.2)                       | 40.4(2.9) | 42.8(5.3)   | 57.9(3.2)                        | 49.4(2.6)  |
|          |      | (800, 20) | 30.4(21.9)  | 50.9(21.3)                       | 38.6(3.1) | 48.5(12.8)  | 64.0(4.0)                        | 55.5(5.8)  |
|          | 0.5  | (400, 10) | 32.6(11.7)  | 50.9(11.9)                       | 40.0(3.2) | 42.4(5.6)   | 58.3(4.5)                        | 49.0(2.8)  |
|          |      | (800, 20) | 28.5(21.2)  | 52.0(20.7)                       | 38.5(2.5) | 47.8(12.9)  | 64.0(4.0)                        | 55.2(5.6)  |

Table S3: Classification performance of proposed classifiers with low-dimensional binary covariates when hazard models are misspecified.

Reported values are means and standard deviations over 500 simulations.

Table S4: Classification performance of proposed classifiers with high-dimensional binary covariates when hazard models are misspecified.

|          |      |            |             | $I(\widehat{\xi}_i^{(0)} > 0.5)$ |           |             | $I(\hat{\xi}_i^{(1)} > 0.5)$ |             |
|----------|------|------------|-------------|----------------------------------|-----------|-------------|------------------------------|-------------|
| Scenario | au   | (n, J)     | Sensitivity | Specificity                      | Overall   | Sensitivity | Specificity                  | Overall     |
| 1        | -0.5 | (100, 200) | 77.1(4.2)   | 1.7(6.6)                         | 50.9(4.7) | 92.4(5.3)   | 10.0(7.9)                    | 69.1 (4.9)  |
|          |      | (200, 400) | 72.1(5.6)   | 10.3 (8.5)                       | 48.8(3.7) | 86.0(6.1)   | 19.9(8.1)                    | 66.5(4.0)   |
|          | 0    | (100, 200) | 76.0(6.1)   | 3.4(9.6)                         | 47.9(5.7) | 92.3(6.8)   | 11.2(10.3)                   | 66.8(5.7)   |
|          |      | (200, 400) | 72.1(5.2)   | 10.3(8.0)                        | 47.3(3.3) | 85.8(6.0)   | 20.3(8.3)                    | 65.2(3.7)   |
|          | 0.5  | (100, 200) | 76.0(5.3)   | 3.9(8.3)                         | 45.9(5.0) | 91.2(6.7)   | 12.0(9.3)                    | 64.5(5.5)   |
|          |      | (200, 400) | 69.9(5.5)   | 12.9(8.8)                        | 44.3(3.2) | 83.1(6.1)   | 22.0(8.4)                    | 62.0(3.6)   |
| 2        | -0.5 | (100, 200) | 76.6(5.7)   | 2.1(7.9)                         | 50.1(5.1) | 77.9(41.5)  | 14.2(43.0)                   | 52.7(35.5)  |
|          |      | (200, 400) | 71.2(5.2)   | 11.0(8.5)                        | 49.7(4.5) | 71.5(42.3)  | 18.9(50.1)                   | 50.3(29.8)  |
|          | 0    | (100, 200) | 77.8(3.1)   | 1.3(5.7)                         | 47.8(4.9) | 71.2(45.3)  | 4.9(35.6)                    | 48.1 (35.7) |
|          |      | (200, 400) | 69.7(4.3)   | 10.2(6.3)                        | 45.5(4.2) | 64.8(39.4)  | 7.2(40.5)                    | 45.4(30.2)  |
|          | 0.5  | (100, 200) | 75.5(6.1)   | 3.4(8.3)                         | 45.2(4.9) | 60.2(49.0)  | 9.0(39.4)                    | 46.2 (39.7) |
|          |      | (200, 400) | 66.4(5.7)   | 10.8(9.6)                        | 43.7(5.3) | 52.1(47.6)  | 17.6(38.0)                   | 44.7 (36.0) |

Sensitivity, specificity and overall accuracy are given as percentages.

Reported values are means and standard deviations over 500 simulations.

| ۲  | ٦ | L |  |
|----|---|---|--|
|    |   |   |  |
| ς. |   |   |  |

|          |      |           |             | $I(\hat{\xi}_i^{(0)} > 0.5)$ |           |             | $I(\hat{\xi}_i^{(1)} > 0.5)$ |           |
|----------|------|-----------|-------------|------------------------------|-----------|-------------|------------------------------|-----------|
| Scenario | au   | (n,~J)    | Sensitivity | Specificity                  | Overall   | Sensitivity | Specificity                  | Overall   |
| 1        | -0.5 | (400, 10) | 14.1 (4.6)  | 74.1(4.1)                    | 43.1(2.6) | 81.4(2.4)   | 88.6(0.9)                    | 84.9(1.2) |
|          |      | (800, 20) | 12.8(3.9)   | 77.9(2.6)                    | 41.2(1.7) | 83.5(1.7)   | 90.5(1.2)                    | 87.8(0.8) |
|          | 0    | (400, 10) | 11.2(4.1)   | 74.0(4.0)                    | 41.6(2.4) | 80.5(2.6)   | 89.8(0.9)                    | 84.5(1.4) |
|          |      | (800, 20) | 8.9(3.2)    | 77.3(3.0)                    | 40.2(1.9) | 83.3(2.1)   | 91.2(1.1)                    | 86.9(0.9) |
|          | 0.5  | (400, 10) | 9.1(4.3)    | 74.9(3.8)                    | 40.9(2.6) | 81.0(2.8)   | 88.7(0.9)                    | 84.7(1.4) |
|          |      | (800, 20) | 7.6(2.7)    | 78.2(2.9)                    | 39.4(1.5) | 84.6(1.9)   | 90.7(1.2)                    | 87.3(0.9) |
| 2        | -0.5 | (400, 10) | 13.7(4.1)   | 73.9(3.9)                    | 43.0(2.9) | 15.6(3.9)   | 72.0(3.7)                    | 43.1(2.8) |
|          |      | (800, 20) | 12.5(3.0)   | 76.2(2.3)                    | 42.3(2.3) | 19.3(2.8)   | 76.4(3.2)                    | 48.9(3.0) |
|          | 0    | (400, 10) | 1.3(3.9)    | 74.3(3.5)                    | 42.0(2.7) | 13.1 (4.1)  | 72.5(3.2)                    | 42.0(2.7) |
|          |      | (800, 20) | 9.2(2.4)    | 77.7(2.9)                    | 40.6(1.9) | 17.6(3.3)   | 77.2(2.4)                    | 47.2(2.8) |
|          | 0.5  | (400, 10) | 10.0(4.8)   | 74.6(4.0)                    | 41.4(2.8) | 11.9(4.2)   | 72.4(3.7)                    | 41.3(2.8) |
|          |      | (800, 20) | 7.2(3.8)    | 78.1(2.7)                    | 39.8(2.1) | 16.5(3.2)   | 76.6(2.1)                    | 48.0(2.5) |

Table S5: Classification performance of proposed classifiers with low-dimensional continuous covariates when hazard models are misspecified.

Reported values are means and standard deviations over 500 simulations.

Table S6: Classification performance of proposed classifiers with high-dimensional continuous covariates when hazard models are misspecified.

|          |      |            |             | $I(\hat{\xi}_i^{(0)} > 0.5)$ |            |             | $I(\hat{\xi}_i^{(1)} > 0.5)$ |            |
|----------|------|------------|-------------|------------------------------|------------|-------------|------------------------------|------------|
| Scenario | au   | (n, J)     | Sensitivity | Specificity                  | Overall    | Sensitivity | Specificity                  | Overall    |
| 1        | -0.5 | (100, 200) | 39.3 (6.6)  | 62.2(6.6)                    | 49.9(5.0)  | 82.0(3.5)   | 75.4(4.1)                    | 77.1 (3.8) |
|          |      | (200, 400) | 42.7(3.7)   | 59.5(4.2)                    | 49.2(2.7)  | 85.5(3.8)   | 72.1(3.8)                    | 79.4(3.1)  |
|          | 0    | (100, 200) | 37.6~(6.9)  | 61.0(7.4)                    | 48.4(5.7)  | 80.1(3.1)   | 73.7 (4.9)                   | 77.0(3.6)  |
|          |      | (200, 400) | 40.1(4.2)   | 57.9(5.1)                    | 47.9(3.2)  | 83.2(2.6)   | 71.9(2.7)                    | 78.9(3.5)  |
|          | 0.5  | (100, 200) | 36.5(6.7)   | 59.3(7.4)                    | 47.0(4.7)  | 79.8(3.2)   | 72.3(3.6)                    | 75.7(3.3)  |
|          |      | (200, 400) | 39.4(4.0)   | 57.1(5.0)                    | 46.5(2.1)  | 81.5(3.0)   | 68.7(2.0)                    | 77.3(3.2)  |
| 2        | -0.5 | (100, 200) | 41.1(6.8)   | 62.9(6.9)                    | 51.2(4.6)  | 42.2(4.2)   | 66.5(2.8)                    | 51.6(4.5)  |
|          |      | (200, 400) | 42.3(3.6)   | 60.0(4.6)                    | 49.8(2.7)  | 43.4(3.1)   | 63.4(2.6)                    | 56.6(3.1)  |
|          | 0    | (100, 200) | 37.1(8.1)   | 60.6(7.3)                    | 48.2(5.2)  | 39.0(3.4)   | 61.2(3.5)                    | 52.0(4.6)  |
|          |      | (200, 400) | 39.9(4.5)   | 57.9(5.3)                    | 47.4(3.0)  | 41.3(2.9)   | 58.2(2.9)                    | 53.7(3.4)  |
|          | 0.5  | (100, 200) | 35.5(6.3)   | 59.0(8.4)                    | 46.2(4.6)  | 36.5(4.1)   | 60.4(3.6)                    | 50.9(4.3)  |
|          |      | (200, 400) | 37.8(3.8)   | 56.2(6.2)                    | 44.1 (2.6) | 37.8(3.3)   | 57.3(2.8)                    | 52.4 (3.0) |

Sensitivity, specificity and overall accuracy are given as percentages.

Reported values are means and standard deviations over 500 simulations.

|          |      |           | $\widehat{\alpha}$ |             | $\widehat{oldsymbol{eta}}$ |            |
|----------|------|-----------|--------------------|-------------|----------------------------|------------|
| Scenario | au   | (n, J)    | Bias               | Sensitivity | Specificity                | Overall    |
| 1        | -0.5 | (400, 10) | 0.48(0.07)         | 100(0)      | 71.4(5.1)                  | 80.0 (4.8) |
|          |      | (800, 20) | $0.49 \ (0.05)$    | 100(0)      | 79.6(4.9)                  | 85.7(4.7)  |
|          | 0    | (400, 10) | 0.48(0.07)         | 100(0)      | 70.5(5.5)                  | 79.3(5.2)  |
|          |      | (800, 20) | 0.49(0.04)         | 100(0)      | 78.7(5.1)                  | 85.1(5.0)  |
|          | 0.5  | (400, 10) | 0.49(0.06)         | 100(0)      | 69.9(6.0)                  | 78.9(5.7)  |
|          |      | (800, 20) | 0.48(0.05)         | 99.9(0.7)   | 77.8(5.3)                  | 84.5(5.2)  |
| 2        | -0.5 | (400, 10) | 0.48(0.07)         | 100(0)      | 73.0(4.6)                  | 81.1(4.3)  |
|          |      | (800, 20) | $0.50 \ (0.05)$    | 99.9(0.7)   | 80.0(5.1)                  | 86.0(5.0)  |
|          | 0    | (400, 10) | 0.48(0.07)         | 100(0)      | 70.3(5.3)                  | 79.2(5.0)  |
|          |      | (800, 20) | 0.48(0.05)         | 100(0)      | 78.4(5.0)                  | 84.9(4.9)  |
|          | 0.5  | (400, 10) | 0.49(0.06)         | 99.9(0.7)   | 69.8(5.1)                  | 78.8(4.8)  |
|          |      | (800, 20) | $0.50\ (0.05)$     | 100 (0)     | 77.1(5.3)                  | 84.0(5.2)  |

Table S7: Accuracy of coefficient estimates with low-dimensional binary covariates.

Sensitivity, specificity and overall accuracy are given as percentages. Reported values are means and standard deviations over 500 simulations.

|          |      |           | $\widehat{\alpha}$ |             | $\widehat{oldsymbol{eta}}$ |           |
|----------|------|-----------|--------------------|-------------|----------------------------|-----------|
| Scenario | au   | (n,~J)    | Bias               | Sensitivity | Specificity                | Overall   |
| 1        | -0.5 | (400, 10) | 0.44(0.03)         | 100 (0)     | 70.9(5.4)                  | 79.6(5.2) |
|          |      | (800, 20) | 0.48(0.02)         | 100(0)      | 75.0(5.0)                  | 82.5(4.9) |
|          | 0    | (400, 10) | 0.45(0.03)         | 100(0)      | 70.8(5.3)                  | 79.6(5.0) |
|          |      | (800, 20) | 0.47(0.02)         | 100(0)      | 73.6(4.5)                  | 81.5(4.4) |
|          | 0.5  | (400, 10) | 0.44(0.03)         | 99.9(0.2)   | 69.5(5.1)                  | 78.7(4.8) |
|          |      | (800, 20) | 0.47(0.02)         | 100(0)      | 73.8(4.5)                  | 81.7(4.4) |
| 2        | -0.5 | (400, 10) | 0.43(0.02)         | 100 (0)     | 70.3(5.3)                  | 79.2(6)   |
|          |      | (800, 20) | $0.46\ (0.01)$     | 100 (0)     | 74.7 (4.6)                 | 82.3(4.5) |
|          | 0    | (400, 10) | 0.45~(0.02)        | 99.9(0.2)   | 69.5(5.0)                  | 78.7(4.8) |
|          |      | (800, 20) | $0.47 \ (0.01)$    | 100 (0)     | 73.3(4.7)                  | 81.3(4.6) |
|          | 0.5  | (400, 10) | 0.45~(0.02)        | 100(0)      | 67.8(4.4)                  | 77.5(4.6) |
|          |      | (800, 20) | $0.47 \ (0.01)$    | 99.9~(0.3)  | 72.9(4.6)                  | 81.0(4.5) |

Table S8: Accuracy of coefficient estimates with low-dimensional continuous covariates.

Sensitivity, specificity and overall accuracy are given as percentages.

Reported values are means and standard deviations over 500 simulations.



Figure S1: Time to First Recurrence Infection for 23 subjects with recurrence infections.

Figure S2: The BIC curve with different values of the tuning parameter  $\nu$ . The BIC attains its minimum at  $\nu = 2.05$ .





Figure S3: Goodness-of-fit model diagnosis for the P. vivax malaria data using  $\nu = 0.8$ 

| Recurrence                     | Days to    | Baseline |                            |                       | Recurrence | Variant    |                       | Class by     | Class by     |
|--------------------------------|------------|----------|----------------------------|-----------------------|------------|------------|-----------------------|--------------|--------------|
| Pair                           | Recurrence | Variants | $\widehat{oldsymbol{eta}}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method   | Lin et al.   |
| $10 \rightarrow 10 R$          | 84         | CAM.00   | 1.194                      | 0.793                 | CAM.00     | 0.590      | 0.996                 | Relapse      | Relapse      |
|                                |            | CAM.01   | 0                          |                       | CAM.11     | 0.077      |                       |              |              |
|                                |            |          |                            |                       | CAM.15     | 0.013      |                       |              |              |
| $31 \rightarrow 31 \mathrm{R}$ | 84         | CAM.00   | 1.194                      | 0.935                 | CAM.16     | 0.006      | 0.992                 | Relapse      | Relapse      |
|                                |            | CAM.02   | 0.075                      |                       |            |            |                       |              |              |
|                                |            | CAM.04   | 1.245                      |                       |            |            |                       |              |              |
|                                |            | CAM.31   | 0                          |                       |            |            |                       |              |              |
| $36 \rightarrow 36 R$          | 99         | CAM.00   | 1.194                      | 0.897                 | CAM.01     | 0.269      | 0.628                 | Relapse      | Relapse      |
|                                |            | CAM.01   | 0                          |                       | CAM.02     | 0.41       |                       |              |              |
|                                |            | CAM.02   | 0.075                      |                       | CAM.07     | 0.192      |                       |              |              |
|                                |            | CAM.03   | -0.293                     |                       | CAM.17     | 0.064      |                       |              |              |
|                                |            | CAM.04   | 1.245                      |                       |            |            |                       |              |              |
|                                |            | CAM.05   | -0.274                     |                       |            |            |                       |              |              |
|                                |            | CAM.06   | -0.292                     |                       |            |            |                       |              |              |
|                                |            | CAM.07   | 0.287                      |                       |            |            |                       |              |              |
|                                |            | CAM.09   | 0.068                      |                       |            |            |                       |              |              |
|                                |            | CAM.11   | 0                          |                       |            |            |                       |              |              |
| $68 \rightarrow 68 \mathrm{R}$ | 99         | CAM.00   | 1.194                      | 0.936                 | CAM.10     | 0.077      | 0.998                 | Relapse      | Relapse      |
|                                |            | CAM.02   | 0.075                      |                       |            |            |                       |              |              |
|                                |            | CAM.04   | 1.245                      |                       |            |            |                       |              |              |
|                                |            | CAM.10   | 0.022                      |                       |            |            |                       |              |              |
| $80 \rightarrow 80 \mathrm{R}$ | 56         | CAM.00   | 1.194                      | 0.951                 | CAM.00     | 0.590      | 0.000                 | Reinfection  | Reinfection  |
|                                |            | CAM.04   | 1.245                      |                       | CAM.01     | 0.269      |                       |              |              |
|                                |            | CAM.05   | -0.274                     |                       | CAM.02     | 0.410      |                       |              |              |
|                                |            | CAM.08   | 0.384                      |                       | CAM.03     | 0.295      |                       |              |              |
|                                |            | CAM.09   | 0.068                      |                       | CAM.05     | 0.231      |                       |              |              |
|                                |            | CAM.24   | 0.207                      |                       | CAM.06     | 0.231      |                       |              |              |
|                                |            | CAM.27   | 0                          |                       | CAM.07     | 0.192      |                       |              |              |
|                                |            |          |                            |                       |            |            |                       | (Continued o | n next page) |

Table S9: Classification of the first recurrent infection based on our proposed method ( $\nu = 0.8$ ).

| Recurrence                       | Days to    | Baseline |                            |                       | Recurrence | Variant    |                       | Class by     | Class by    |
|----------------------------------|------------|----------|----------------------------|-----------------------|------------|------------|-----------------------|--------------|-------------|
| Pair                             | Recurrence | Variants | $\widehat{oldsymbol{eta}}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method   | Lin et al.  |
|                                  |            |          |                            |                       | CAM.08     | 0.154      |                       |              |             |
|                                  |            |          |                            |                       | CAM.12     | 0.064      |                       |              |             |
|                                  |            |          |                            |                       | CAM.41     | 0.013      |                       |              |             |
| $81 \rightarrow 81 \mathrm{R}$   | 35         | CAM.00   | 1.194                      | 0.793                 | CAM.00     | 0.590      | 0.975                 | Relapse      | Relapse     |
|                                  |            | CAM.01   | 0                          |                       | CAM.01     | 0.269      |                       |              |             |
|                                  |            | CAM.51   | 0                          |                       |            |            |                       |              |             |
| $82 \rightarrow 82 \mathrm{R}$   | 56         | CAM.00   | 1.194                      | 0.910                 | CAM.00     | 0.590      | 0.670                 | Relapse      | Relapse     |
|                                  |            | CAM.03   | -0.293                     |                       | CAM.01     | 0.269      |                       |              |             |
|                                  |            | CAM.04   | 1.245                      |                       | CAM.03     | 0.295      |                       |              |             |
|                                  |            | CAM.10   | 0.022                      |                       | CAM.46     | 0.006      |                       |              |             |
| $87 \rightarrow 87 \mathrm{R}$   | 81         | CAM.00   | 1.194                      | 0.882                 | CAM.00     | 0.590      | 0.616                 | Relapse      | Relapse     |
|                                  |            | CAM.01   | 0                          |                       | CAM.07     | 0.192      |                       |              |             |
|                                  |            | CAM.02   | 0.075                      |                       | CAM.08     | 0.154      |                       |              |             |
|                                  |            | CAM.08   | 0.384                      |                       | CAM.53     | 0.013      |                       |              |             |
|                                  |            | CAM.24   | 0.207                      |                       |            |            |                       |              |             |
| $89 \rightarrow 89 R$            | 14         | CAM.00   | 1.194                      | 0.953                 | CAM.01     | 0.269      | 0.109                 | Reinfection  | Reinfectio  |
|                                  |            | CAM.04   | 1.245                      |                       | CAM.09     | 0.077      |                       |              |             |
|                                  |            | CAM.06   | -0.292                     |                       | CAM.20     | 0.026      |                       |              |             |
|                                  |            | CAM.08   | 0.384                      |                       | CAM.27     | 0.038      |                       |              |             |
|                                  |            | CAM.10   | 0.022                      |                       |            |            |                       |              |             |
|                                  |            | CAM.12   | 0.307                      |                       |            |            |                       |              |             |
| $96 \rightarrow 96 R$            | 71         | CAM.00   | 1.194                      | 0.955                 | CAM.00     | 0.590      | 0.992                 | Relapse      | Relapse     |
|                                  |            | CAM.02   | 0.075                      |                       | CAM.30     | 0.013      |                       |              |             |
|                                  |            | CAM.04   | 1.245                      |                       |            |            |                       |              |             |
|                                  |            | CAM.08   | 0.384                      |                       |            |            |                       |              |             |
| $112 \rightarrow 112 \mathrm{R}$ | 67         | CAM.00   | 1.194                      | 0.963                 | CAM.00     | 0.590      | 0.847                 | Relapse      | Relapse     |
|                                  |            | CAM.01   | 0                          |                       | CAM.01     | 0.269      |                       | _            | -           |
|                                  |            | CAM.02   | 0.075                      |                       | CAM.02     | 0.410      |                       |              |             |
|                                  |            |          |                            |                       |            |            |                       | (Continued o | n next page |

Table S9 (continued from previous page)

| Recurrence                       | Days to    | Baseline |                            |                       | Recurrence | Variant    |                       | Class by     | Class by     |
|----------------------------------|------------|----------|----------------------------|-----------------------|------------|------------|-----------------------|--------------|--------------|
| Pair                             | Recurrence | Variants | $\widehat{oldsymbol{eta}}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method   | Lin et al.   |
|                                  |            | CAM.04   | 1.245                      |                       |            |            |                       |              |              |
|                                  |            | CAM.07   | 0.287                      |                       |            |            |                       |              |              |
|                                  |            | CAM.12   | 0.307                      |                       |            |            |                       |              |              |
|                                  |            | CAM.40   | 0                          |                       |            |            |                       |              |              |
|                                  |            | CAM.42   | 0                          |                       |            |            |                       |              |              |
|                                  |            | CAM.60   | 0                          |                       |            |            |                       |              |              |
| $118 \to 118 \mathrm{R}$         | 89         | CAM.08   | 0.384                      | 0.631                 | CAM.01     | 0.269      | 0.012                 | Reinfection  | Reinfection  |
|                                  |            |          |                            |                       | CAM.02     | 0.410      |                       |              |              |
|                                  |            |          |                            |                       | CAM.25     | 0.006      |                       |              |              |
|                                  |            |          |                            |                       | CAM.39     | 0.006      |                       |              |              |
| $123 \rightarrow 123 \mathrm{R}$ | 26         | CAM.00   | 1.194                      | 0.805                 | CAM.00     | 0.590      | 0.720                 | Relapse      | Reinfection  |
|                                  |            | CAM.02   | 0.075                      |                       | CAM.01     | 0.269      |                       |              |              |
| $125 \rightarrow 125 \mathrm{R}$ | 82         | CAM.02   | 0.075                      | 0.556                 | CAM.00     | 0.590      | 0.000                 | Reinfection  | Reinfection  |
|                                  |            |          |                            |                       | CAM.01     | 0.269      |                       |              |              |
|                                  |            |          |                            |                       | CAM.02     | 0.410      |                       |              |              |
|                                  |            |          |                            |                       | CAM.04     | 0.346      |                       |              |              |
|                                  |            |          |                            |                       | CAM.09     | 0.077      |                       |              |              |
|                                  |            |          |                            |                       | CAM.13     | 0.006      |                       |              |              |
|                                  |            |          |                            |                       | CAM.14     | 0.026      |                       |              |              |
|                                  |            |          |                            |                       | CAM.38     | 0.006      |                       |              |              |
|                                  |            |          |                            |                       | CAM.45     | 0.006      |                       |              |              |
| $126 \rightarrow 126 \mathrm{R}$ | 85         | CAM.00   | 1.194                      | 0.890                 | CAM.01     | 0.269      | 0.968                 | Relapse      | Relapse      |
|                                  |            | CAM.01   | 0                          |                       | CAM.07     | 0.192      |                       |              |              |
|                                  |            | CAM.02   | 0.075                      |                       | CAM.33     | 0.006      |                       |              |              |
|                                  |            | CAM.03   | -0.293                     |                       |            |            |                       |              |              |
|                                  |            | CAM.04   | 1.245                      |                       |            |            |                       |              |              |
|                                  |            | CAM.05   | -0.274                     |                       |            |            |                       |              |              |
|                                  |            | CAM.06   | -0.292                     |                       |            |            |                       |              |              |
|                                  |            |          |                            |                       |            |            |                       | (Continued o | n next page) |

Table S9 (continued from previous page)

12

 $\mathbf{P}$ ъ

| Recurrence                       | Days to                | Baseline |                            |                       | Recurrence | Variant    |                       | Class by    | Class by    |
|----------------------------------|------------------------|----------|----------------------------|-----------------------|------------|------------|-----------------------|-------------|-------------|
| Pair                             | Recurrence             | Variants | $\widehat{oldsymbol{eta}}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method  | Lin et al.  |
|                                  |                        | CAM.07   | 0.287                      |                       |            |            |                       |             |             |
|                                  |                        | CAM.22   | 0                          |                       |            |            |                       |             |             |
|                                  |                        | CAM.50   | 0                          |                       |            |            |                       |             |             |
| $130 \rightarrow 130 \mathrm{R}$ | 68                     | CAM.00   | 1.194                      | 0.936                 | CAM.00     | 0.590      | 0.997                 | Relapse     | Relapse     |
|                                  |                        | CAM.02   | 0.075                      |                       | CAM.04     | 0.346      |                       |             |             |
|                                  |                        | CAM.03   | -0.293                     |                       | CAM.12     | 0.064      |                       |             |             |
|                                  |                        | CAM.04   | 1.245                      |                       |            |            |                       |             |             |
|                                  |                        | CAM.12   | 0.307                      |                       |            |            |                       |             |             |
| $151 \rightarrow 151 \mathrm{R}$ | 126                    | CAM.03   | -0.293                     | 0.492                 | CAM.00     | 0.590      | 0.242                 | Reinfection | Reinfection |
|                                  |                        | CAM.05   | -0.274                     |                       | CAM.08     | 0.154      |                       |             |             |
|                                  |                        | CAM.08   | 0.384                      |                       | CAM.14     | 0.026      |                       |             |             |
|                                  |                        |          |                            |                       | CAM.64     | 0.006      |                       |             |             |
| $152 \rightarrow 152 \mathrm{R}$ | 94                     | CAM.00   | 1.194                      | 0.793                 | CAM.00     | 0.590      | 0.157                 | Reinfection | Reinfection |
|                                  |                        | CAM.01   | 0                          |                       | CAM.01     | 0.269      |                       |             |             |
|                                  |                        |          |                            |                       | CAM.05     | 0.231      |                       |             |             |
|                                  |                        |          |                            |                       | CAM.07     | 0.192      |                       |             |             |
| $153 \rightarrow 153 \mathrm{R}$ | 115                    | CAM.00   | 1.194                      | 0.947                 | CAM.02     | 0.410      | 0.586                 | Relapse     | Relapse     |
|                                  |                        | CAM.04   | 1.245                      |                       | CAM.20     | 0.026      |                       |             |             |
|                                  |                        | CAM.07   | 0.287                      |                       |            |            |                       |             |             |
|                                  |                        | CAM.55   | 0                          |                       |            |            |                       |             |             |
| $154 \rightarrow 154 \mathrm{R}$ | 64                     | CAM.00   | 1.194                      | 0.741                 | CAM.03     | 0.295      | 0.098                 | Reinfection | Reinfection |
|                                  |                        | CAM.06   | -0.292                     |                       | CAM.05     | 0.231      |                       |             |             |
|                                  |                        | CAM.57   | 0                          |                       | CAM.06     | 0.231      |                       |             |             |
| $160 \rightarrow 160 \mathrm{R}$ | 17                     | CAM.02   | 0.075                      | 0.853                 | CAM.00     | 0.590      | 0.000                 | Reinfection | Reinfection |
|                                  |                        | CAM.04   | 1.245                      |                       | CAM.03     | 0.295      |                       |             |             |
|                                  |                        | CAM.07   | 0.287                      |                       | CAM.05     | 0.231      |                       |             |             |
|                                  |                        |          |                            |                       | CAM.10     | 0.077      |                       |             |             |
|                                  |                        |          |                            |                       | CAM.61     | 0.006      |                       |             |             |
|                                  | (Continued on next pag |          |                            |                       |            |            |                       |             |             |

Table S9 (continued from previous page)

| Recurrence                       | Days to    | Baseline |                            |                       | Recurrence | Variant    |                       | Class by    | Class by    |
|----------------------------------|------------|----------|----------------------------|-----------------------|------------|------------|-----------------------|-------------|-------------|
| Pair                             | Recurrence | Variants | $\widehat{oldsymbol{eta}}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method  | Lin et al.  |
| $177 \rightarrow 177 R$          | 84         | CAM.00   | 1.194                      | 0.947                 | CAM.01     | 0.269      | 0.864                 | Relapse     | Relapse     |
|                                  |            | CAM.04   | 1.245                      |                       |            |            |                       |             |             |
|                                  |            | CAM.07   | 0.287                      |                       |            |            |                       |             |             |
| $179 \rightarrow 179 \mathrm{R}$ | 84         | CAM.03   | -0.293                     | 0.485                 | CAM.01     | 0.269      | 0.165                 | Reinfection | Reinfection |
|                                  |            | CAM.05   | -0.274                     |                       | CAM.13     | 0.006      |                       |             |             |
|                                  |            | CAM.07   | 0.287                      |                       |            |            |                       |             |             |
|                                  |            | CAM.09   | 0.068                      |                       |            |            |                       |             |             |
|                                  |            | CAM.17   | 0                          |                       |            |            |                       |             |             |
|                                  |            | CAM.22   | 0                          |                       |            |            |                       |             |             |

Table S9 (continued from previous page)

| Original haplotype | Collapse to |
|--------------------|-------------|
| CAM.05             | CAM.00      |
| CAM.12             | CAM.00      |
| CAM.24             | CAM.00      |
| CAM.46             | CAM.00      |
| CAM.51             | CAM.00      |
| CAM.54             | CAM.00      |
| CAM.57             | CAM.00      |
| CAM.61             | CAM.00      |
| CAM.62             | CAM.00      |
| CAM.25             | CAM.01      |
| CAM.26             | CAM.01      |
| CAM.43             | CAM.01      |
| CAM.44             | CAM.01      |
| CAM.63             | CAM.01      |
| CAM.13             | CAM.02      |
| CAM.31             | CAM.02      |
| CAM.32             | CAM.02      |
| CAM.34             | CAM.02      |
| CAM.38             | CAM.02      |
| CAM.40             | CAM.02      |
| CAM.49             | CAM.02      |
| CAM.60             | CAM.02      |
| CAM.56             | CAM.04      |
| CAM.58             | CAM.04      |
| CAM.37             | CAM.06      |
| CAM.42             | CAM.06      |
| CAM.55             | CAM.06      |
| CAM.64             | CAM.06      |
| CAM.15             | CAM.07      |
| CAM.39             | CAM.07      |
| CAM.41             | CAM.07      |
| CAM.50             | CAM.07      |
| CAM.17             | CAM.08      |
| CAM.59             | CAM.09      |
| CAM.45             | CAM.10      |

Table S10: Collapsing of original 67 haplotypes to 32 haplotypes.

| Recurrence                     | Days to    | Baseline |                 |                       | Recurrence | Variant    |                       | Class by     | Class by     |
|--------------------------------|------------|----------|-----------------|-----------------------|------------|------------|-----------------------|--------------|--------------|
| Pair                           | Recurrence | Variants | $\widehat{eta}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method   | Lin et al.   |
| $10 \rightarrow 10 \mathrm{R}$ | 84         | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.927                 | Relapse      | Relapse      |
|                                |            | CAM.11   | 0               |                       | CAM.07     | 0.218      |                       |              |              |
|                                |            |          |                 |                       | CAM.11     | 0.077      |                       |              |              |
| $31 \rightarrow 31 \mathrm{R}$ | 84         | CAM.00   | 0.862           | 0.913                 | CAM.16     | 0.006      | 0.981                 | Relapse      | Relapse      |
|                                |            | CAM.02   | 0               |                       |            |            |                       |              |              |
|                                |            | CAM.04   | 1.157           |                       |            |            |                       |              |              |
| $36 \rightarrow 36 \mathrm{R}$ | 99         | CAM.00   | 0.862           | 0.913                 | CAM.01     | 0.321      | 0.393                 | Reinfection  | Relapse      |
|                                |            | CAM.01   | 0               |                       | CAM.02     | 0.449      |                       |              |              |
|                                |            | CAM.02   | 0               |                       | CAM.07     | 0.218      |                       |              |              |
|                                |            | CAM.03   | 0               |                       | CAM.08     | 0.218      |                       |              |              |
|                                |            | CAM.04   | 1.157           |                       |            |            |                       |              |              |
|                                |            | CAM.06   | 0               |                       |            |            |                       |              |              |
|                                |            | CAM.07   | 0               |                       |            |            |                       |              |              |
|                                |            | CAM.09   | 0               |                       |            |            |                       |              |              |
|                                |            | CAM.11   | 0               |                       |            |            |                       |              |              |
| $68 \rightarrow 68 \mathrm{R}$ | 99         | CAM.00   | 0.862           | 0.913                 | CAM.10     | 0.077      | 0.995                 | Relapse      | Relapse      |
|                                |            | CAM.02   | 0               |                       |            |            |                       |              |              |
|                                |            | CAM.04   | 1.157           |                       |            |            |                       |              |              |
|                                |            | CAM.10   | 0               |                       |            |            |                       |              |              |
| $80 \rightarrow 80 \mathrm{R}$ | 56         | CAM.00   | 0.862           | 0.913                 | CAM.00     | 0.679      | 0                     | Reinfection  | Reinfection  |
|                                |            | CAM.04   | 1.157           |                       | CAM.01     | 0.321      |                       |              |              |
|                                |            | CAM.08   | 0               |                       | CAM.02     | 0.449      |                       |              |              |
|                                |            | CAM.09   | 0               |                       | CAM.03     | 0.295      |                       |              |              |
|                                |            | CAM.27   | 0               |                       | CAM.06     | 0.269      |                       |              |              |
|                                |            |          |                 |                       | CAM.07     | 0.218      |                       |              |              |
|                                |            |          |                 |                       | CAM.08     | 0.218      |                       |              |              |
| $81 \rightarrow 81 \mathrm{R}$ | 35         | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.942                 | Relapse      | Relapse      |
|                                |            |          |                 |                       |            |            |                       | (Continued o | n next page) |

Table S11: Classification of first recurrent infection based on our proposed method when using 32 haplotypes ( $\nu = 1.6$ ).

| Recurrence                       | Days to    | Baseline |                 |                       | Recurrence | Variant    |                       | Class by                 | Class by    |
|----------------------------------|------------|----------|-----------------|-----------------------|------------|------------|-----------------------|--------------------------|-------------|
| Pair                             | Recurrence | Variants | $\widehat{eta}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method               | Lin et al.  |
|                                  |            | CAM.01   | 0               |                       | CAM.01     | 0.321      |                       |                          |             |
| $82 \rightarrow 82 \mathrm{R}$   | 56         | CAM.00   | 0.862           | 0.913                 | CAM.00     | 0.679      | 0.723                 | Relapse                  | Relapse     |
|                                  |            | CAM.03   | 0               |                       | CAM.01     | 0.321      |                       |                          |             |
|                                  |            | CAM.04   | 1.157           |                       | CAM.03     | 0.295      |                       |                          |             |
|                                  |            | CAM.10   | 0               |                       |            |            |                       |                          |             |
| $87 \rightarrow 87 \mathrm{R}$   | 81         | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.461                 | Reinfection              | Relapse     |
|                                  |            | CAM.01   | 0               |                       | CAM.07     | 0.218      |                       |                          |             |
|                                  |            | CAM.02   | 0               |                       | CAM.08     | 0.218      |                       |                          |             |
|                                  |            | CAM.08   | 0               |                       | CAM.53     | 0.006      |                       |                          |             |
| $89 \rightarrow 89 \mathrm{R}$   | 14         | CAM.00   | 0.862           | 0.913                 | CAM.01     | 0.321      | 0.7                   | Relapse                  | Reinfection |
|                                  |            | CAM.04   | 1.157           |                       | CAM.09     | 0.077      |                       |                          |             |
|                                  |            | CAM.06   | 0               |                       | CAM.20     | 0.026      |                       |                          |             |
|                                  |            | CAM.08   | 0               |                       | CAM.27     | 0.038      |                       |                          |             |
|                                  |            | CAM.10   | 0               |                       |            |            |                       |                          |             |
| $96 \rightarrow 96 \mathrm{R}$   | 71         | CAM.00   | 0.862           | 0.913                 | CAM.00     | 0.679      | 0.989                 | Relapse                  | Relapse     |
|                                  |            | CAM.02   | 0               |                       | CAM.30     | 0.013      |                       |                          |             |
|                                  |            | CAM.04   | 1.157           |                       |            |            |                       |                          |             |
|                                  |            | CAM.08   | 0               |                       |            |            |                       |                          |             |
| $112 \rightarrow 112 \mathrm{R}$ | 67         | CAM.00   | 0.862           | 0.913                 | CAM.00     | 0.679      | 0.739                 | Relapse                  | Relapse     |
|                                  |            | CAM.01   | 0               |                       | CAM.01     | 0.321      |                       |                          |             |
|                                  |            | CAM.02   | 0               |                       | CAM.02     | 0.449      |                       |                          |             |
|                                  |            | CAM.04   | 1.157           |                       |            |            |                       |                          |             |
|                                  |            | CAM.06   | 0               |                       |            |            |                       |                          |             |
|                                  |            | CAM.07   | 0               |                       |            |            |                       |                          |             |
| $118 \to 118 \mathrm{R}$         | 89         | CAM.08   | 0               | 0.583                 | CAM.01     | 0.321      | 0.003                 | Reinfection              | Reinfectior |
|                                  |            |          |                 |                       | CAM.02     | 0.449      |                       |                          |             |
|                                  |            |          |                 |                       | CAM.07     | 0.218      |                       |                          |             |
| $123 \rightarrow 123 \mathrm{R}$ | 26         | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.702                 | Relapse                  | Relapse     |
|                                  |            |          |                 |                       |            |            |                       | (Continued on next page) |             |

Table S11 (continued from previous page)

| Recurrence                       | Days to    | Baseline |                 |                       | Recurrence | Variant    |                       | Class by     | Class by     |
|----------------------------------|------------|----------|-----------------|-----------------------|------------|------------|-----------------------|--------------|--------------|
| Pair                             | Recurrence | Variants | $\widehat{eta}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method   | Lin et al.   |
|                                  |            | CAM.02   | 0               |                       | CAM.01     | 0.321      |                       |              |              |
| $125 \rightarrow 125 \mathrm{R}$ | 82         | CAM.02   | 0               | 0.583                 | CAM.00     | 0.679      | 0.001                 | Reinfection  | Reinfection  |
|                                  |            |          |                 |                       | CAM.01     | 0.321      |                       |              |              |
|                                  |            |          |                 |                       | CAM.02     | 0.449      |                       |              |              |
|                                  |            |          |                 |                       | CAM.04     | 0.359      |                       |              |              |
|                                  |            |          |                 |                       | CAM.09     | 0.077      |                       |              |              |
|                                  |            |          |                 |                       | CAM.10     | 0.077      |                       |              |              |
|                                  |            |          |                 |                       | CAM.14     | 0.026      |                       |              |              |
| $126 \to 126 \mathrm{R}$         | 85         | CAM.00   | 0.862           | 0.913                 | CAM.01     | 0.321      | 0.969                 | Relapse      | Relapse      |
|                                  |            | CAM.01   | 0               |                       | CAM.07     | 0.218      |                       |              |              |
|                                  |            | CAM.02   | 0               |                       | CAM.33     | 0.006      |                       |              |              |
|                                  |            | CAM.03   | 0               |                       |            |            |                       |              |              |
|                                  |            | CAM.04   | 1.157           |                       |            |            |                       |              |              |
|                                  |            | CAM.06   | 0               |                       |            |            |                       |              |              |
|                                  |            | CAM.07   | 0               |                       |            |            |                       |              |              |
|                                  |            | CAM.22   | 0               |                       |            |            |                       |              |              |
| $130 \rightarrow 130 \mathrm{R}$ | 68         | CAM.00   | 0.862           | 0.913                 | CAM.00     | 0.679      | 0.98                  | Relapse      | Relapse      |
|                                  |            | CAM.02   | 0               |                       | CAM.04     | 0.359      |                       |              |              |
|                                  |            | CAM.03   | 0               |                       |            |            |                       |              |              |
|                                  |            | CAM.04   | 1.157           |                       |            |            |                       |              |              |
| $151 \rightarrow 151 \mathrm{R}$ | 126        | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.828                 | Relapse      | Relapse      |
|                                  |            | CAM.03   | 0               |                       | CAM.06     | 0.269      |                       |              |              |
|                                  |            | CAM.08   | 0               |                       | CAM.08     | 0.218      |                       |              |              |
|                                  |            |          |                 |                       | CAM.14     | 0.026      |                       |              |              |
| $152 \rightarrow 152 \mathrm{R}$ | 94         | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.799                 | Relapse      | Relapse      |
|                                  |            | CAM.01   | 0               |                       | CAM.01     | 0.321      |                       |              |              |
|                                  |            |          |                 |                       | CAM.07     | 0.218      |                       |              |              |
| $153 \rightarrow 153 \mathrm{R}$ | 115        | CAM.00   | 0.862           | 0.913                 | CAM.02     | 0.449      | 0.76                  | Relapse      | Relapse      |
|                                  |            |          |                 |                       |            |            |                       | (Continued o | n next page) |

Table S11 (continued from previous page)

| Recurrence                       | Days to    | Baseline |                 |                       | Recurrence | Variant    |                       | Class by    | Class by    |
|----------------------------------|------------|----------|-----------------|-----------------------|------------|------------|-----------------------|-------------|-------------|
| Pair                             | Recurrence | Variants | $\widehat{eta}$ | $\widehat{\xi}^{(0)}$ | Variants   | Prevalence | $\widehat{\xi}^{(1)}$ | our method  | Lin et al.  |
|                                  |            | CAM.04   | 1.157           |                       | CAM.20     | 0.026      |                       |             |             |
|                                  |            | CAM.06   | 0               |                       |            |            |                       |             |             |
|                                  |            | CAM.07   | 0               |                       |            |            |                       |             |             |
| $154 \rightarrow 154 \mathrm{R}$ | 64         | CAM.00   | 0.862           | 0.768                 | CAM.00     | 0.679      | 0.771                 | Relapse     | Relapse     |
|                                  |            | CAM.06   | 0               |                       | CAM.03     | 0.295      |                       |             |             |
|                                  |            |          |                 |                       | CAM.06     | 0.269      |                       |             |             |
| $160 \rightarrow 160 \mathrm{R}$ | 17         | CAM.02   | 0               | 0.816                 | CAM.00     | 0.679      | 0.009                 | Reinfection | Reinfection |
|                                  |            | CAM.04   | 1.157           |                       | CAM.03     | 0.295      |                       |             |             |
|                                  |            | CAM.07   | 0               |                       | CAM.10     | 0.077      |                       |             |             |
| $177 \to 177 \mathrm{R}$         | 84         | CAM.00   | 0.862           | 0.913                 | CAM.01     | 0.321      | 0.815                 | Relapse     | Relapse     |
|                                  |            | CAM.04   | 1.157           |                       |            |            |                       |             |             |
|                                  |            | CAM.07   | 0               |                       |            |            |                       |             |             |
| $179 \rightarrow 179 \mathrm{R}$ | 84         | CAM.00   | 0.862           | 0.768                 | CAM.01     | 0.321      | 0.046                 | Reinfection | Reinfection |
|                                  |            | CAM.03   | 0               |                       | CAM.02     | 0.449      |                       |             |             |
|                                  |            | CAM.07   | 0               |                       |            |            |                       |             |             |
|                                  |            | CAM.08   | 0               |                       |            |            |                       |             |             |
|                                  |            | CAM.09   | 0               |                       |            |            |                       |             |             |
|                                  |            | CAM.22   | 0               |                       |            |            |                       |             |             |

Table S11 (continued from previous page)

# References

Lin FC, Li Q, Lin JT (2020). Relapse or reinfection: Classification of malaria infection using transition likelihoods. *Biometrics*, 76(4): 1351–1363.