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a b s t r a c t

In the era of big data, integrative analyses that pool data from different sources are now
extensively conducted in order to improve performance. Among many interesting appli-
cations, genomics research is an area where integrative methods become popular tools
to identify prognostic biomarkers for various diseases. In this paper, we propose such a
framework for pathway and gene identification. Our method employs a hierarchical de-
composition on genes’ effects followed by a proper regularization to identify important
pathways and genes across multiple studies. Asymptotic theories are provided to show
that our method is both pathway and gene selection consistent. More importantly, we ex-
plicitly show that pathway selection consistency needs milder statistical conditions than
gene selection consistency, as it would allow false positives and negatives at the gene se-
lection level. Finite-sample performance of our method is shown to be superior than other
ad hocmethods in various simulation studies. We further apply ourmethod to analyze five
cardiovascular disease studies. Ourmethod is intrinsically a generalmethod on group-wise
and element-wise selections from integrative analysis, which can have other applications
beyond genomic research.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

High-throughput sequencing technology has become a prevalent tool in biological and medical research. A unique
characteristic of the sequencing data is that they are high-dimensional-low-sample-size (HDLSS), i.e., the number of
biomarkers is substantially greater than the number of participants in the studies. On the other hand, the decisive biomarkers
regulating the phenotypes are usually sparse compared with the total number of biomarkers along the whole genome and
their effects are often weak; making the results from individual studies unremarkable and hard to be reproduced [19]. For
this reason, joint analysis of multiple genomic data has been used widely and proven to be essential for identifying decisive
biomarkers. A good example is the discovery of the risk loci for type 2 diabetes [22,30].

There are two types of joint analysis. One is the classicalmeta-analysis that aggregates summary statistics from individual
datasets to obtain an overall score, based on which statistical significance across all studies is assessed. A comprehensive
review of meta-analysis and its applications in genomic studies can be found in [24]. The other is the integrative analysis
using individual patient data (IPD) from multiple studies [14–16]. In the era of big data, IPD becomes more accessible from

∗ Corresponding author at: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA.
E-mail address: quefeng@email.unc.edu (Q. Li).

http://dx.doi.org/10.1016/j.jmva.2016.12.005
0047-259X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2016.12.005
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2016.12.005&domain=pdf
mailto:quefeng@email.unc.edu
http://dx.doi.org/10.1016/j.jmva.2016.12.005


2 Q. Li et al. / Journal of Multivariate Analysis 156 (2017) 1–17

large genomic consortia such as Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The integrative
analysis links phenotypes to gene expression via a jointmodel ofmultiple studies and employs variable selection techniques
to select decisive genes. It explores the relationship between phenotypes and genes in amore directway and aims to identify
genes that can better predict the phenotypes. Compared with the traditional meta-analysis, it is more appealing as the raw
data contain more information than the summary statistics.

Groups of genes, commonly referred to as pathways, are often involved in the same biological processes. The pathway
information has been well documented in publicly available databases such as KEGG [20] and Gene Ontology [2]. Since
pathways play more defined biological roles than individual genes, pathway analysis has been advocated for better
comprehension of the biological mechanism of the disease process. [13] provided a review of pathway analysis approaches
developed in the recent decade, including popular methods such as Gene Set Enrichment Analysis [23] and Over-
Representation Analysis [10,12]. Some recent advance in pathway analysis, e.g., a Bayesian method proposed in [3], further
considers within-pathway selections of genes. In addition to pathways, this method identifies a list of genes under selected
pathways that are associatedwith the response.However, all the abovemethods only focus on the analysis of a single dataset.

To the best of our knowledge, there are no existing methods that conduct pathway and within-pathway selections
based on joint analysis of multiple datasets. In this paper, we propose such a new integrative analysis that utilizes a novel
decomposition on genes’ effects to reflect the relationship between pathways and genes. This decomposition, together with
sparsity-induced penalties, enables both pathway and gene selections. A main difficulty of pathway selection is that the
effects of pathways are unobserved.We show that once a reasonable identifiability condition is assumed,whether a pathway
has nonzero effect is definitive. Hence, the pathway selection is sensible.

Under our framework, the employment of pathway information offers substantial benefit in statistical properties of
the proposed method. We explicitly show that pathway selection requires much weaker conditions to achieve desired
asymptotic properties. The main reason is that correct selection of pathways can allow some false positives and negatives
at the gene selection level (see Section 4). In particular, for the pathway selection, we are able to avoid the irrepresentable
condition that has been shown to be necessary for variable selection consistency in HDLSS settings, when either a convex
or folded-concave penalty is used [6,31]. The reason is that our penalty’s subgradient is infinitely large at the origin, leading
to the removal of unimportant pathways without the irrepresentable condition. In addition, we show that correct pathway
selection requires weaker conditions on the minimal signal strength than correct gene selection.

The rest of the paper is organized as follows. In Section 2, we introduce our method. In Section 3, we discuss the
estimation and computation of our method. In Section 4, we provide theoretical results regarding pathway and gene
selection consistency, where conditions needed for the two types of consistency are explicitly compared. In Section 5,
we discuss how our method deals with the issue of pathway overlapping. In Section 6, we examine the finite-sample
performance of our method through simulation studies. Examples of both overlapping and non-overlapping pathways are
simulated. In Section 7, ourmethod is applied to an integrative analysis of five cardiovascular studies. The paper is completed
with a discussion in Section 8. All technical proofs are relegated to the Appendix.

2. A hierarchical decomposition for pathway selection

We consider M independent studies with nm subjects in study m. Let ymi be a binary phenotype of the ith subject in the
mth study and xmi = (xmi,1, . . . , xmi,d)

⊤ be the corresponding expression of d genes. Our proposed methods can be applied
to data with any type of outcomes. We focus on the binary phenotype in this paper, because our motivational studies (see
Section 7) have binary outcomes/phenotypes. It is natural to assume the following logistic regression model:

log
Pr(ymi = 1|xmi)

Pr(ymi = 0|xmi)
= αm +

K
k=1

Gk
j=1

xmi,kjβkjm, k = 1, . . . , K ; j = 1, . . . ,Gk,

whereαm is the intercept, βkjm is the effect of the jth gene under the kth pathway in themth study, and they both are allowed
to vary with m. K is the number of pathways and Gk is the number of genes under the kth pathway. We assume pathways
do not have overlapping genes until Section 5 in which we then discuss the case of overlapping pathways.

We decompose βkjm into three components as

βkjm = pkgkjζkjm. (1)

The parameter pk is the effect of the kth pathway among all studies; gkj is the effect of the jth gene under the kth pathway;
ζkjm is the gene’s effect in themth study. Such a decomposition is inspired by the hierarchical LASSO [32], which targets for
group selection within a single dataset. In decomposition (1), the exact values of pk, gkj and ζkjm are not identifiable (since
cpk · gkjζkjm/c = pkgkjζkjm for a nonzero constant c). However, as will be shown in Proposition 1, it is definitive whether they
equal to zero once a reasonable identifiability condition is assumed.

A natural definition of an important pathway across multiple studies is that at least one of its genes has nonzero effect
in at least one study. More explicitly, the set of important pathways is defined as

P = {k : there exists at least one (j,m) such that β∗

kjm ≠ 0}, (2)

where β∗

kjm denotes the true effect.
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Next, we show that this definition is reasonable as it essentially requires an important pathway to have nonzero pathway
effect, i.e., p∗

k ≠ 0. In fact, the true effect β∗

kjm can always be decomposed hierarchically as β∗

kjm = p∗

kg
∗

kjζ
∗

kjm, where
(p∗

k , g
∗

kj, ζ
∗

kjm) is a counterpart of (pk, gkj, ζkjm). One possible decomposition is

p∗

k =

Gk
j=1

M
m=1

|β∗

kjm|, g∗

kj =

 M
m=1

|β∗

kjm|


/
 Gk

j=1

M
m=1

|β∗

kjm|


, ζ ∗

kjm = β∗

kjm/
 M
m=1

|β∗

kjm|


,

where 0/0 is defined as 1. Even though the decomposition is not unique and therefore the exact values of (p∗

k , g
∗

kj, ζ
∗

kjm) are
not definitive, we show that I(p∗

k ≠ 0) is definitive once a reasonable identifiability condition is imposed. In this sense,
we are clear whether a pathway has a nonzero pathway effect. Moreover, we show that P defined in (2) is the same as
the support of p∗ (the set of nonzero elements of p∗), where p∗

= (p∗

1, . . . , p
∗

K )⊤. In other words, we require an important
pathway to have nonzero pathway effect.

Proposition 1. It holds that P = {k : p∗

k ≠ 0}, under the following condition
(C1) For any fixed (k, j), if β∗

kjm = 0 for all m = 1, . . . ,M, then g∗

kj = 0. In addition, for any fixed k, if β∗

kjm = 0 for all
j = 1, . . . ,Gk and m = 1, . . . ,M, then p∗

k = 0.

Condition (C1) requires that if a gene’s effects are 0 in every study, its total gene effect should be 0. In addition, if all its
member genes’ effects are 0 in every study, a pathway should have zero effect.Without this condition, p∗

k can be any number
if β∗

kjm = 0 for all j ∈ {1, . . . ,Gk} and m ∈ {1, . . . ,M}, as long as g∗

kj = 0 and ζ ∗

kjm = 0. In other words, a pathway’s effect
is still undefined even though all its genes have zero effects in all studies. Hence, Condition (C1) is imposed to avoid the
identifiability issue under the above circumstance.

3. Estimation and computation

Let ℓm(αm, p, g, ζm) be the log-likelihood of themth study (divided by nm) such that

ℓm(αm, p, g, ζm) =
1
nm

nm
i=1


ymi


αm +

K
k=1

Gk
j=1

xmi,kjpkgkjζkjm


− log


1 + exp


αm +

K
k=1

Gk
j=1

xmi,kjpkgkjζkjm


,

where p = (p1, . . . , pK )⊤, g = (g11, . . . , gKGK )⊤, and ζm = (ζ11m, . . . , ζKGKm)⊤. We impose L1 penalties on p, g , ζm and
solve the following optimization problem:

(α̂, p̂, ĝ, ζ̂) = argmin
α,p,g,ζ

M
m=1

−ℓm(αm, p, g, ζm) +

K
k=1

|pk| +

K
k=1

Gk
j=1

|gkj| + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm|, (3)

where χn is a positive tuning parameter, α̂ = (α̂1, . . . , α̂M)⊤ and ζ̂ = (ζ̂
⊤

1 , . . . , ζ̂
⊤

M)⊤. The coefficient βkjm is then estimated
by β̂kjm = p̂kĝkjζ̂kjm. Nonzero β̂kjm’s are considered as selected. Selection properties will be studied in Section 4.

Remark 1. In problem (3), the tuning parameters in front of penalties on p and g can always be normalized to be 1, due to
the fact that cpk · dgkj · (cd)−1ζkjm = pkgkjζkjm, for nonzero constants c and d.

Similar as (2), we define pathways selected by our method as

P̂ = {k : there exists at least one (j,m) such that β̂kjm ≠ 0}. (4)

In Proposition 2, we show that P̂ is the same as the support of p̂. Theorem 1 in Section 4 shows that asymptotically P̂ = P
using definitions in (2) and (4). Therefore, it implies that {k : p̂k ≠ 0} = {k : p∗

k ≠ 0}. In other words, the solution p̂ given
by our method can asymptotically recover the support of p∗.

Proposition 2. P̂ = {k : p̂k ≠ 0}.

To solve (3), we propose fitting p, g , ζ and α iteratively. We fix three parameters and solve for the other and iterate
between the steps until the algorithm converges. At each step, (3) is a convex problem, which can be efficiently solved
by the coordinate descent algorithm [8,29]. The value of the objective function decreases after each iteration, hence the
convergence is guaranteed. Let Xm ∈ Rnm×d be the matrix containing data from the mth study. Denote H ∈ Rd×K as the
indicator matrix of the membership of genes in different pathways such that its (j, k)th element hjk = 1 if the jth gene

belongs to the kth pathway and hjk = 0 otherwise. Let α̂
(s), p̂(s), ĝ (s), and ζ̂

(s)
be the solutions of α, p, g and ζ at the sth step.

We elaborate the algorithm as follows.
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The algorithm of solving (3):
Step 1. For each dataset, standardize columns to have zero mean and unit variance. Initialize ĝ (0) and Hp̂(0), e.g., let

ĝ (0)
= 1 and Hp̂(0)

= 1.
Step 2. In the sth iteration, let X̃m = Xm · ĝ (s−1)

· Hp̂(s−1), where · represents product by columns. Denote

ℓ(ζ) =

M
m=1

1
nm

nm
i=1


ymi


α(s−1)
m +

K
k=1

Gk
j=1

x̃mi,kjζkjm


− log


1 + exp


α(s−1)
m +

K
k=1

Gk
j=1

x̃mi,kjζkjm


.

Solve

ζ̂
(s)

= argmin
ζ

−ℓ(ζ) + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm|.

Step 3. Update X̃m by letting X̃m = Xm · ζ̂
(s)
m ·Hp̂(s−1), where ζ̂

(s)
m is the subvector of ζ̂

(s)
for the solutions in themth dataset.

Let

ℓ(g) =

M
m=1

1
nm

nm
i=1


ymi


α(s−1)
m +

K
k=1

Gk
j=1

x̃mi,kjgkj


− log


1 + exp


α(s−1)
m +

K
k=1

Gk
j=1

x̃mi,kjgkj


.

Solve

ĝ (s)
= argmin

g
−ℓ(g) +

K
k=1

Gk
j=1

|gkj|.

Step 4. Let Zm = (Xm · ĝ (s)
· ζ̂

(s)
m )H and

ℓ(p) =

M
m=1

1
nm

nm
i=1


ymi


α(s−1)
m +

K
k=1

zmkpk


− log


1 + exp


α(s−1)
m +

K
k=1

zmkpk


,

where zmk is the (m, k)th element of Zm. Solve

p̂(s)
= argmin

p
−ℓ(p) +

K
k=1

|pk|.

Step 5. Update X̃m by letting X̃m = Xm · Hp̂(s)
· ĝ (s)

· ζ̂
(s)
m . Let

ℓ(α) =

M
m=1

1
nm

nm
i=1


ymi


αm +

d
t=1

x̃mi,t


− log


1 + exp


αm +

d
t=1

x̃mi,t


.

Solve α̂
(s)

= argminα ℓ(α).
Step 6. Let β̂

(s)
kjm = p̂(s)

k ĝ(s)
kj ζ̂

(s)
kjm. Return to step 2 and iterate, unless the difference between the values of the objective

functions in (3) at two consecutive steps is less than some predefined threshold.
Next, we show that (3) has an equivalent form in terms of the original coefficient βkjm.

Lemma 1. The problem (3) is equivalent to

(α̂, β̂) = argmin
α,β

M
m=1

−ℓm(αm, βm) + 3χ1/6
n

K
k=1


Gk
j=1


M

m=1

|βkjm|

1/2


1/3

. (5)

The equivalent form (5) describes our method in a different perspective. It shows that our method penalizes the negative
log-likelihoodwith different penalties at different levels of the coefficients. Regarding

M
m=1 |βkjm| as the overall effect of the

jth gene under the kth pathway acrossM studies, it penalizes the gene’s overall effect with an L1/2-penalty. At the pathway
level, an L1/3-penalty is imposed. Due to the singularities of L1/2 and L1/3 penalties at the origin point, our method can select
pathways as well as its important members. In addition, the L1-penalty on the genes’ effects in individual studies enables
across-study selection for each gene and adapts to the heterogeneity among the studies. Due to the equivalence, (5) will be
used to establish the theoretical results in Section 4.

It is easy to see that (5) is a non-convex problem thus hard to solve directly. However, due to the equivalence, it can be
transferred into a sequence of convex optimization problems by using (3). This is another benefit brought by the hierarchical
decomposition.
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4. Theoretical properties

We present two results regarding the pathway and gene selection accuracy of our method. The results are considered for
fixed M , but d and K can diverge with n, as long as log d = o(n). To simplify the presentation, we assume each dataset has
n observations and the intercept terms {α∗

0m}
M
m=1 are all 0.

We begin with introducing some notation. For any vector a ∈ Rd, let ∥a∥1 =
d

j=1 |aj| be the L1-norm of a and
∥a∥∞ = maxj |aj| be the sup-norm of a. Define the support of a as {j : aj ≠ 0}. For a symmetric matrix A ∈ Rd×d,
let ∥A∥∞ = maxi

d
j=1 |aij| be the matrix sup-norm of A. For two matrices A and B, denote A ◦ B as the Hadamard

(componentwise) product of A and B. In addition, denote aS as the sub-vector of a with indices in S and AS as columns
of A with indices in S. In particular, we denote kj· as the set of {kj1, . . . , kjM}. For a set S, we denote |S| as its cardinality.

4.1. Pathway selection consistency

According to (2), to ensure that an important pathway is selected, it suffices to select one of its members in at least one
study. In fact, we show that the member with the largest overall effect can be selected with large probability, where the
overall effect of a gene is defined as the L1-norm of its effects in all studies. To this end, it only requires the largest overall
effect not to be small, which is muchweaker than the typical assumption on theminimal signal strength. On the other hand,
as will be seen in the proof of Theorem 1, the unique property of the penalty term in (5) (its subgradient is infinitely large
at the origin point) ensures that unimportant pathways are ruled out without additional assumptions. This is not like the L1
or other folded-concave penalties, where irrepresentable conditions are needed [6,31].

To present the result, let K ∗
= M|P |, the number of important pathways multiplied byM , and

J =


(k, j,m) : k ∈ P , j = argmax

j∈Gk
∥β∗

kj·∥1,m = 1, . . . ,M

,

the collection of |P | genes’ effects in M studies, whose overall effect is the largest in their own pathways. Denote B =

mink∈P ,j:kj·∈J ∥β
∗

kj·∥1/2, the minimal overall effects of these |P | genes. We write B and K ∗ in terms of orders of n as B ≍ n−αB

and K ∗
≍ n−αK∗ .

We present (5) in a matrix form as

argmin
β∈RMd

1
n
{−Y⊤Xβ + e⊤f (Xβ)} + λnρ(β), (6)

where X ∈ RMn×Md is the block-diagonal design matrix, whose mth block contains data from the mth study, Y =

(y11, y12, . . . , yMn)
⊤, f (θ) = (f (θ1), . . . , f (θMn))

⊤ with f (θi) = log{1 + exp(θi)}, µ(θ) = (f ′(θ1), . . . , f ′(θMn))
⊤, 6(θ) =

diag(f ′′(θ1), . . . , f ′′(θMn)), e is a vector with all elements equal to 1, the penalty term ρ(β) =
K

k=1{
Gk

j=1 ∥βkj·∥
1/2
1 }

1/3 and
λn = 3χ1/6

n .

Theorem 1. Assume the following conditions hold.
(C2) 0 < αB < 1/2;
(C3) 0 < αK∗ < 1/2;
(C4) ∥{X⊤

J 6(Xβ∗)XJ}
−1

∥∞ = O(n−1);
(C5) maxδ∈N maxk,j,m λmax


X⊤

J diag{|Xkjm| ◦ |µ′′(XJδ)|}XJ


= O(n), where N = {δ ∈ RK∗

: ∥δ − β∗

J ∥∞ ≤ B}.
If we choose λn such that λn = o(B5/6n−1/2), λnκn = o(τn), where

κn = max
δ∈N

(5/36)∥δ∥−11/6
1 ,

and τn = minδ∈N λmin(n−1X⊤

J 6(XJδ)XJ), then for sufficiently large n, with probability greater than 1 − 2K ∗/n, there exists a

solution β̂ to (5), such that
(a) P̂ = P ;
(b) ∥β̂J − β∗

J ∥∞ ≤ cn−γ , where c is a generic positive constant and γ is some number that is arbitrarily smaller than 1/2.

Remark 2. Theorem 1 implies that our method is asymptotically pathway selection consistent and the corresponding
estimation of β∗

J is uniformly consistent. In general, conditions needed for pathway selection consistency is weaker than
that for gene selection consistency (see Theorem 2). For example, condition (C2) only requires the minimum of the largest
overall effects under important pathways not to be small, compared with a stronger condition (C6) needed for gene
selection consistency. Moreover, Theorem 1 does not need the irrepresentable condition [6,31] to reach pathway selection
consistency, while this condition (C9) is needed to achieve gene selection consistency. The intuition is that, pathway
selection consistency is easier to be achieved than gene selection consistency. For important pathways, correct pathway
selection can tolerate false positive and negative selections of their genes, as long as at least one gene under the important
pathway is selected in at least one study. For unimportant pathways, our method is able to remove them without an
irrepresentable condition due to the fact that the subgradient of our penalty at the origin is infinitely large.
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4.2. Gene selection consistency

If stronger conditions are satisfied, we show that our method is further gene selection consistent in every study in the
sense that the support of β̂ is the same as that ofβ∗. The genes’ effects are often heterogeneous among various studies due to
many practical factors, such as various types of biospecimens, inconsistent experimental environments, etc. For this reason,
we allow a gene’s effect to be zero in some studies but nonzero in others. The nonzero effects are also allowed to vary. The
challenge of achieving gene selection consistency is, for genes have zero/nonzero effects in different studies, to identify the
studies where the gene has zero effect. The gene selection consistency is stronger than pathway selection consistency, since
the former implies the latter.

To present the result, we divide elements of β∗ into three subsets:
I = {(k, j,m) : β∗

kjm ≠ 0}; II = {(k, j,m) : β∗

kjm = 0, ∥β∗

kj·∥1 ≠ 0};

III = {(k, j,m) : β∗

kjm = 0, ∥β∗

kj·∥1 = 0}.

Denote s = |I|, the cardinality of set I and b = (1/2)min{|β∗

kjm| : (k, j,m) ∈ I}, the minimal nonzero element of β∗,

hn = min
(k,j,m)∈I

 Gk
j=1

∥β∗

kj·∥
1/2
1

2/3
∥β∗

kj·∥
1/2
1 , un = max

(k,j,m)∈I

 Gk
j=1

∥β∗

kj·∥
1/2
1

2/3
∥β∗

kj·∥
1/2
1 .

The magnitudes of b, s, d are quantified in the order of n as b ≍ n−αb , s ≍ nαs , and log d ≍ nαd , where αs, αu and αd are
positive numbers.

Theorem 2. Under the following conditions
(C6) 0 < αb < 1/2;
(C7) 0 < αs < 1/2 and 0 < αd < 1;
(C8) ∥{X⊤

I 6(Xβ∗)XI}
−1

∥∞ = O(n−1);
(C9) ∥X⊤

II 6(Xβ∗)XI{X⊤

I 6(Xβ∗)XI}
−1

∥∞ < hn/(10un);
(C10) maxδ∈N0 maxk,j,m λmax


X⊤

I diag{|Xkjm| ◦ |µ′′(XIδ)|}XI


= O(n), N0 = {δ ∈ Rs
: ∥δ − β∗

I ∥∞ ≤ b}.
If we choose the penalty λn such that (n−1 log d)1/2 = o(λn), sn−2/3

= o(λn), λn = o(hnn−1/2), and λnκ0n = o(τ0n), where

κ0n = max
δ∈N0,(k,j,m)∈I

1
18

 Gk
j=1

∥δkj·∥
1
2
1

−
5
3
∥δkj·∥

−1
1 +

1
12

 Gk
j=1

∥δkj·∥
1
2
1

−
2
3
∥δkj·∥

−
3
2

1

and τ0n = minδ∈N0 λmin(n−1X⊤

I 6(XIδ)XI), then for sufficiently large n, with probability greater than 1− 2{s/n+ (Md− s)/d2},
there exists a solution β̂ to (5), such that

(c) β̂II∪III = 0;
(d) ∥β̂I − β∗

I ∥∞ ≤ cn−γ , where c is a generic positive constant and γ is some number that is arbitrarily smaller than 1/2.

5. Pathway overlap

So far, we have assumed that pathways do not have overlapping genes. In practice, pathways can share some common
genes and this makes the analysis and interpretation much more challenging than the non-overlap case. In general, one can
always classify any pathway into the following three cases according to whether its important member genes are shared
with some other pathways. For a pathway that has at least one exclusive important gene (a gene that only belongs to that
pathway and its effect is nonzero in at least one study), it is important according to definition in (2). For a pathway whose
genes all have zero effects, it is unimportant. For a pathway whose important genes are all shared with other pathways, its
importance is unclear. The reason is that the shared genes’ contribution in different pathways is undetermined even if its
total effect is known. Hence, if a pathway’s importance cannot be judged by its exclusive genes, its importance is not always
identifiable.

To quantify the distribution of the shared gene’s effects in different pathways, we use the following assumption. Suppose
Xk1j1m = Xk2j2m = · · · = XkT jTm for all 1 ≤ m ≤ M , i.e., the gene belongs to T pathways. We still adopt the decomposition
(1) and assume
(C11) gk1j1 = · · · = gkT jT = g and ζk1j1m = · · · = ζk′T j

′
Tm

= ζm for all 1 ≤ m ≤ M .
Under condition (C11), this shared gene’s effect can be decomposed as (pk1 + · · · + pkT )gζm. Its contribution in pathway
kℓ is proportional to the pathway effect pkℓ . Once condition (C11) is assumed, our algorithm in Section 2 still works for the
overlapping case and gives a pathway effect estimator p̂. We select pathways by referring to the nonzero elements of p̂.
As for gene selection, when a shared gene is selected, our algorithm tells under which pathways the gene is selected (by
referring to nonzero elements of p̂).

In reality, the overlapping scheme of pathways can be complex. The asymptotic properties are difficult to establish under
this setting.We leave it as a topic for future research. Nevertheless, we investigate the empirical performance of ourmethod
under this setting by simulation studies, where overlapping pathways for the first two definitive cases are simulated.
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6. Simulation studies

Wesimulate scenarios of non-overlapping and overlapping pathways to inspect ourmethod’s finite-sample performance.

6.1. Non-overlapping pathways

We simulate M = 10 studies with sample size nm = 50 in each study. The expression of d = 100 genes from K = 20
pathways are simulated, with 5 genes in each pathway. The gene expression of the ith subject in the mth study xmi is i.i.d.
from N100(0, I). The corresponding phenotype ymi is generated from the logistic model

Pr(ymi = 1|xmi) =
exp(x⊤

miβ
∗

m)

1 + exp(x⊤

miβ
∗

m)
,

where β∗

m = (β∗

1m, β∗

2m, . . . , β∗

dm)⊤.
We let β∗

kjm = akbkjckjm, where ak is i.i.d. from N(νk, 0.52) with ν1 = 8, ν2 = 8, ν3 = −4, ν4 = −4, ν5 = −8, and
ak = 0 for k > 5; bkj is i.i.d. from Bernoulli(πg ); and ckjm is i.i.d. from Bernoulli(πm). That is, only the first five pathways
are important. Each gene under the important pathway has probability πg to be important. For an important gene, it has
probability πm to be important in the mth study. The probabilities πg and πm control the heterogeneity among genes and
studies, respectively. We choose two values (0.3 and 0.9) for both πg and πm to represent different levels of heterogeneity.
Simulations were repeated for 100 runs.

Our method is compared with two ad-hoc selection methods:

Separate Group LASSO (seGLASSO): it runs study-by-study selections by treating genes under each pathway as a group and
imposes a Group LASSO penalty therein, i.e., in each study it solves the problem

argmin
β

−ℓm(βm) + λm

20
k=1

 5
j=1

β2
kjm

1/2
,

where λm is a positive tuning parameter.
Stack Group LASSO (stGLASSO): it stacks data in all studies and penalizes the total negative log-likelihood with a Group

LASSO penalty, i.e., it solves the problem

argmin
β

10
m=1

−ℓm(βm) + λ

20
k=1

 5
j=1

10
m=1

β2
kjm

1/2
,

where λ is a positive tuning parameter.

The optimal tuning parameters in the three methods are all selected by minimizing the Bayesian Information Criterion.
The three competitors’ performance is assessed by their selection capability of pathways and genes. Two measurements

will be presented: (a) Sensitivity: the proportion of important pathways/genes being selected; (b) Specificity: the proportion
of unimportant pathways/genes not being selected. In particular, the set of important pathways is {1, . . . , 5}. The set of
important genes is defined as {(k, j,m) : β∗

kjm ≠ 0}.
Fig. 1 gives the boxplots for pathway and gene selection among the 100 simulations. The overall performance ismeasured

by both sensitivity and specificity. Tables 1 and 2 give the means of sensitivity and specificity. These results clearly show
that the pathway selection by our method is the best in all settings. The gene selection is also the best when studies are
heterogeneous (πm = 0.3) and comparable to stGLASSO when studies are homogeneous (πm = 0.9). The seGLASSO
performs badly as it uses one data at a time and does not borrow strength across studies. The performance of stGLASSO
changes drastically in different settings. When πm is small, it performs badly as it does not take study heterogeneity into
account. Even when πm is large, its performance of pathway selection is still worse than ours. In conclusion, our method
performs consistently well for various settings in terms of both pathway selection and gene selection accuracy.

The computational speed of our estimator is comparable to that of seGLASSO and stGLASSO. From the algorithm in
Section 3, each iteration of our method solves a convex optimization, similar to seGLASSO and stGLASSO. In the simulations,
we noticed that our method usually took very few iterations to convergence.

6.2. Overlapping pathways

We simulate three more examples for pathways with overlapping genes. We simulate M = 5 studies with sample size
nm = 30 in each study, the number of pathways K = 21 and the number of genes d = 100. The gene expression values
xmi are generated in the same way as Section 6.1. The true effects of genes are generated by letting β∗

kjm = p∗

kg
∗

kjζ
∗

kjm and the
following three cases are considered. Table 3 gives the genes’ effects for the first four pathways. The unlisted genes have
zero effects.
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(a) πd = 0.3 and πm = 0.3.

(b) πg = 0.9 and πm = 0.3.

(c) πd = 0.3 and πm = 0.9.

Fig. 1. ROC type of scatter plots for pathway and gene selections (the size of a point indicates its frequency among 100 simulations).
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(d) πd = 0.9 and πm = 0.9. Fig. 1. (continued)

Table 1
Pathway selection accuracy by the three methods.

πm = 0.3 πm = 0.9
Sensitivity Specificity Sensitivity Specificity

πg = 0.3 Our 0.93 0.93 0.93 0.93
seGLASSO 0.96 0.42 0.39 0.86
stGLASSO 0.61 0.86 0.98 0.56

πg = 0.9 Our 0.94 0.96 0.85 0.91
seGLASSO 0.88 0.60 0.20 0.97
stGLASSO 0.36 0.94 1.00 0.41

Table 2
Gene selection accuracy by the three methods.

πm = 0.3 πm = 0.9
Sensitivity Specificity Sensitivity Specificity

πg = 0.3 Our 0.92 0.94 0.84 0.98
seGLASSO 0.55 0.98 0.04 0.99
stGLASSO 0.52 0.93 0.99 0.86

πg = 0.9 Our 0.78 0.92 0.60 0.97
seGLASSO 0.19 0.99 0.01 0.99
stGLASSO 0.23 0.96 0.97 0.80

Example 1. p∗

k = 1 for 1 ≤ k ≤ 4 and p∗

k = 0 otherwise; g∗

1· = (5, 5, 2.5, 2.5, 0)⊤, g∗

2· = (2.5, 2.5, 5, 2.5, 2.5)⊤,
g∗

3· = (2.5, 2.5, 5, 5, 5)⊤, g∗

4· = (−8, −8, −8, −8, −8)⊤, and g∗

k· = (0, 0, 0, 0, 0)⊤ otherwise; ζ ∗

kjm = 1 for 1 ≤ k ≤ 4,
1 ≤ j ≤ 5, 1 ≤ m ≤ 5 and ζ ∗

kjm = 0 otherwise.

Example 2. p∗

k = 1 for k = 1, 2, 4 and p∗

k = 0 otherwise; g∗

1· = (5, 5, 2.5, 2.5, 0)⊤, g∗

2· = (2.5, 2.5, 5, 0, 0)⊤,
g∗

4· = (−8, −8, −8, −8, −8)⊤ and g∗

k· = (0, 0, 0, 0, 0)⊤ otherwise; ζ ∗

kjm = 1 for 1 ≤ k ≤ 4, 1 ≤ j ≤ 5, 1 ≤ m ≤ 5
and ζ ∗

kjm = 0 otherwise.

Example 3. p∗

k = 1 for 1 ≤ k ≤ 4 and p∗

k = 0 otherwise; g∗

1· = (5, 5, 2, 2, 0)⊤, g∗

2· = (2, 2, 5, 0, 1)⊤, g∗

3· =

(2, 2, 0, −2, 5, 5)⊤, g∗

4· = (−1, −1, 0, −8, −8, −8)⊤ and g∗

k· = (0, 0, 0, 0, 0)⊤ otherwise; ζ ∗

kjm = 1 for 1 ≤ k ≤ 4,
1 ≤ j ≤ 5, 1 ≤ m ≤ 5 and ζ ∗

kjm = 0 otherwise.

In Example 1, the first four pathways are important and three of them share some common genes. In Example 2, only
pathways 1, 2, and 4 are important. Even though pathway 3 is unimportant, it shares two genes (gene 6 and 7) with an
important pathway (pathway 2). We design such an example to see how well our method could remove an unimportant
pathway, which overlaps with an important one. In Example 3, genes 3 and 4 are shared by all the four important
pathways. Fig. 2 gives the proportion of each pathway being selected among 100 simulations. Table 4 gives the means of
sensitivity/specificity of pathway and gene selection.

Fig. 2 shows that our method can correctly distinguish important and unimportant pathways. For the challenging case
of Example 2, our method correctly selects pathway 2 and removes pathway 3, even though they share two common genes.
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Table 3
The effects of genes in the first four pathways for the three simulated examples.

Example 1 Genes

Pathway 1 5 5 2.5 2.5 0 – – – – – – – – – –
Pathway 2 – – 2.5 2.5 5 2.5 2.5 – – – – – – – –
Pathway 3 – – – – – 2.5 2.5 5 5 5 – – – – –
Pathway 4 – – – – – – – – – – −8 −8 −8 −8 −8

Overall effect 5 5 5 5 5 5 5 5 5 5 −8 −8 −8 −8 −8

Example 2 Genes

Pathway 1 5 5 2.5 2.5 0 – – – – – – – – – –
Pathway 2 – – 2.5 2.5 5 0 0 – – – – – – – –
Pathway 3 – – – – – 0 0 0 0 0 – – – – –
Pathway 4 – – – – – – – – – – −8 −8 −8 −8 −8

Overall effect 5 5 5 5 5 0 0 0 0 0 −8 −8 −8 −8 −8

Example 3 Genes

Pathway 1 5 5 2 2 0 – – – – – – – – – –
Pathway 2 – – 2 2 5 0 – 1 – – – – – – –
Pathway 3 – – 2 2 – – 0 – −2 5 5 – – – –
Pathway 4 – – −1 −1 – – – – – – – 0 −8 −8 −8

Overall effect 5 5 5 5 5 0 0 1 −2 5 5 0 −8 −8 −8

Table 4
Performance of pathway/gene selection of our method for overlapping
pathways.

Pathway selection Gene selection
Sensitivity Specificity Sensitivity Specificity

Example 1
0.97 0.86 0.41 0.98

Example 2
0.97 0.85 0.53 0.98

Example 3
0.98 0.85 0.44 0.98

For the other challenging case of Example 3, our method correctly selects the first four pathways, even though two genes
are shared by all of them.

7. An integrative analysis of five cardiovascular disease studies

For further illustration, we applied our method to an integrative analysis of five cardiovascular disease (CVD) studies.
These studies were aimed to identify biomarkers that are associated with immune response in the development of
atherosclerosis. The phenotypes in these studies are binary. The case groups are patients showing certain atherosclerotic
syndrome, e.g., having had ischemic strokes. The control groups are healthy people. All subjects were sequenced using
microarrays. The raw data can be found on Gene Expression Omnibus with accession names ‘‘GSE12288’’, ‘‘GSE26561’’,
‘‘GSE20129’’, ‘‘GSE22255’’, and ‘‘GSE28829’’. Table 5 presents more details of the five studies. However, a careful inspection
of their original findings revealed that these studies identified completely different sets of genes. Therefore, the underlying
genomic mechanism is still largely unknown. It also indicated that the gene selections from case-by-case studies are hard
to be reproduced. This motivated us to incorporate external pathway information and integrate the datasets. We cross-
referenced the genes with the pathway information listed on the Kyoto Encyclopedia of Genes and Genomes (KEGG). In
total, 4156 genes in 210 pathways from KEGG were involved in the analysis. We applied our method to select pathways as
well as their important member genes.

Eleven pathways were identified. Table 6 gives the selected pathways and genes. Table 7 gives the selected genes in each
individual study. Among the selected pathways, ‘‘Antigen process and presentation’’, ‘‘Hedgehog signaling’’, ‘‘Osteoclast
differentiation’’ and ‘‘Phagosome’’ were known to control key modules for activating human body’s immune system
[11,21,26,28]. These pathways can certainly be triggered by inflammation. Epidemiological and clinical studies have shown
strong and consistent relationships between markers of inflammation and risk of cardiovascular events [27]. Moreover,
‘‘Ubiquitin mediated proteolysis’’, ‘‘mRNA surveillance’’ and ‘‘Protein processing in endoplasmic reticulum’’ play important
roles in a broad array of basic cellular processes [4,9]. ‘‘Axon guidance’’ was previously identified to regulate molecules for
the angiogenic growth of blood vessels [1]. The ‘‘peroxisome proliferator-activated receptor’’ (PPAR) was shown to be an
important regulator of cardiac metabolism [7]. Elevated circulating levels of ‘‘cytokines and/or cytokine receptors’’ was also
known to predict adverse outcomes in patients with heart failure [5]. These key pathways were identified by our method.
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(a) Example 1. (b) Example 2.

(c) Example 3.

Fig. 2. Proportion of each pathway being selected among 100 simulations.

In addition, Huntington’s disease patients were known to have higher risk of CVD, presumably as a result of accumulation
of toxic amyloid-like inclusions [17]. Our selection of ‘‘Huntington’s disease’’ pathway indicates that Huntington’s disease
and CVD can share some common prognostic biomarkers.

Moreover, we used the pathway enrichment score proposed in [18] to assess how our selection of pathways is enriched.
In particular, for each selected pathway, we created a 2 × 2 contingency table of the number of genes selected in and out
of that pathway. Then, we tested whether that pathway is over-represented by the Fisher’s exact test. The corresponding p-
values were used as the enrichment scores, where smaller p-values indicate stronger evidence that the selected pathway is
enriched.We calculated pathway enrichment scores in each individual study as well as over all five studies together. Table 6
gives the results of the enrichment scores. It clearly indicates that the selected pathways become more enriched when the
integrative method is applied over multiple studies than their appearance in a single study.

In conclusion, our integrative method identified more key biomarkers than the original individual studies. The resulting
pathway selections become more enriched. Both results necessitate our proposal of integrating data and pave the way for
further studies of the interactions among the identified biomarkers (see Table 8).

8. Discussion

In this article, we have provided a general framework of enhancing the integrative analysis with pathway information,
which selects pathways as well as their functioning genes. The incorporation of pathway information not only improves
the biological interpretation of the results but also brings statistical advantage. We adopt a hierarchical decomposition on
gene effects and show that whether a pathway has nonzero effect is determined once a reasonable identifiability condition
is assumed. We show that our method can consistently select both pathways and genes. The pathway selection requires
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Table 5
Summaries of datasets in the five cardiovascular studies.

GSE12288 GSE16561 GSE20129 GSE22255 GSE28829

Total sample size 222 63 119 40 29
Case group size 110 39 48 20 16
Control group size 112 24 71 20 13
Microarray Platform Affymetrix Illumina Illumina Affymetrix Affymetrix

U133A HumanRef8 HumanRef8 U133plus2 U133plus2
V3.0 V2.0

Table 6
Pathway and gene selections by our method and the p-values of pathway enrichment.

Names of selected pathways Name of selected genes

Antigen processing and presentation CANX, HLA-A, HLA-DRA
Axon guidance SEMA6C
Cytokine–cytokine receptor interaction BMP2, CXCR3, EDAR, IFNA4, IL21R, INHBA, INHBE
Hedgehog signaling BMP2, BMP6, CSNK1D
Huntington’s disease ATP5B, DNAI2, NDUFA4L2
mRNA surveillance NUDT21
Osteoclast differentiation ACP5, GAB2, RELB, LILRB4
Phagosome CANX, HLA-DRA
PPAR signaling GK, RXRG
Protein processing in endoplasmic reticulum CANX, CAPN1, DERL2, HSPH1
Ubiquitin mediated proteolysis ANAPC13, ANAPC2, PPIL2, TRIM37, UBE3C

Table 7
Gene selections by our method in each dataset.

GSE12288 ACP5, ANAPC2, ATP5B, BMP2, BMP6, CANX, CAPN1, CSNK1D, CXCR3, DERL2, EDAR, HLA-A, HSPH1, LILRB4, NDUFA4L2, RELB,
SEMA6C, TRIM37

GSE16561 ANAPC13, ATP5B, CANX, CSNK1D, DNAI2, RXRG
GSE20219 ACP5, ANAPC13, BMP6, CAPN1, CXCR3, EDAR, GAB2, GK, HLA-DRA, IFNA4, IL21R, INHBA, INHBE, NUDT21, UBE3C
GSE22255 ANAPC13, ATP5B, CANX, EDAR, PPIL2, RXRG
GSE28829 ACP5, ANAPC13, ANAPC2, PPIL2

Table 8
Pathway enrichment scores in each dataset and over all five datasets. The scores are not calculated when a pathway is not selected in a particular dataset.

GSE12288 GSE16561 GSE20219 GSE22255 GSE28829 Overall

Antigen processing and presentation 0.02 – 0.19 – – 0.008
Axon guidance 0.41 – – – – 0.59
Cytokine–cytokine receptor interaction 0.08 – 0.01 0.46 – 0.001
Hedgehog signaling pathway 0.02 0.12 0.17 – – 0.006
Huntington’s disease 0.02 0.05 – 0.32 – 0.11
mRNA surveillance pathway – – 0.22 – – 0.403
Osteoclast differentiation 0.11 – 0.08 – 0.30 0.017
Phagosome 0.45 – – 0.29 – 0.08
PPAR signaling pathway – 0.15 0.22 0.15 – 0.089
Protein processing in endoplasmic reticulum 0.02 0.30 0.42 – – 0.021
Ubiquitin mediated proteolysis 0.09 0.26 0.07 0.03 0.003 0.001

weaker minimal signal strength condition which allows some false positives and negatives at the gene selection level, thus
avoids the restrictive irrepresentable condition. Such advantages have been explicitly quantified in our theoretical results.

Our method can also be adapted to certain new scientific information. For example, for some pathways, their genes
tend to be all upregulated or downregulated. Such information can be easily built into our method by requiring gkj ≥ 0
and ζkjm ≥ 0 for such a pathway k. These constraints can be added to Steps 2 and 3 of our algorithm at minimum extra
computational cost. Once they are incorporated in the algorithm, our solution guarantees that the effects of genes under
such pathways will be concordant.

The L1 penalty on the decomposed parameters imposed in (3) is not the only choice. If the studies being integrated are
more homogeneous, the L1 penalty on ζ can be replaced by the L2 penalty. In this way, our method will select genes in an
‘‘all-in-or-all-out’’ fashion, meaning that a gene is either effective in all studies or not effective at all.
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Appendix. Proofs

Proof of Proposition 1. First, if p∗

k = 0, then β∗

kjm = 0. Hence, it is obvious that {k : p∗

k ≠ 0}c ⊂ P c . On the other hand, by
the definition of P and the identifiability condition (Condition 1), P c

⊂ {k : p∗

k = 0}.

Proof of Proposition 2. Since β̂kjm = p̂kĝkjζ̂kjm, p̂k = 0 implies β̂kjm = 0 for all j = 1, . . . ,Gk and m = 1, . . . ,M . Hence,
{k : p̂k ≠ 0}c ⊂ P̂ c . On the other hand, if β̂kjm = 0 for all j and m, since (p̂k, ĝkj, ζ̂kjm) minimizes (3), it must hold that
p̂k = ĝkj = ζ̂kjm = 0, otherwise (0, 0, 0) will give a smaller value of the objective function in (3).

Proof of Lemma 1. Referring to the main body of the paper, under decomposition (2), (3) is equivalent to

argmin
α,p,g,ζ

−

M
m=1

ℓm(αm, βm) +

K
k=1

|pk| +

K
k=1

Gk
j=1

|gkj| + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm|,

s.t. βkjm = pkgkjζkjm.

Since the term −
M

m=1 ℓm(αm, βm) is irrelevant to (p, g, ζ), the above problem is further equivalent to

min
p,g,ζ

K
k=1

|pk| +

K
k=1

Gk
j=1

|gkj| + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm|,

s.t. βkjm = pkgkjζkjm.

(A.1)

Next, we show that (A.1) is equivalent to

min
p,g,ζ

K
k=1

|pk| +

K
k=1

Gk
j=1

|gkj| + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm|,

s.t. |βkjm| = |pkgkjζkjm|.

(A.2)

In fact, it holds trivially that any solution of (A.1) is also a solution of (A.2). On the contrary, if (p̂k, ĝkj, ζ̂kjm) is a solution of
(A.2), then

(p̄k, ḡkj, ζ̄kjm) =


(p̂k, ĝkj, ζ̂kjm) if βkjmp̂kĝkjζ̂kjm ≥ 0
(p̂k, ĝkj, −ζ̂kjm) if βkjmp̂kĝkjζ̂kjm < 0

is a solution of (A.1). Hence (A.1) and (A.2) are equivalent in the sense that there is a one-to-one correspondence between
their solutions. By Lagrange multiplier, (A.2) is equivalent to minimizing

H(p, g, ζ) :=

K
k=1

|pk| +

K
k=1

Gk
j=1

|gkj| + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm| +

K
k=1

Gk
j=1

M
m=1

αkjm(|βkjm| − |pkgkjζkjm|).

Then, we have

∂H

∂|pk|
= 1 −

Gk
j=1

M
m=1

αkjm|gkjζkjm| = 0, (A.3)

∂H

∂|gkj|
= 1 −

M
m=1

αkjm|pkζkjm| = 0, (A.4)

∂H

∂|ζkjm|
= χn − αkjm|pkgkj| = 0, (A.5)

(A.5) implies that αkjm = χn/|pkgkj|, which together with (A.4) give |gkj| = χn
M

m=1 |ζkjm|. Then, it follows from (A.3) that

|pk| =

Gk
j=1

|gkj| = χn

Gk
j=1

M
m=1

|ζkjm|. (A.6)



14 Q. Li et al. / Journal of Multivariate Analysis 156 (2017) 1–17

Since |βkjm| = |pkgkjζkjm|, we have χn
M

m=1 |βkjm| = |pk||gkj|2. Hence,

|gkj| =


|pk|−1χn

M
m=1

|βkjm|

1/2

.

This together with |pk| =
Gk

j=1 |gkj| gives that |pk| = χ
1/6
n {

Gk
j=1(

M
m=1 |βkjm|)1/2}1/3. Therefore,

Gk
j=1

|gkj| = χn

Gk
j=1

M
m=1

|ζkjm| = χ1/6
n


Gk
j=1


M

m=1

|βkjm|

1/2


1/3

.

This together with (A.6) shows that

K
k=1

|pk| +

K
k=1

Gk
j=1

|gkj| + χn

K
k=1

Gk
j=1

M
m=1

|ζkjm| = 3χ1/6
n

K
k=1


Gk
j=1


M

m=1

|βkjm|

1/2


1/3

.

Hence, (3) and (5) are equivalent.

Proof of Theorem 1. We show that there exists a solution β̂ to (5) such that its restriction on set J , i.e., β̂J , satisfies (b), and
all other elements are 0. Then, by definition, this solution also satisfies (a).

By optimization theory, the vector β̂ that satisfies the following Karush–Kuhn–Tucker (KKT) conditions is a solution to
(6).

X⊤

J Y − X⊤

J µ(X β̂) = nλn∇ρ(β̂J), (A.7)

X⊤

Jc Y − X⊤

Jc µ(X β̂) ∈ nλn∂ρ(β̂Jc ), (A.8)

λmin(X⊤

J 6(X β̂)XJ) > nλnκ(β̂J). (A.9)

In (A.7), ∇ρ(β̂kjm) = (1/6)∥β̂kj·∥
−5/6
1 sign(β̂kjm) for (k, j,m) ∈ J . In (A.8), the subgradient ∂β̂kjm = (−∥β̂kj·∥

−5/6
1 /6,

∥β̂kj·∥
−5/6
1 /6) for (k, j,m) ∈ Jc . In (A.9),

κ(β̂J) = max
(k,j,m)∈J

(5/36)∥β̂kj·∥
−11/6
1 .

Let ξ = X⊤Y −X⊤µ(Xβ∗). Consider the event E = {∥ξJ∥∞ ≤ (2−1n log n)1/2}. Since ymi ∈ {0, 1} and columns of X have
been standardized to have norm n1/2, by Proposition 4(a) of [6],

Pr(|ξkjm| ≥ t) ≤ 2 exp(−2t2/n), (A.10)

where ξkjm is the (k, j,m)th element of ξ. Then, by the union bound,

Pr(E) ≥ 1 −


(k,j,m)∈J

P{ξkjm ≥ (2−1n log n)1/2} ≥ 1 − 2K ∗/n. (A.11)

In the event E, we show two results: [1] within the hypercube M := {β : ∥β − βJ∥∞ ≤ cn−γ
}, there exists β̂J ∈ RK∗

that satisfies (A.7) and (A.9); [2] β̂ = (β̂J , 0)⊤ satisfies (A.8). These two results together with the KKT conditions and (A.11)
complete the proof.

[1] Let η = nλn∇ρ(β), where the element ηkjm = (1/6)nλn∥βkj·∥
−5/6
1 sign(βkjm). Under Condition 2, for sufficiently large

n, we have

∥β∗

kj·∥1 ≥ 2B > 2cn−γ
≥ 2∥βkj· − β∗

kj·∥1, (A.12)

for all β ∈ N . In the second inequality, we use the fact that γ is arbitrarily close to 1/2 so that B > cn−γ . Therefore,
∥βkj·∥1 ≥ ∥β∗

kj·∥1/2. It further implies that ∥η∥∞ ≤ B−5/6nλn. Define

9(β) = X⊤

J {µ(XJβ) − µ(XJβ
∗

J )} − (ξJ − η). (A.13)

We show that 9(β) = 0 has a solution β̂J within M. Then, β̂J also solves (A.7). By Taylor expansion,

X⊤

J {µ(XJβ) − µ(XJβ
∗

J )} = X⊤

J 6(Xβ∗)XJ(β − β∗

J ) + r,
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where the (k, j,m)th element of r has rkjm =
1
2 (β − β∗

J )
⊤R(δ(kjm))(β − β∗

J ), R(δ(kjm)) = X⊤

J {diag(Xkjm ◦ µ′′(XJδ
(kjm)))}XJ ,

δ(kjm) is a vector lying on the line segment joining β and β∗

J . By Conditions 2, 5, ∥r∥∞ = O

K ∗n1−2γ


= o(n1−γ ), where in

the last equality we use the fact that K ∗
= o(nγ ) as γ is arbitrarily close to 1/2.

Let

9̄(β) = {X⊤

J 6(Xβ∗)XJ}
−19(β) = β − β∗

J + v,

where v = −{X⊤

J 6(Xβ∗)XJ}
−1(ξJ − η − r). Then, we have

∥v∥∞ ≤ ∥{X⊤

J 6(Xβ∗)XJ}
−1

∥∞(∥ξJ − η∥∞ + ∥r∥∞)

= O(n−1(∥ξJ∥∞ + ∥η∥∞ + ∥r∥∞))

= O((n−1 log n)1/2) + o(n−1/2) + o(n−γ ) = o(n−γ ). (A.14)

Hence, for sufficiently large n, if (β − β∗

I )kjm = n−γ , we have {9̄(β)}kjm ≥ n−γ
− ∥v∥∞ ≥ 0, and if (β − β∗

I )kjm = −n−γ , we
have {9̄(β)}kjm ≤ −n−γ

+ ∥v∥∞ ≤ 0. Since the function 9̄(β) is continuous in M, an application of Miranda’s existence
theorem (see, e.g., [25]) shows that equation 9̄(β) = 0 has a solution β̂J in M. Then, β̂J also solves 9(β) = 0 and further
solves (A.7).

Since B > cn−γ
≥ ∥β̂J − β∗

J ∥∞, we have ∥β̂kj·∥1 ≠ 0 for (k, j, ·) ∈ J . Therefore, for any k ∈ P , there exists at least one
(j,m) such that β̂kjm ≠ 0. By definition, P ⊂ P̂ .

[2] Next, we show that β̂ = (β̂J , 0)⊤ satisfies (A.8), therefore solves (5). Thus, the solution β̂ admits the property that
P̂ = P . To show that β̂ satisfies (A.8), recall that the subgradient ∂β̂kjm is the interval (−∥β̂kj·∥

−5/6
1 /6, ∥β̂kj·∥

−5/6
1 /6). When

β̂Jc = 0, this interval is (−∞, +∞). Hence, (A.8) always holds when β̂Jc = 0.

Proof of Theorem 2. Again, by the KKT conditions, any vector β̂ satisfies (A.15)–(A.17) is a solution to (5).

X⊤

I Y − X⊤

I µ(X β̂) = nλn∇ρ(β̂I), (A.15)

X⊤

II Y − X⊤

II µ(X β̂) = nλn∂ρ(β̂II), (A.16)

λmin(X⊤

I 6(X β̂)XI) > nλnκ(β̂I), (A.17)

where ∇ρ(β̂kjm) = τkj(β̂kj·)sign(β̂kjm)/6 for (k, j,m) ∈ I , ∂ρ(β̂kjm) ∈ (−τkj(β̂kj·)/6, τkj(β̂kj·)/6), for (k, j,m) ∈ II ,

τkj(β̂kj·) =

 Gk
j=1

∥β̂kj·∥
1
2
1

−
2
3
∥β̂kj·∥

−
1
2

1 , (A.18)

κ(β̂I) = max
(k,j,m)∈I

1
18

 Gk
j=1

∥β̂kj·∥
1
2
1

−
5
3
∥β̂kj·∥

−1
1 +

1
12

 Gk
j=1

∥β̂kj·∥
1
2
1

−
2
3
∥β̂kj·∥

−
3
2

1 . (A.19)

Let ξ = X⊤Y − X⊤µ(Xβ∗). Consider events

E1 = {∥ξI∥∞ ≤ (2−1n log n)1/2} and E2 = {∥ξIc∥∞ ≤ (n log p)1/2}.

By (A.10) and the union bound, we have

Pr(E1 ∩ E2) ≥ 1 −


(k,j,m)∈I

P{|ξkjm| ≥ (2−1n log n)1/2} −


(k,j,m)∈Ic

P{|ξkjm| ≥ (n log p)1/2}

≥ 1 − 2{s/n + (Md − s)/d2}.

In event E1 ∩ E2, we show two results: [1] within the set M0 := {β ∈ Rs
: ∥β − β∗

I ∥∞ ≤ cn−γ
}, there exists a vector

β̂I ∈ Rs satisfying (A.15) and (A.17); [2] β̂ = (β̂I , 0)⊤ satisfies (A.16). These two steps together with the KKT conditions
complete the proof.

[1] Let η = nλn∇ρ(β), where ηkjm = nλnτkj(βkj·)sign(βkjm)/6. Under Condition 7, Similarly as in (A.12) we have
∥β∗

kj·∥1 > 2∥β∗

kj· − βkj·∥1 and further ∥βkj·∥1 ≥ ∥β∗

kj·∥1/2. Therefore, 6|ηkjm| = nλnτkj(βkj·) ≤ nλnτkj(β
∗

kj·). Hence,
∥η∥∞ ≤ nλnh−1

n . It further implies that ∥ξI − η∥∞ ≤ ∥ξI∥∞ + ∥η∥∞ ≤ (2−1n log n)1/2 + nλnh−1
n .

Define

9(β) = X⊤

I {µ(XIβ) − µ(XIβ
∗

I )} − (ξI − η). (A.20)
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Again, we show that 9(β) = 0 has a solution within M0. By a Taylor expansion, we have,

X⊤

I {µ(XIβ) − µ(XIβ
∗

I )} = X⊤

I 6(Xβ∗)XI(β − β∗

I ) + r,

where the Lagrange remainder r = (rkjm)⊤ such that rkjm = (β − β∗

I )
⊤R(δ̃

(kjm)
)(β − β∗

I )/2, R(δ̃
(kjm)

) = X⊤

I {diag(Xkjm ◦

µ′′(XI δ̃
(kjm)

))}XI and δ̃
(kjm)

is a vector lying on the line segment joining β and β∗

I . By Condition 10, we have

∥r∥∞ = O(sn1−2γ ). (A.21)

Let

9̄(β) = {X⊤

I 6(Xβ∗)XI}
−19(β) = β − β∗

I + v,

where v = −{X⊤

I 6(Xβ∗)XI}
−1(ξI − η − r). Then, it follows from Conditions 7, 8, and λn = o(hnn−γ ) that

∥v∥∞ ≤ ∥{X⊤

I 6(Xβ∗)XI}
−1

∥∞(∥ξI − η∥∞ + ∥r∥∞)

= O((n−1 log n)1/2 + λnh−1
n + sn−2γ ) = o(n−γ ). (A.22)

By the same argument as in the proof of Theorem 1, there exists a vector β̂I within M0 such that 9̄(β̂I) = 0. Hence, β̂I also
solves (A.15). On the other hand, by the stated choice of λn, β̂I satisfies (A.17) for sufficiently large n.

[2] Let β̂ = (β̂I , 0)⊤. Next, we prove that β̂ satisfies (A.16) for the stated choice of λn. Indeed, (A.16) requires that

|X⊤

kjmY − X⊤

kjmµ(X β̂)| <
1
6
nλnτkj(β̂kj·), (A.23)

for any (k, j,m) ∈ II . As proved in [1], ∥β∗

kj·∥1 > 2∥β∗

kj· − β̂kj·∥1, hence ∥β̂kj·∥1 < 1.5∥β∗

kj·∥1. Then, we have τkj(β̂kj·) ≥

0.6τkj(β∗

kj·). It implies that

min
k,j

τkj(β̂kj·) ≥ min
k,j

0.6τkj(β∗

kj) ≥ 0.6u−1
n .

To prove (A.16), by (A.23) and the above arguments, it suffices to show that

∥X⊤

II Y − X⊤

II µ(X β̂)∥∞ < 0.1nλnu−1
n . (A.24)

Observe that

X⊤

II Y − X⊤

II µ(X β̂) = X⊤

II {Y − µ(Xβ∗)} + X⊤

II {µ(Xβ∗) − µ(X β̂)}. (A.25)

In event E2, ∥X⊤

II {Y − µ(Xβ∗)}∥∞ = O((n log d)1/2). Then, it follows from (n−1 log d)1/2 = o(λn) that

(nλn)
−1

∥X⊤

II {Y − µ(Xβ∗)}∥∞ = o(1). (A.26)

For the second term on the right hand side of (A.25),

X⊤

II {µ(X β̂) − µ(Xβ∗)} = X⊤

II {µ(XI β̂I) − µ(XIβ
∗

I )} = X⊤

II 6(Xβ∗)XI(β̂I − β∗

I ) + w,

where w = (wkjm)⊤ such that wkjm = (β̂I − β∗

I )
⊤R(δ̄

(kjm)
)(β̂I − β∗

I )/2, where δ̄
(kjm)

is a vector lying on the line segment
joining β̂I and β∗

I . Similarly as in (A.21),

∥w∥∞ = O(sn1−2γ ). (A.27)

Since β̂I solves 9̄(δ) = 0, we have β̂I − β∗

I = {X⊤

I 6(Xβ∗)XI}
−1(ξI − η − r). Therefore,

(nλn)
−1X⊤

II {µ(XI β̂I) − µ(XIβ
∗

I )}

≤ (nλn)
−1

∥X⊤

II 6(Xβ∗)XI{X⊤

I 6(Xβ∗)XI}
−1

∥∞ · (∥ξI − η∥∞ + ∥r∥∞) + (nλn)
−1

∥w∥∞

≤ (nλn)
−1

∥X⊤

II 6(Xβ∗)XI{X⊤

I 6(Xβ∗)XI}
−1

∥∞∥η∥∞ + (nλn)
−1O(∥ξI∥∞ + ∥r∥∞ + ∥w∥∞),

because by Condition 9, ∥X⊤

II 6(Xβ∗)XI{X⊤

I 6(Xβ∗)XI}
−1

∥∞ < 1. It follows from (A.21) and sn−2γ
= o(λn) that

(nλn)
−1O(∥ξI∥∞ + ∥r∥∞) = o(1). Meanwhile, by (A.27) and the choice of λn, (nλn)

−1
∥w∥∞ = o(1). Using Condition 9

and ∥η∥∞ ≤ nλnh−1
n , we have

(nλn)
−1

∥X⊤

II 6(Xβ∗)XI{X⊤

I 6(Xβ∗)XI}
−1

∥∞ · ∥η∥∞ < 0.1u−1
n .

Therefore, (A.24) holds.
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