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A.1. Proof of Lemma 1.

First of all, it follows from Lemma 1 of Negahban, et al. (2012) that ∆̂ = β̂ − β∗α ∈ Cαη on the

event {λn ≥ 2 ‖∇Ln(β∗α)‖∞}. Hence, we need to show that the event {λn ≥ 2 ‖∇Ln(β∗α)‖∞} holds

with high probability. The latter will be established by using Bernstein’s inequality along with the

union bound.

The gradient of Ln,

∇Ln(β∗α) =
1

n

n∑
i=1

2

α
ψ[α(yi − xTi β

∗
α)]xi, (1)

where ψ(x) = x, for |x| ≤ 1; ψ(x) = 1, for x > 1; and ψ(x) = −1, for x < −1. Using α−1|ψ(αx)| ≤

|x| and assumption (C3), we have

E{2α−1ψ[α(yi − xTi β
∗
α)]xij}2 ≤ 4 E{(yi − xTi β

∗
α)2x2

ij}

≤ 8 E{(ε2i + |xTi (β∗α − β∗)|2)x2
ij}

= 8 E{E(ε2i
∣∣x)x2

ij + |xTi (β∗α − β∗)|2x2
ij}

≤ v,

where v is a constant depending on M2 and κ0 and the last inequality follows from a similar

argument as in the proof of Theorem 1. By (C3) and that |ψ(x)| ≤ 1, ψ[α(yi − xTi β
∗
α)]xij is also
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sub-Gaussian. For any k ≥ 3, using the relation between the kth moment and the second moment

of sub-Gaussian random variables (Rivasplata, 2012),

E |ψ[α(yi − xTi β
∗
α)]xij |k ≤

k!

2
Lk−2 E |ψ[α(yi − xTi β

∗
α)]xij |2,

where L is a constant depending on κ0 only. Hence,

E |2α−1ψ[α(yi − xTi β
∗
α)]xij |k ≤

k!

2
(2L/α)k−2v.

By Bernstein inequality (Proposition 2.9 of Massart and Picard (2007)) and note that E( 2
αψ[α(yi−

xTi β
∗
α)]xi) = 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

2

α
ψ[α(yi − xTi β

∗
α)]xij

∣∣∣∣∣ ≥
√

2vt

n
+

2Lt

αn

)
≤ 2 exp(−t).

Let t = nλ2
n/(32v) and observe that 2Lt

αn ≤
√

2vt
n by the choice of λn and α. We have

P

(∣∣∣∣∣ 1n
n∑
i=1

2

α
ψ[α(yi − xTi β

∗
α)]xij

∣∣∣∣∣ ≥ λn
2

)
≤ 2 exp

(
−nλ

2
n

32v

)
.

It then follows from union inequality that

P

(∥∥∥∥∥ 1

n

n∑
i=1

2

α
ψ[α(yi − xTi β

∗
α)]xi

∥∥∥∥∥
∞

>
λn
2

)
≤ 2 exp

(
−nλ

2
n

32v
+ log p

)
≤ 2 exp(−c0n),

where c0 = κ2
λ/(32v) − 1 and without loss of generality we assume log p ≤ n. This completes the

proof.

A.2. Proof of Lemma 2.

Define set A := {(β,∆) : ‖β‖2 ≤ 4ρ2 and ‖∆‖2 ≤ 8ρ2}, we first show that for any (β,∆) ∈ A,

δLn(∆,β) ≥ 1

n

n∑
i=1

ϕτ‖∆‖2(xTi ∆I(|yi − xTi β| ≤ T )), (2)
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for all α ≤ 1/(T + 8τρ2), where the thresholding function

ϕt(u) = u2I(|u| ≤ t/2) + (t− |u|)2I(t/2 ≤ |u| ≤ t), (3)

I(·) is the indicator function and the thresholds T and τ will be chosen as in (8). From (8), we

essentially need α ≤ cuρ
−1
2 , where cu is a constant depending on the population level quantities

κ0, κl and κu only. The introduction of the thresholding function ϕt(u) is to apply the contraction

theorem of Ledoux and Talagrand (1991). Clearly, ϕt(u) ≤ u2 and satisfies the Lipschitz condition

with Lipschitz coefficient bounded by 2t.

To show (2), if |xTi ∆| > τ‖∆‖2 or |yi−xTi β| > T , the right hand side of (2) is 0. By convexity

of the Huber loss function, (2) holds trivially. If |xTi ∆| ≤ τ‖∆‖2 and |yi − xTi β| ≤ T , then

|yi − xTi (β + ∆)| ≤ |yi − xTi β|+ |xTi ∆| ≤ T + τ‖∆‖2 ≤ T + 8τρ2 ≤ 1/α,

and |yi − xTi β| ≤ T ≤ 1/α. Since `α(x) = x2 for |x| ≤ 1/α, we have

`α(yi−xTi (β+∆))−`α(yi−xTi β)−[`′α(yi−xTi β)](xTi ∆) = (xTi ∆)2 ≥ ϕτ‖∆‖2(xTi ∆I(|yi−xTi β| ≤ T )).

Therefore, (2) holds in any case. Using (2), to prove the lemma, it suffices to show that for any

(β,∆) ∈ A, with high probability

1

n‖∆‖22

n∑
i=1

ϕτ‖∆‖2(xTi ∆I(|yi − xTi β| ≤ T )) ≥ κ1 − κ1κ2

√
(log p)/n

‖∆‖1
‖∆‖2

.

From the definition (3), for any d > 0 and z ∈ R, we have ϕd(dz) = d2ϕ1(z). Therefore, it is

equivalent to show that for any (β,∆) ∈ A′ := {(β,∆) : ‖β‖2 ≤ 4ρ2 and ‖∆‖2 = 1}, with high

probability

1

n

n∑
i=1

ϕτ (xTi ∆I(|yi − xTi β| ≤ T )) ≥ κ1 − κ1κ2

√
(log p)/n‖∆‖1. (4)
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To establish (4), let us consider its complementary event. Define

f(x) = xT∆I(|y − xTβ| ≤ T ), g(x) = ϕτ (f(x)), and Pn[g(x)] =
1

n

n∑
i=1

g(xi).

Let S2(1) be the unit sphere with L2-radius one, and S1(t) be the unit sphere with L1-radius t,

which is to be chosen later. The complementary event of (4) is given by

{
Pn[g(x)] < κ1{1− κ2

√
(log p)/n‖∆‖1}, for some (β,∆) ∈ A′

}
.

Our goal is to show that the probability of this event is very small, which is demonstrated through

the following three steps.

(a) First, we show that with the choice of truncation T and τ as in (8), for any fixed (β,∆) ∈ A′,

we have

E[g(x)] ≥ κl/2. (5)

(b) Second, with Z(t) = sup(β,∆)∈A′∩∆∈S1(t) |Pn[g(x)]− E[g(x)]|, we prove the tail probability of

Z(t) is bounded by

P (Z(t) ≥ κl/4 + 40τ2κ0t
√

(log p)/n) ≤ exp(−c′′1n− c′′2t2 log p), (6)

for each given t.

(c) Finally, we use a standard peeling argument (Alexander, 1987; Van de Geer, 2000) to establish

P
{
∃(β,∆) ∈ A′ : Z(‖∆‖1) ≥ κl/4 + 40τ2κ0‖∆‖1

√
(log p)/n

}
≤ exp(−c′1n− c′2 log p).

The result (c) together with (5) show that the probability of the complementary event of (4) with

κ1 = κl/4 and κ2 = 40τ2κ0κ
−1
1 is bounded by exp(−c′1n− c′2 log p), which completes the proof.

We first prove (5). In fact, by condition (C2), for any (β,∆) ∈ A′, E[(xT∆)2] ≥ κl‖∆‖22 = κl.
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So, it suffices to show that E[(xT∆)2 − g(x)] ≤ κl/2.

Note that, g(x) = (xT∆)2 for all x such that |y − xTβ| ≤ T and |xT∆| ≤ τ/2. Therefore, we

have

E[(xT∆)2 − g(x)] ≤ E[(xT∆)2I(|y − xTβ| > T )] + E[(xT∆)2I(|xT∆| > τ/2)]. (7)

To bound the first term on the right hand side of (7), it follows from the Cauchy-Schwartz inequality

that

E[(xT∆)2I(|y − xTβ| > T )] ≤ [E(xT∆)4]1/2[P (|y − xTβ| > T )]1/2.

Since xT∆ is sub-Gaussian with parameter at most κ2
0 by assumption (C3), we have E(xT∆)4 ≤

16κ4
0. Meanwhile, it follows from the Chebyshev inequality that for any β with ‖β‖2 ≤ 4ρ2,

T 2P (|y − xTβ| > T ) ≤ E[(y − xTβ)2]

≤ 2 E ε2 + 2 E[xT (β∗ − β)]2

≤ 2
√
M2 + 34κuρ

2
2

≤ 36κuρ
2
2.

where in the last inequality, we assume without loss of generality ρ2 ≥ M
1/4
2 κ

−1/2
u . To bound the

second term on the right hand side of (7), by the concentration inequality of sub-Gaussian variables,

we have

P (|xT∆| > τ/2) ≤ 2 exp{−τ2/(8κ2
0)}.

Then, by choosing T and τ as

T = 96κ2
0κ
−1
l κ1/2

u ρ2 and τ = max{4κ0 log1/2(12κ−1
l κ2

0), 1}, (8)

we have

E[(xT∆)2I(|y − xTβ| ≥ T )] ≤ κl
4

and E[(xT∆)2I(|xT∆| ≥ τ/2)] ≤ κl
4
.
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Hence, (5) follows.

Next, we give the tail bound as in (b). Indeed, for any (β,∆) ∈ A′, we have ‖g‖∞ ≤ τ2.

Therefore, by Massart concentration inequality (Theorem 14.2 of Bühlmann and Van De Geer

(2011)), for any z > 0, we have P (Z(t) ≥ EZ(t) + z) ≤ exp(− nz2

32τ4
). By choosing z = κl/4 +

16τ2κ0t
√

(log p)/n, we have

P (Z(t) ≥ EZ(t) + z) ≤ exp
(
−

nκ2
l

512τ4
− 8κ2

0t
2 log p

)
. (9)

Next, we bound EZ(t). Let {ωi}ni=1 be an i.i.d. sequence of Rademacher variables. A sym-

metrization theorem (Theorem 14.3 of Bühlmann and Van De Geer (2011)) yields

E[Z(t)] ≤ 2 E

[
sup

(β,∆)∈A′∩∆∈S1(t)
| 1
n

n∑
i=1

ωig(xi)|

]
= 2 E

[
sup

(β,∆)∈A′∩∆∈S1(t)
| 1
n

n∑
i=1

ωiϕτ (f(xi))|

]
.

By definition, the function ϕτ is Lipschitz with parameter at most 2τ ≤ 2τ2 and ϕτ (0) = 0.

Therefore, by the Ledoux-Talagrand contraction theorem (Ledoux and Talagrand (1991), p.112),

we have

E[Z(t)] ≤ 8τ2 E

[
sup

(β,∆)∈A′∩∆∈S1(t)
| 1
n

n∑
i=1

ωif(xi)|

]

= 8τ2 E

[
sup

(β,∆)∈A′∩∆∈S1(t)
| 1
n

n∑
i=1

ωix
T
i ∆I(|yi − xTi β| ≤ T )|

]

≤ 8τ2tE

∥∥∥∥∥ 1

n

n∑
i=1

ωixih(yi,xi)

∥∥∥∥∥
∞

,

where h(yi,xi) = supβ:‖β‖2≤4ρ2 I(|yi − xTi β| ≤ T ). Since the variables {xij}ni=1 are zero-mean i.i.d.

sub-Gaussian with parameter at most κ2
0, ωi and h(yi,xi) are bounded, {ωixijh(yi,xi)}ni=1 is also

sub-Gaussian. Since E
∥∥ 1
n

∑n
i=1 ωixih(yi,xi)

∥∥
∞ is the maxima of p such terms, known bounds on

the expectation of sub-Gaussian maxima (e.g. see Ledoux and Talagrand (1991), p.79) yield

E

∥∥∥∥∥ 1

n

n∑
i=1

ωixih(yi,xi)

∥∥∥∥∥
∞

≤ 3κ0

√
(log p)/n.
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Hence,

E[Z(t)] ≤ 24τ2κ0t
√

(log p)/n. (10)

Combining (9) and (10), we have

P
(
Z(t) ≥ κl/4 + 40τ2κ0t

√
(log p)/n

)
≤ exp(−c′′1n− c′′2t2 log p),

where constants c′′1 and c′′2 depends on κl and κ0 only. This result holds for each given t.

Next, we furnish the peeling argument in (c). Let h(‖∆‖1) = κl/8 + 20τ2κ0‖∆‖1
√

(log p)/n

and B = {∃(β,∆) ∈ A′ : Z(‖∆‖1) ≥ 2h(‖∆‖1)}. Since h(‖∆‖1) ≥ κl/8, the set can be covered

by partition {Bm}∞m=1 with Bm = {(β,∆) ∈ A′ : 2m−4κl ≤ h(‖∆‖1) ≤ 2m−3κl}. Thus, by union

bound,

P (B) ≤
∞∑
m=1

P (∆ ∈ Bm such that Z(‖∆‖1) ≥ 2h(‖∆‖1))

≤
∞∑
m=1

P (Z(‖∆‖1) ≥ 2m−3κl)

since h(‖∆‖1) ≥ 2m−4κl for ∆ ∈ Bm. By letting 2m−3κl = κl/4 + 40τ2κ0t
√

(log p)/n as in (6) and

solving for t, by (6), we obtain

P (B) ≤
∞∑
m=1

exp

(
−c′′1n−

c′′2κ
2
l (2

m−1 − 1)2n

τ4κ2
0

)

≤ exp(−c′′1n) +
∞∑
m=2

exp

(
−c′′1n−

c′′2nκ
2
l 2

2m−4

τ4κ2
0

)
≤ c′1 exp(−c′2n),

where the last inequality follows from sum of geometric series.

A.3. Proof of Lemma 3.
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Note that,

Rq ≥
p∑
j=1

|β∗α,j |q ≥
∑
j∈Sαη

|β∗α,j |q ≥ ηq|Sαη|. (11)

Therefore, |Sαη| ≤ η−qRq. Let Scαη = {1, 2, . . . , p}\Sαη, we have

‖β∗Scαη‖1 =
∑
j∈Scαη

|β∗α,j | =
∑
j∈Scαη

|β∗α,j |q|β∗α,j |1−q ≤ Rqη1−q. (12)

Hence, for any ∆ ∈ Cαη, we have

‖∆‖1 = ‖∆Sαη‖1 + ‖∆Scαη‖1 ≤ 4‖∆Sαη‖1 + 4‖β∗α,Scαη‖1.

By the Cauchy-Schwartz inequality and (12), we can bound further that

‖∆‖1 ≤ 4
√
|Sαη|‖∆‖2 + 4Rqη

1−q ≤ 4R1/2
q η−q/2‖∆‖2 + 4Rqη

1−q.

From Theorem 1, ‖β∗α−β∗‖2 ≤ d1α
k−1. As we finally need α to be small, without loss of generality,

we assume ‖β∗α‖2 ≤ 4ρ2. In addition, we assume ρ2 ≥ 1/8. It then follows from Lemma 2 that

δLn(∆,β∗α) ≥ κ1‖∆‖2{‖∆‖2 − κ2

√
(log p)/n[4R1/2

q η−q/2‖∆‖2 + 4Rqη
1−q]}

=
(
κ1 − 4κ1κ2R

1/2
q η−q/2

√
(log p)/n

)
‖∆‖22 − 4κ1κ2Rqη

1−q√(log p)/n.

With λn = κλ
√

(log p)/n and η = λn, it holds that

4κ1κ2R
1/2
q η−q/2

√
log p

n
= 4κ1κ2R

1/2
q κλ

−q/2
(

log p

n

)(1−q)/2
,

which is no larger than κ1/2 under assumption (2.7). On the other hand,

4Rqκ1κ2η
1−q
√

log p

n
= 4Rqκ1κ2κλ

1−q
(

log p

n

)1−(q/2)

.

Therefore, RSC holds with κL = κ1
2 and τ2

L = 4Rqκ1κ2κλ
1−q( log p

n )1−(q/2).
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A.4. Proof of Lemma 4.

It follows from Lemma 2 that

δLn(∆,β) ≥ κ1‖∆‖22 − κ1κ2‖∆‖2‖∆‖1
√

(log p)/n.

Using the fact that ab ≤ (a2 + b2)/2, we conclude that

δLn(∆,β) ≥ κ1‖∆‖22 −
(

1

2
κ1‖∆‖22 +

1

2
κ1κ

2
2‖∆‖21

(
log p

n

))
.

Therefore, (3.2) holds with γl = κ1 and τl = κ1κ
2
2(log p)/(2n). Meanwhile, we have

δLn(∆,β) ≤ 1

n

n∑
i=1

(xTi ∆)2.

Under the sub-Gaussianity assumption (C3), it follows from some existing work (e.g. page 18 of

Loh and Wainwright (2013)) that, with probability greater than 1− c1 exp(−c2n), it holds that

1

n

n∑
i=1

(xTi ∆)2 ≤ κu
(

3

2
‖∆‖22 +

log p

n
‖∆‖21

)
,

where c1 and c2 are some generic constants. Hence, (3.3) holds with γu = 3κu and τu = κu(log p)/n.

A.5. Proof of Theorem 4.

We prove the theorem by the following two steps:

(a) We first show that, for any δ2 ≥ ε2/(1 − κ), φ(β̂
t
) − φ(β̂) ≤ δ2, for all t greater than the

right hand side of (15), where κ ∈ [0, 1) is a contraction constant and ε is a tolerance parameter,

which will be given in (16) and (17), respectively.

(b) We use RSC condition (3.2) to transform the upper bound of φ(β̂
t
)− φ(β̂) into the upper

bound of ‖β̂
t
− β̂‖2.

For step (a), by the choice of initial value, we have ‖β̂
0
− β̂‖2 ≤ ‖β̂

0
−β∗‖2 + ‖β̂−β∗‖2 ≤ 2ρ2,
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where we assume the sample size n is large enough to guarantee ‖β̂ − β∗‖2 ≤ ρ2. It then follows

from Lemma 2 of Loh and Wainwright (2013) that ‖β̂
t
− β̂‖2 ≤ 2ρ2 for all t ≥ 0. Therefore,

‖β̂
t
‖2 ≤ ‖β̂

t
− β̂‖2 + ‖β̂ − β∗‖2 + ‖β∗‖2 ≤ 4ρ2. Hence, Lemma 4 guarantees that RSC/RSM

conditions hold for all β̂
t
, t ≥ 0. Since our loss function is convex, we apply Theorem 2 of Agarwal,

Negahban, and Wainwright (2012). In order for our proof to be self-contained, we cite their theorem

as the follows:

[Theorem 2 of Agarwal, Negahban, and Wainwright (2012)] Suppose for any data set Zn1 , the

loss function Ln(·, Zn1 ) is convex and differentiable and the regularizer R is a norm. Consider

the optimization problem of θ̂ = argminR(θ)≤ρ{Ln(θ;Zn1 ) + λnR(θ)} for a radius ρ such that θ∗ is

feasible, where θ∗ = argmin ELn(θ;Zn1 ), and a regularization parameter λn satisfying bound

λn ≥ 2R∗(∇Ln(θ∗)), (13)

where R∗ is the dual norm of the regularizer. In addition, suppose that the loss function Ln satisfies

the RSC/RSM condition with parameters (γl, τl) and (γu, τu), respectively. Let (M,M̄⊥) be any

R-decomposable pair of subspaces such that

κ =

{
1− γ̄l

4γu
+

64Ψ2(M̄)τu
γ̄l

}
ξ ∈ [0, 1) and

32ρ

1− κ
ξχ ≤ λn, (14)

where Ψ(M̄) = supθ∈M̄\{0}R(θ)/‖θ‖2, γ̄l = γl−64τlΨ
2(M̄), ξ = (1−64τuγ̄

−1
l Ψ2(M̄))−1, and χ =

2
(
γ̄l/(4γu) + 128τuγ̄

−1
l Ψ2(M̄)

)
τl+8τu+2τl. Denote ε2 = 8ξχ

(
6Ψ(M̄)‖θ̂ − θ∗‖2 + 8R(ΠM⊥(θ∗))

)2
,

where ΠM⊥(θ∗) is the projection of θ∗ onto M⊥. Then for any δ2 ≥ ε2/(1 − κ), we have

φn(θ̂t)− φn(θ̂) ≤ δ2 for all

t ≥ 2 log((φn(θ0)− φn(θ̂))/δ2)

log(1/κ)
+ log2 log2

(
ρλn
δ2

)(
1 +

log 2

log(1/κ)

)
, (15)

where φn(θ) = Ln(θ;Zn1 ) + λnR(θ), θ̂t is the solution by the gradient descent algorithm after tth

iteration, and θ0 is the initial value of θ.
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In fact, Theorem 2 of Agarwal, Negahban, and Wainwright (2012) is a deterministic statement

for all choices of pairs (M,M̄⊥). From Lemma 1 and Lemma 4, we have shown that with our

choice of λn, the RA-quadratic loss function satisfy (13) and RSC/RSM with probability at least

1− c1 exp(−c2n). Hence, Theorem 2 of Agarwal, Negahban, and Wainwright (2012) applies to our

problem with high probability. We further choose the pair (M,M̄⊥) = (Sαη, S
c
αη) and give the

explicit expression of constants for our problem as the follows:

κ =

{
1− γ̄l

4γu
+

64κu|Sαη| log p
n

γ̄l

}(
1−

64κu|Sαη| log p
n

γ̄l

)−1

, (16)

ε2 = 8ξχ

(
6
√
|Sαη|‖β̂ − β∗α‖2 + 8‖β∗Scαη‖1

)2

, (17)

where γ̄l = κ1 − 32κ1κ
2
2|Sαη|(log p)/n, ξ = {1 − 64κu|Sαη|(log p)/(nγ̄l)}−1, and χ = 2{γ̄l/(4γu) +

128τu|Sαη|/γ̄l + 1}τl + 8τu. It remains to check (14). By (16), κ ∈ [0, 1) is equivalent to requiring

|Sαη|
log p

n
<

γ̄2
l

1536κ2
u

. (18)

With η = λn, it follows from (11) that

|Sαη|
log p

n
≤ Rqη−q

log p

n
≤ κ−qλ Rq

(
log p

n

)1−(q/2)

.

Hence, (18) holds when n is sufficiently large. Moreover, from (14) we need

λn ≥
32ρ

1− κ

(
1−

64κu|Sαη| log p
n

γ̄l

)−1 [
1 + κ1κ

2
2

(
γ̄l

12κu
+

128κu|Sαη| log p
n

γ̄l

)
+ 8κu

]
log p

n
,

which is satisfied under the stated assumption. It then follows from Theorem 2 of Agarwal, Ne-

gahban, and Wainwright (2012) that, for any δ2 ≥ ε2/(1− κ), φ(β̂
t
)− φ(β̂) ≤ δ2, for all iterations

t greater than the right hand side of (15).
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For step (b), it follows from the RSC condition that

Ln(β̂
t
)− Ln(β̂)− [∇Ln(β̂)]T (β̂

t
− β̂) ≥ γl

2
‖β̂

t
− β̂‖22 − τl‖β̂

t
− β̂‖21.

Then we have

φ(β̂
t
)− φ(β̂) = Ln(β̂

t
)− Ln(β̂) + λn(‖β̂

t
‖1 − ‖β̂‖1)

≥ [∇Ln(β̂)]T (β̂
t
− β̂) + λn(‖β̂

t
‖1 − ‖β̂‖1) +

γl
2
‖β̂

t
− β̂‖22 − τl‖β̂

t
− β̂‖21.

Since β̂ is the minimizer of φ(β), by the first-order condition, [∇Ln(β̂) + λn∇‖β̂‖1]T (β̂
t
− β̂) ≥ 0.

Therefore,

φ(β̂
t
)− φ(β̂) ≥ −λn[∇‖β̂‖1]T (β̂

t
− β̂) + λn(‖β̂

t
‖1 − ‖β̂‖1) +

γl
2
‖β̂

t
− β̂‖22 − τl‖β̂

t
− β̂‖21.

By the convexity of the L1-norm, ‖β̂
t
‖1 − ‖β̂‖1 − [∇‖β̂‖1]T (β̂

t
− β̂) ≥ 0. Hence,

φ(β̂
t
)− φ(β̂) ≥ γl

2
‖β̂

t
− β̂‖22 − τl‖β̂

t
− β̂‖21. (19)

Next, we bound ‖β̂
t
− β̂‖1. It follows from Lemma 3 of Agarwal, Negahban, and Wainwright (2012)

that

‖β̂
t
− β̂‖1 ≤ 2

(
2
√
Sαη‖β̂

t
− β̂‖2 + 4

√
|Sαη|‖β̂ − β∗α‖2 + 4‖β∗α,Scαη‖1 + δ2/λn

)
,

where δ is defined as in (a). Then, by the Cauchy-Schwartz inequality,

‖β̂
t
− β̂‖21 ≤ 16

(
4|Sαη|‖β̂

t
− β̂‖22 + 16|Sαη|‖β̂ − β∗α‖22 + 16‖β∗α,Scαη‖

2
1 + δ4/λ2

n

)
. (20)

Equations (19) and (20) together with results in (a) imply that,

δ2 ≥ γl
2
‖β̂

t
− β̂‖22 − 16τl

(
4|Sαη|‖β̂

t
− β̂‖22 + 16|Sαη|‖β̂ − β∗α‖22 + 16‖β∗α,Scαη‖

2
1 + δ4/λ2

n

)
.
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Letting γ̃l = γl/2− 64τl|Sαη|, we have

‖β̂
t
− β̂‖22 ≤

1

γ̃l

(
δ2 +

16τlδ
4

λ2
n

)
+

256τl
γ̃l

(|Sαη|‖β̂ − β∗α‖22 + ‖β∗α,Scαη‖
2
1). (21)

We now bound the second term in (21). By (11) and (12), we have

|Sαη|‖β̂ − β∗α‖22 + ‖β∗Scαη‖
2
1 ≤ Rqη−q‖β̂ − β∗α‖22 +R2

qη
2−2q

≤ Rqκ−qλ

(
log p

n

)−q/2
‖β̂ − β∗α‖22 + κ−qλ R2

q

(
log p

n

)1−q

≤ κ−qλ Rq

(
log p

n

)−q/2 [
‖β̂ − β∗α‖22 +Rq

(
log p

n

)1−(q/2)
]
.

(22)

Meanwhile, from (a) we have

δ2 =
ε2

1− κ
=

8ξχ

1− κ

(
6
√
|Sαη|‖β̂ − β∗α‖2 + 8‖β∗α,Scαη‖1

)2

≤ 8ξχ

1− κ
(72|Sαη|‖β̂ − β∗α‖22 + 128‖β∗α,Scαη‖

2
1)

≤ 1024ξχ

1− κ
(|Sαη|‖β̂ − β∗α‖22 + ‖β∗α,Scαη‖

2
1).

(23)

Since γ̄l � 1, κ � 1, ξ � 1, χ � log p
n , and τl � log p

n , it follows from (21), (22) and (23) that

‖β̂
t
− β̂‖22 ≤ d3Rq

(
log p

n

)1−(q/2)
[
‖β̂ − β∗α‖22 +Rq

(
log p

n

)1−(q/2)
]
,

where d3 is a generic positive constant depending on Mk, κl, κu, κ0 and κλ.

A.6. Proof of Theorem 6.

First, we prove that the approximation error has ‖βc∗α −β∗‖2 ≤ d4α
k−1, where βc∗α = argminβ E `cα(y−

xTβ∗) is the population minimizer under the Catoni loss. Let gα(x) = `(x) − `cα(x) =
∫ x

0 [2t −
2
αψc(αt)]dt. It follows from (A.2) in the Appendix of the main paper that

E[`(y − xTβ∗α)− `(y − xTβ∗)] ≤ E[|g′α(y − xT β̃)xT (βc∗α − β∗)|],
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where β̃ is a vector lying between β∗ and βc∗α . Since |(ψc)′′′| ≤ 3, by the second-order Taylor

expansion with an integral remainder,

|g′α(x)| = |2x− 2

α
ψc(αx)| =

∣∣∣∣α2

3

∫ x

0
(ψc)

′′′(αs)(x− s)2ds

∣∣∣∣ ≤ α2|x|3. (24)

Hence, we have

E{`(y − xTβc∗α )− `(y − xTβ∗)} ≤ α2 E{|y − xT β̃|3|xT (βc∗α − β∗)|}

≤ 4α2 E{(|ε|3 + |xT (β̃ − β∗)|3)|xT (βc∗α − β∗)|}

≤ 4α2
[
E{|ε|3|xT (βc∗α − β∗)|}+ E{|xT (β̃ − β∗)|3|xT (βc∗α − β∗)|}

]
.

Follow a similar proof as in Theorem 1, we have

E{|ε|3|xT (βc∗α − β∗)|} . ‖βc∗α − β∗‖2 and E{|xT (β̃ − β∗)|3|xT (βc∗α − β∗)|} . ‖βc∗α − β∗‖2.

Therefore, ‖βc∗α − β∗‖2 ≤ d4α
2, for some generic positive constant d4. If condition (C1) holds for

k = 2, using a first-order Taylor expansion of g′α(x) and similar argument as in the above, we have

‖βc∗α − β∗‖2 ≤ d4α. Next, since (ψc)
′(0) = 1, by the same argument as in the proof of Lemma

2 and 3, RSC holds for Catoni’s loss with probability no less than 1 − c1 exp(−c2n), given that

λn = κλ
√

(log p)/n for sufficiently large κλ and λn . α . ρ−1
2 . Hence, similarly as in Theorem 2,

with high probability, ‖β̂−βc∗α ‖2 ≤ d5

√
Rq[(log p)/n]1/2−q/4, for some generic positive constant d5.

This together with ‖βc∗α − β∗‖2 ≤ d4α
k−1 completes the proof.

A.7. Proof of Theorem 7.

First of all, observe that

σ̂2 − σ2 =
1

J

J∑
j=1

1

m

∑
i∈fold j

(
εi − (xTi β̂

(−j)
− xTi β

∗)
)2

− σ2

=
1

n

n∑
i=1

ε2i − σ2 − 1

J

J∑
j=1

2

m

∑
i∈fold j

εix
T
i (β̂

(−j)
− β∗) +

1

J

J∑
j=1

1

m

∑
i∈fold j

{xTi (β̂
(−j)
− β∗)}2.
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Given that E ε4 exists, by Central Limit Theorem,
√
n( 1

n

∑n
i=1 ε

2
i − σ2)

D→ N (0,E ε4 − σ4). Let

zi = xTi (β̂
(−j)
− β∗). We now need to prove that the last two terms are negligible. Conditioning

on data outside the jth fold,

E

 1

m

( ∑
i∈fold k

εizi

)2
 = E{E(ε2i |xi)z2

i } ≤
[
E{E(ε2i |xi)}2

]1/2
(E z4

i )1/2 ≤
√

6M2κ
2
0‖β̂

(−j)
− β∗‖22.

Hence, m−1/2
∑

i∈fold k εix
T
i (β̂

(−j)
− β∗) = OP

(
‖β̂

(−j)
− β∗‖2

)
= oP (1), where the last equality

follows from Theorem 3. By an analogous argument, we have

1

m

∑
i∈fold k

(
xTi (β̂

(−j)
− β∗)

)2

= Op

(
‖β̂

(−j)
− β∗‖22

)
= Op(max{α2(k−1), Rq[(log p)/n]1−q/2})

= o(1/
√
n).

This completes the proof.
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