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Abstract 

A ccurate decon v olution of cell types from bulk gene e xpression is crucial f or understanding cellular compositions and unco v ering cell-type spe- 
cific differential expression and physiological states of diseased tissues. Existing decon v olution methods ha v e limitations, such as requiring 
complete cellular gene expression signatures or neglecting partial biological inf ormation. Moreo v er, these methods often o v erlook v arying cell- 
type messenger RNA amounts, leading to biased proportion estimates. A dditionally, the y do not effectively utilize valuable reference information 
from external studies, such as means and ranges of population cell-type proportions. To address these challenges, we introduce an adaptive 
regulariz ed tri-f actor non-negativ e matrix f actorization approach f or decon v olution (AR TdeCon v). We rigorously establish the numerical con v er- 
gence of our algorithm. Through benchmark simulations, we demonstrate the superior performance of AR TdeCon v compared to state-of-the-art 
semi-reference-based and reference-free methods as well as its robustness under challenges to its assumptions. In a real-world application 
to a dataset from a trivalent influenza vaccine study, our method accurately estimates cellular proportions, as evidenced by the nearly perfect 
P earson ’s correlation between ARTdeConv estimates and flow cytometry measurements. Moreover, our analysis of ARTdeConv estimates in 
COVID-19 patients re v eals patterns consistent with important immunological phenomena observed in other studies. The proposed method, 
AR TdeCon v, is implemented as an R package and can be accessed on GitHub for researchers and practitioners. 
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ntroduction 

eterogeneity in cell-type proportions exists across biological
amples, and neglecting this heterogeneity in bulk gene ex-
ression can introduce biases into subsequent analyses, such
s those of differential gene expression. Conversely, acknowl-
dging and accounting for this heterogeneity has shown clear
dvantages, yielding more accurate survival time predictions
nd tumor type classifications [ 1 , 2 ]. 

Laboratory techniques such as flow cytometry or immuno-
istochemistry are available for physically sorting cells into
ell types and quantifying their abundances. However, these
ethods are often limited by the availability of cell samples,

he specificity of antibodies for separating cells, and the sub-
tantial labor and time investments required [ 3 , 4 ]. Cell type
econvolution (simply referred to as “deconvolution” in this
ork), a computational process aimed at digitally separating
eterogeneous mixture signals into their constituent compo-
ents, has been critical in expediting the estimation of cell-
ype proportions from bulk gene expression data such as those
rom RNA sequencing (RNA-seq). In recent years, several de-
onvolution methods have emerged, with extensive applica-
ions in the field of computational biology. These methods can
enerally be categorized into reference-based and reference-
ree methods, depending on whether they require individual
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cell-type gene expression signatures, sometimes referred to as
a signature matrix, as prior knowledge [ 2 , 5 , 6 ]. 

For reference-based deconvolution, gene signatures can be
derived from either single-cell RNA-seq (scRNA-seq) data
or sorted bulk RNA profiles of individual cell types [ 7 ]. Al-
though gene signatures have been successfully established
for some cell types, acquiring those for other cell types
might be labor-intensive or even infeasible [ 8 , 9 ]. Neglect-
ing to incorporate gene signatures for a prevalent cell type
can induce biases in the proportion estimates of other
cell types within reference-based deconvolution [ 2 ]. On the
other hand, reference-free techniques enable the unsuper-
vised estimation of cell-type proportions but at the cost
of disregarding information embedded in known gene sig-
natures [ 10 , 11 ]. A deconvolution method that can uti-
lize partial reference gene signatures presents a plausible
compromise. 

Additionally, external information on population cell-type
proportions may also aid in estimating cell-type proportions.
For example, in blood samples, the proportion means (or me-
dians) and ranges of major cell types are available from com-
plete blood count tests. However, deconvolution techniques
that effectively incorporate such information are currently
lacking in the field. 
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During data pre-processing, information specific to the
amount of RNA molecules packed within an individual cell
is often lost after library normalization. Zaitsev et al. found
that failures to account for messenger RNA (mRNA) amounts
produced biased cell-type proportion estimates [ 10 ]. How-
ever, many deconvolution methods assume a generative model
where the loss of this information cannot be accounted for [ 2 ].
Therefore, incorporating these quantities into the generative
model can be pivotal to deconvolution accuracy. 

In recent years, several semi-reference-based methods have
been developed to perform deconvolution using only partial
references. EPIC addresses the lack of representation of cancer
cells in common gene signature matrices for the deconvolu-
tion of the tumor microenvironment (TME) [ 12 , 13 ]. Specifi-
cally, EPIC treats all types of cancer cells as a single super cell
type in deconvolution, allowing for a detailed characteriza-
tion of immune cell proportions in the TME while account-
ing for the fraction of cancer cells. This super-cell-type ra-
tionale can also be extended to the deconvolution of other
tissue types, such as blood. Moreover, EPIC assigns weights
to each gene in the signature matrix based on its variability
across cell types; genes with lower expression variance are
given higher weights for deconvolution. EPIC also adjusts for
differing mRNA amounts between cell types, which must be
specified prior to deconvolution. However, this becomes infea-
sible if the tissue is complex, especially when there is a super
cell type with multiple constituent cell types whose reference
expression is missing. EPIC further requires that deconvolu-
tion be performed using signature genes not specific to the un-
characterized super cell type and estimates the proportions of
cell types with reference using an inequality-constrained opti-
mization procedure. Consequently, the estimated proportions
of the cell type with a missing reference are biased toward zero
[ 14 ]. 

Two other tools, quanTIseq and SECRET, have similar
functions (i.e. they can accommodate one cell or super cell
type with a missing reference), with the former essentially em-
ploying the same mathematical model as EPIC [ 15 , 16 ]. An
innovation of quanTIseq over EPIC is its carefully defined set
of reference gene signatures for immune cells and the calcula-
tion of cell-type mRNA amount scaling factors using house-
keeping genes [ 15 ], but it does not weigh the genes for decon-
volution. These innovations also render quanTIseq unable to
use customized signature matrices when needed. On the other
hand, SECRET can incorporate customized gene signatures
from scRNA-seq experiments and uses an outlier-insensitive
L 1 norm on the residuals instead of EPIC’s L 2 norm [ 16 ].
However, it does not truly utilize any reference information
about the uncharacterized cell type, making it prone to the
same bias toward zero as EPIC does. 

BayICE is another semi-reference-based method serving the
same purpose as the other methods above, but it adopts a hier-
archical Bayes design with stochastic gene signature selection
[ 14 ]. Due to its probabilistic nature, BayICE can quantify the
uncertainty of cellular abundance estimates and claims to mit-
igate the biases of EPIC. These benefits come at the expense of
increased computational complexity, sensitivity to priors, and
difficulty in interpreting the parameters involved. Moreover,
it requires bulk samples of purified cells as reference inputs,
which, like quanTIseq, precludes the use of other types of ref-
erence data, such as customized signature matrices. 

In this article, we propose a novel semi-reference-based
method called ARTdeConv (short for “adaptive regularized
tri-factor non-negative matrix factorization method for de- 
Convolution”). It addresses the three outstanding issues dis- 
cussed above: utilizing partial reference gene signatures, incor- 
porating external information on cell-type proportions, and 

accounting for cell-type mRNA amounts. Compared to EPIC,
ARTdeConv does not require the specificity of the gene signa- 
tures to cell types that are characterized. It also uses external 
proportion information to correct for EPIC’s observed biases 
toward zero. Moreover, compared to EPIC and quanTIseq,
ARTdeConv learns the relative cell-type mRNA abundances 
automatically without the need to use housekeeping genes or 
other information while maintaining the straightforward in- 
terpretation of the resulting estimates. It can also incorporate 
scRNA-seq data as SECRET does and uses a different op- 
timization procedure. Our further contributions include de- 
riving and implementing a multiplicative update (MU) algo- 
rithm for solving ARTdeConv, proving the algorithm’s con- 
vergence, and demonstrating its merits through simulations 
and real data analysis. A schematic representation of ARTde- 
Conv’s workflow is shown in Fig. 1 . An R package implement- 
ing ARTdeConv is also available on GitHub. 

Materials and methods 

Notation 

Let R + 

and R ++ 

denote the set of non-negative and positive 
real numbers, respectively. m , n , and K are positive integers 
used to denote the number of genes, samples, and cell types 
with K ≤ min ( m , n ) in deconvolution. Let a positive integer 
K 0 denote the number of cell types for which we have refer- 
ence gene expression available. Unless otherwise mentioned,
we set K = K 0 + 1. Let Y ∈ R 

m ×n 
+ 

be the matrix of bulk gene 
expression and � ∈ R 

m ×K 
+ 

be the full gene signature matrix.
Let s ∈ R 

K 
++ 

be a vector of relative cell-type mRNA amounts,
and P ∈ R 

K×n 
+ 

the proportion matrix. Let ε ∈ R 

m ×n be the ran- 
dom error matrix. Unless otherwise specified, we denote θk as 
the k -th column of �. Let A be a generic m × n matrix. We 
use A 

� to denote the transpose of a matrix. If A is further a 
square matrix ( m = n ), we denote its trace tr ( A ) = 

∑ n 
i =1 A ii .

For any m × n matrix A , its Frobenius norm is denoted as 

‖ A ‖ F = 

√ 

tr ( A 

� A ) = 

√ ∑ m 

i =1 

∑ n 
j=1 A 

2 
i j . For two matrices A , B 

of the same dimensions, A � B denotes the element-wise prod- 
uct of A and B and 

A 
B denotes their element-wise quotient. 

Model and problem setup 

We first propose the following tri-factor generative model 

Y = �diag ( s ) P + ε (1) 

for ARTdeConv, which extends the canonical model Y = 

�P + ε [ 2 ]. The difference between them is diag ( s ) , a diag- 
onal matrix of cell-type mRNA amounts. In practice, nor- 
malization (e.g. by library sizes, etc.) is frequently employed 

to alleviate between-sample technical artifacts in sequencing 
data [ 17 , 18 ]. During this process, information regarding the 
quantities of RNA molecules packed within different kinds of 
cells sometimes gets lost. Failures to recover these quantities 
lead to documented biases in estimating cell-type proportions 
[ 10 , 12 ]. Should this occurs, diag ( s ) can account for the RNA 

molecule quantities. Otherwise, diag ( s ) would be close to the 
identity matrix I K (an option to fix diag ( s ) = I K is given by 
ARTdeConv). The values in diag ( s ) should be interpreted in 
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Figure 1 . A sc hema of the AR TdeCon v w orkflo w . Specifically , AR TdeCon v tak es in three pieces of inf ormation as inputs: the gene e xpression data of the 
bulk tissue to be decon v olv ed, the reference gene expression data with one cell type or super cell type uncharacterized, and the reference 
means / medians and ranges of the proportions of all cell types in decon v olution. It then passes these inputs to a cross-validation algorithm to select the 
optimal hyperparameters. Lastly, these hyperparameters are passed along with the rest of the inputs for a deconvolution run that estimates the 
proportions of each cell type or super cell type in v olv ed. 

a  

a  

fi  

d  

o  

c  

s  

M  

s
 

d  

t  

d

 

w  

a  

s  

P

 

T  

t  

a  

c  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/2/lqaf046/8120590 by guest on 27 April 2025
 relative sense. For example, s 2 / s 1 is the ratio between the
mounts of mRNA molecules packed by the second and the
rst cell type. We do not require any prior specification of
iag ( s ) and notice that Equation ( 1 ) is similar to the model
f MuSiC, a reference-based method where each sample is ac-
orded an additional scaling factor c i to account for between-
ample measurement variation in bulk gene expression [ 19 ].

oreover, this setup differs from that of EPIC, which requires
 be manually specified [ 12 ]. 

For performing deconvolution based on Equation ( 1 ), ART-
eConv assumes prior knowledge of a partial signature ma-
rix �K 0 ∈ R 

m ×K 0 + 

as well as Y . Then, an objective function is
efined: 

f ( �, s , P ) = 

1 
2 mn 

‖ Y − �diag ( s ) P ‖ 2 F + 

α1 

2 
R 1 + 

α2 

2 
R 2 + 

β

2 
R 3 , (2)

here R 1 , R 2 , and R 3 are regularizers to be explained later
nd α1 , α2 , and β are their tuning parameters. We discuss the
election of optimal tuning parameters in Section 2.4.�, s , and
 are then estimated via 

( ̂  �, ˆ s , ˆ P ) = argmin 

�∈ R m ×K 
+ , s ∈ R K ++ , P ∈ R K×n 

+ 

f ( �, s , P ) . (3)

he main objective here is to obtain an estimate of the propor-
ion matrix 

ˆ P . To follow a common practice of deconvolution
nd simplify the algorithm [ 20 ], ARTdeConv does not directly
onstrain each column of P to sum to one during the estima-
tion process. Instead, it obtains an unconstrained estimate ˆ P 
and then re-normalizes its columns to have the unit sum. 

Let �0 = 

[
�K 0 0 · · · 0 

] ∈ R 

m ×K 
+ 

and � be an m × K matrix
such that �jk = I ( k ≤ K 0 ) for 1 ≤ j ≤ m . The squared Frobe-
nius distance between the estimated � and �0 is penalized
through R 1 = ‖ � � ( � − �0 ) ‖ 2 F . Though we present a spe-
cial case where �K 0 occupies the first K 0 columns of �, by re-
defining � correspondingly, �K 0 can occupy any K 0 columns,
covering all structures of prior knowledge on the signature
matrix. Same as other well established semi-reference-based
methods (i.e. EPIC, quanTIseq, etc.), we set K = K 0 + 1. We
also recommend that the unrepresented cell types in �K 0 be
grouped into a single artificial “cell type.” Albeit that ART-
deConv technically allows K > K 0 + 1, we have found that
the resulting estimates from ARTdeConv became less reliable
as K − K 0 grew larger in preliminary analysis (results not
shown). This makes ARTdeConv suitable for the situations
where a major cell type is missing from the reference or that
distinguishing the multiple cell types that are missing is not
salient. We shall see such examples at work late in Sections 3.2
and 3.3. 

On the other hand, R 1 is not a strictly convex function of �,
making the guarantee of the numerical convergence of ART-
deConv’s algorithm difficult (more details on this later). To
atone for this, we make R 2 = ‖ ( J m ×K − �) � �‖ 2 F , where J m ×K

is an m × K matrix of 1s. It can be shown that any positive lin-
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ear combination of R 1 and R 2 is strictly convex with respect
to �. It is of notes that R 2 will force the estimated gene sig-
natures of the uncharacterized close to zero. While this is the
case for genes that are specific to the cell types in �K 0 , ARTde-
Conv does not restrict the gene signatures to only those genes.
Thus, it is recommended to reduce the penalization effects R 2

by setting its tuning parameter α2 to a very small value. 
Information on the cell-type proportions, such as means

(or medians) and ranges in a population, frequently exists in
external data and is accessible online, for example, through
complete blood counts of leukocytes [ 21 ]. Let m k denote the
reference mean (or median) of cell type k ’s population pro-
portion and let r k denote its range. To incorporate it into our
deconvolution method, we propose adding another penalty
R 3 = 

∑ K 
k =1 (1 /r k ) ‖ p 

� 

k − m k 1 n ‖ 2 2 , where p 

� 

k is the k -th row of
P . In R 3 , m k acts as a pivot, and the deviation from which is pe-
nalized for the estimated p 

� 

k . Meanwhile, 1 / r k acts as a weight
so the proportion estimates of cell types with wider ranges are
less penalized for departing from their respective m k . Letting
M be a K × n matrix such that M = 

[
m 1 1 n m 2 1 n · · · m K 1 n 

]�

and ρ = diag (r 1 , r 2 , · · · , r K ) , we can write R 3 in a matrix form
R 3 = ‖ ρ−1 / 2 ( P − M ) ‖ 2 F . 

MU algorithm 

A MU algorithm is proposed to solve Equation ( 3 ). The MU
algorithm was originally designed to solve the canonical bi-
factor non-negative matrix factorization (NMF) problem [ 22 ]
and was extensively studied [ 23 ]. Technically, it is similar to
the majorization–minimization (MM) algorithm of [ 24 ]. It
can be readily extended to solving a multi-factor regularized
NMF problem like the one for ARTdeConv. 

Let t be a non-negative integer denoting the current number
of iteration. The MU steps are derived by finding the gradients
of a set of auxiliary functions for each row of �t , each column
of P t , and s t . These update steps are: 

�t+1 = �t � Y ( P t ) � diag ( s t ) + mnα1 � � �0 

�t diag ( s t ) P t ( P t ) � diag ( s t ) + mn 
{
α1 � � �t + α2 ( J m ×K − �) � �t 

} ;

(4)

P t+1 = P t � diag ( s t )( �t+1 ) � Y + mnβρ−1 M 

diag ( s t )( �t+1 ) � �t+1 diag ( s t ) P t + mnβρ−1 P t 
; (5)

s t+1 = s t � u 

t 

Z 

t s t 
, (6)

where u 

t 
k = tr 

{ 

Y 

� θt+1 
k 

(
p 

t+1 
)� 

k 

} 

and Z 

t 
kl ={

( θt+1 ) � 

k θ
t+1 
l 

} {
( p 

t+1 ) � 

k p 

t+1 
l 

}
for k , l = 1, 2, ···, K . 

Mathematical details for finding the auxiliary functions and
the update steps can be found in Supplementary Material 
Section B . The pseudo-code of the MU algorithm is shown
in Algorithm 1. 
The MU algorithm has two advantages (under the assump- 
tions discussed in Supplementary Material Section A ). First,
�t , P t , and s t remain non-negative throughout all iterations 
if their initial values are non-negative. It is recommended that 
�0 is set to satisfy R 1 = 0, so any zero in the known partial 
signature matrix will remain zero. Second, the MU algorithm 

can be shown to achieve numerical convergence. If we enforce 
diag ( s t ) = I K and set α1 = α2 = β = 0, our MU algorithm is 
reduced to that of [ 22 ] for the canonical NMF. Due to the 
non-linearity of the objective function Equation ( 2 ), it is not 
guaranteed that a global minimizer can be produced. Follow- 
ing the precedence of other NMF-based deconvolution soft- 
ware, we recommend restarting the MU algorithm multiple 
times and choosing the run with the smallest Frobenius norm 

of the residuals on the estimated bulk expression [ 25 , 26 ]. We 
set 10 restarts as the default in our implementation. 

We now describe the default initialization procedure of 
ARTdeConv. First, the first K 0 columns of �0 were used as 
�∗

K 0 
to satisfy R 1 = 0. Each initial value in the last column θ0 

jK 

is generated independently by θ0 
jK ∼ | N( ̄y j , ˆ σ 2 

j ) | , where ȳ j and 

ˆ σ 2 
j are the mean and variance of the bulk expression values 

for gene j across all n samples. This differs from the proce- 
dure of SECRET [ 16 ], which initiates θ0 

jK = 0 . This is because 
the MU algorithm would produce θ t 

jK = 0 for any t = 1, 2,
…, T following this initiation. Then, for each cell type k of 
sample i , p 

0 
ki is generated from a N ( m k , 0.1) distribution. Af- 

ter this, negative entries in P 0 are corrected to 0.01. Lastly, s 0 

is initialized by solving 

s 0 = argmin 

s ∈ R K 
1 

2 

‖ Y 

∗ − �0 diag ( s ) P 0 ‖ 2 F . 

Negative values in s 0 will be replaced by the mean of positive 
values. 

Tuning parameter selection 

A grid search using a B -fold cross-validation (CV) is designed 

for selecting tuning parameters. Since R 2 is designed to make 
the objective function in Equation ( 2 ) strictly convex, α2 is 
advised to be fixed at a minuscule value. In the implementation 

of ARTdeConv, α2 = 10 

−12 is the default value. 
To begin, Y is randomly divided into B different folds, each 

containing 1 / B columns of Y . Two grids A 1 , B ⊂ R ++ 

con- 
taining respective candidates values for α1 and β are declared.
Next, for one α1 ∈ A 1 , one β ∈ B and a fold b ∈ {1, 2, …, B },
the columns in the fold are held out as the test set Y 

(b) 
test . The 

rest of the columns in Y are used as the training set Y 

(b) 
train , upon 

which an ARTdeConv solution ( ̃  �
(b) 

, ̃  s (b) , ˜ P 
(b) 

) is obtained. 
Then, since it is assumed that n samples should share the 

same � and s in Equation ( 1 ), the estimated proportions ˆ P 
(b) 

on the test set Y 

(b) 
test is obtained by 

ˆ P 
(b) = argmin 

P ∈ R K×n/B 
+ 

‖ Y 

(b) 
test − ˜ �

(b) 
diag ( ̃ s ) (b) P ‖ 2 F . 

Computationally, this is accomplished by solving a non- 
negative least square problem using the R package nnls . The 
CV error given α1 and β is 

Err ( α1 , β ) = 

1 

B 

B ∑ 

b=1 

‖ Y 

(b) 
test − ˜ �

(b) 
diag ( ̃ s ) (b) ˆ P 

(b) ‖ 2 F . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
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inally, we select the best tuning parameters α∗
1 and β* that

inimize Err( α1 , β). We offer some additional discussion on
he CV steps in Supplementary Material Section D . Moreover,
n order to facilitate effective regularization and tuning pa-
ameter selection, it is important to have correct reference pa-
ameters set up. We shall discuss this further in Section 3.1. 

onvergence analysis 

n this section, we prove the numerical convergence of Algo-
ithm 1. The main result depends on two reasonable assump-
ions in Supplementary Material Section A . Consequently, the
ollowing theorem holds for Algorithm 1 for solving the prob-
em in Equation ( 3 ). 

heorem 1 (Convergence of Algorithm 1 to a Sta-
ionary Point). Under the technical assumptions listed
n Supplementary Material Section A , the sequence
 ( �t , s t , P t ) } ∞ 

t=1 in Algorithm 1 converges to a stationary
oint of f ( �, s , P ) . 

The proof of Theorem 1 relies on showing that it is a
pecial case of the block successive upper-bound minimiza-
ion (BSUM) algorithm given in [ 27 ]. Thus, the convergence
s guaranteed by related BSUM theories. Doing so involved
roving that the sub-level set X 

0 = { ( �, s , P ) : f ( �, s , P ) ≤
f ( �0 , s 0 , P 0 ) } is compact, and the objective function in Equa-
ion ( 3 ) is coercive, as well as demonstrating the MM prop-
rties and strong convexity of the auxiliary functions used to
erive the update steps in Algorithm 1. Details on the defini-
ions of coercive functions and MM properties, as well as the
roof of Theorem 1 are relegated to Supplementary Material 
ection C . 

esults 

econvolution performance benchmarks on 

seudo-bulk samples 

o assess the deconvolution performance of ARTdeConv in
omparison to alternative methods, we conducted bench-
arking simulation studies by evaluating it against two

emi-reference-based methods: EPIC and SECRET, and three
eference-free methods: NMF [ 25 ], debCAM [ 11 ], and LIN-
EED [ 10 ]. We considered the NMF application here semi-
upervised and called it “Semi-NMF” due to the prior knowl-
dge on �, which was used as the initial values for the ba-
is matrix in NMF. BayICE and quanTIseq were not included
ue to the incompatibility of their inputs with the simulation
etup. 

In the first experiments, we generated a set of pseudo-bulk
xpression matrices using methodologies similar to those out-
ined in previous studies [ 2 ] by the following formula 

Y 

∗ = �∗diag ( s ∗) P ∗ + ε. (7)

ere, simulated cellular gene expression for K = 5 hypotheti-
al cell types, CT1–CT5, were constructed with assumed prior
nowledge on K 0 = 4 of them (CT1–CT4). We also directly
imulated the true signature matrix �∗, instead of using ag-
regated purified bulk data or single-cell data, mimicking the
ommon practice of using pre-constructed signature matrices
n deconvolution applications [ 3 , 28 ]. 

In total, n = 200 samples were simulated on P ∗. To investi-
ate the effects of the true relative abundance of CT5 in bulk
tissue samples on deconvolution results, three classes of P ∗

were generated, representing when CT5 was rare, uniform,
and extra compared to other cell types in the tissue. Reference
medians ( m 1 , …, m 5 ) and ranges ( r 1 , …, r 5 ) were obtained
directly from each row of P ∗. 

The expression values in the true signature matrix �∗ were
simulated row-by-row (i.e. gene-by-gene), controlled by a pa-
rameter γ, which dictated how cell-type-specific each gene
was on average. Each simulated gene was more likely to be
cell-type-specific when γ = 1 compared to when γ = 0. The
expression of M = 2000 genes was first created in a matrix
�∗

full . Then, from these genes, a subset of m = 1000 highly
cell-type-specific genes called marker genes were selected for
ARTdeConv, Semi-NMF, EPIC, and SECRET. In addition, s ∗

(including s ∗5 ) was given to EPIC as for adjusting the mRNA
amount per cell type. The method for the selection is described
in details in Supplementary Material Section E.2 . The expres-
sion of those selected genes was stored in �∗. The matrix �∗

K 0 
consisting of the first four columns of �∗ was used as the par-
tial signature matrix for ARTdeConv, EPIC, and SECRET, and
the initial value in the basis matrix for Semi-NMF. Each gene
was given the same unit weight in EPIC and SECRET dur-
ing simulation, for all of the simulated gene expression were
derived from the identical generative process. On the other
hand, debCAM and LINSEED searched for marker genes dif-
ferently from �∗

full by looking for simplicial vertices of the
vector space spanned by normalized bulk gene expression
[ 10 , 11 ]. 

The matrix of errors ε was first generated for all of the
M = 2000 simulated genes. Beginning with ( �∗

full , s 
∗, P ∗) ,

the error-free full bulk expression matrix was calculated as
�∗

full diag ( s ∗) P ∗. The relative strength of the errors (noises)
to the mean expression of genes (signals) was controlled by
another parameter σ. Two levels of noises with σ = 0.1 or
10 (low versus high) were introduced to evaluate the ro-
bustness of the methods to added noises. The final bulk ex-
pression matrix of all simulated genes was calculated using
 

∗
full = �∗

full diag ( s ∗) P ∗ + ε. From this, a sub-matrix Y 

∗ cor-
responding to the genes in �∗ was selected. A detailed de-
scription of the probability distributions and their parame-
ters in the generation of �∗, s ∗, P ∗, and ε can be found in
Supplementary Material Section E.1 . 

With necessary parts generated, 100 simulations were con-
ducted for each combination of γ, σ, and CT-5 abundance
class, where the deconvolution performance of all bench-
marked methods was reported. The tuning grid and algorithm
parameters for ARTdeConv are described in Supplementary 
Material Section E.3 . Due to a lack of identifiability, estimated
proportions from Semi-NMF, debCAM, and LINSEED were
manually matched to different cell types, whose details are rel-
egated to Supplementary Material Section E.4 . 

Sometimes, the assumptions of ARTdeConv can be chal-
lenged in practice. While the above setup in Equation ( 7 ) is in
line with the model assumption in Equation ( 1 ) and is popular
among previous studies on testing the reference-based meth-
ods [ 2 , 3 ], recent findings suggest that the derived signature
matrix may also come with non-negligible errors from the
true underlying matrix [ 29 , 30 ]. To assess the robustness of
our model assumption under a combination of errors in the
signature matrix and the bulk matrix, we conducted a sec-
ond series of experiments, where the observed partial signa-
ture matrix �◦

K 0 
was generated in the same fashion as that of

the first experiments. The true partial signature matrix �∗
K 
0 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
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was perturbed from �◦
K 0 

with an error term, whose mean
and variance were related and controlled by a single posi-
tive parameter η. The larger the η, the more inaccurate the
observed signature matrix is from the underlying true signa-
ture matrix. The pseudo-bulk Y 

∗ was then calculated using
Equation ( 7 ). In the simulations, we considered η = 1, 5, 10,
100, 200 together with σ = 0.1, 10 to investigate the decon-
volution performance of the above-mentioned methods un-
der various degrees of errors stemming from the signature
matrix acquisition and the bulk data. The parameter γ was
fixed at 1, for many signature matrices with highly cell-type-
specific marker genes could be found in practice [ 2 , 31 ]. Other
simulation setups were kept the same as in the first experi-
ments. Details on generating �◦

K 0 
and �∗

K 0 
can also be found

in Supplementary Material Section E.1 . 
Another possible deviation from the assumptions for ART-

deConv comes from inaccurate reference cell type propor-
tions, which can result in biased m and r . As experiments mea-
suring proportions of cell subsets grew abundant and more
specific to tissue disease scenarios, it has become unlikely that
the relative abundances of the K known cell types would be
misrepresented with prior knowledge, which in turn would
misguide ARTdeConv (i.e. a typically abundant cell type in a
tissue would unlikely be measured as a rare cell type in prior
experiments unless in extreme cases; passing such hugely in-
accurate reference parameters to ARTdeConv would certainly
bias the results) [ 3 , 7 ]. Rather, the most likely sources of uncer-
tainty are the absolute proportions of these K cell types and
that of the unknown “super cell type” in a new tissue sample
[ 32 ]. We investigated the impact of this uncertainty in refer-
ence parameters by assuming the relative proportions of the
K known cell types were correct, but their absolute propor-
tions and that of the ( K + 1)-th cell type were not. To do so,
we first generated all parts in Equation ( 7 ) as described above
when �∗ was accurate. Then, we obtained the true medians
( m 1 , …, m 5 ) and ranges ( r 1 , …, r 5 ) from each row of P ∗. Next,
we designated a parameter ξ ∈ (0, 1) to denote the size of de-
viation from the true medians and ranges. For CT1–CT4, we
let their observed medians and ranges to be shrunken from
the truths by ξ and those of CT5 to be relatively inflated. The
new observed m 

∗ = (m 

∗
1 , . . . , m 

∗
5 ) and r ∗ = (r ∗1 , . . . , r 

∗
5 ) were

passed to ARTdeConv during the simulations in place of the
true reference medians and ranges. We considered ξ = 0.05,
0.1, 0.2, 0.35, 0.5 in our simulations. Obviously, the larger the
ξ, the more our information about the absolute abundances
of CT1–CT5 was different from the truths. We defer the exact
details of the setup of as well as some light discussion on these
simulation to Supplementary Material Section E.1 . 

Performance metrics for evaluating deconvolution re-
sults included the following: (a) 1 

K 

∑ K 
l=1 CCC ( p 

∗� 

l , ˆ p 

� 

l ) ,

(b) 1 
5 n 

∑ n 
i =1 

∑ 5 
k =1 | p 

∗
ki − ˆ p ki | , (c) CCC ( p 

∗� 

5 , ˆ p 

� 

5 ) , and (d)
1 
n 

∑ n 
i =1 | p 

∗
5 i − ˆ p 5 i | , where CCC denotes the concordance cor-

relation coefficient (CCC) [ 33 , 34 ] between two vectors. An
advantage of CCC over Pearson’s correlation is that CCC di-
rectly measures the agreement between two sets of values by
penalizing deviations from the 45-degree line in a scatterplot.
Among the four metrics, (a) and (b) delineated the overall de-
convolution accuracy, while (c) and (d) described the decon-
volution accuracy for CT5, the missing cell type. 

Overall, when the assumptions are satisfied, ARTdeConv
demonstrated superior performance compared to other semi-
reference-based and reference-free methods in accurately re-
covering cell-type proportions, irrespective of the cell-type 
specificity of signature genes, the level of additive noise, and 

the relative abundance of the missing cell type compared to 

other cell types (Figs 2 A and 3 A). Notably, ARTdeConv also 

exhibited robust performance in estimating the proportions 
of CT5, especially when CT5 was relatively prevalent in the 
pseudo-bulk samples under high noise conditions, where other 
methods, except debCAM, showed reduced precision (Figs 2 B 

and 3 B). 
Among the semi-reference-based methods, EPIC achieved 

high overall accuracy when CT5 was relatively rare in the 
pseudo-bulk samples. However, its performance in estimat- 
ing the proportion of CT5 alone was surpassed by SECRET 

(Fig. 2 ). While the overall performance of EPIC was compa- 
rable to that of SECRET when CT5 had similar abundance to 

other cell types, EPIC’s accuracy diminished when CT5 was 
relatively common among the pseudo-bulks. This is consis- 
tent with previous findings that EPIC tends to underestimate 
the proportions of cell types not characterized in the refer- 
ence [ 14 ]. Although SECRET showed higher accuracy than 

EPIC in scenarios where CT5 was common, its overall perfor- 
mance remained inferior to ARTdeConv and did not signifi- 
cantly enhance the accuracy of CT5 estimates over EPIC, ex- 
cept when CT5 was relatively rare, where it performed slightly 
better than ARTdeConv (Figs 2 and 3 ). 

Among the reference-free methods, debCAM demonstrated 

accuracy that exceeded those of semi-reference-based meth- 
ods when CT5 was relatively common (Figs 2 and 3 ). As 
expected, debCAM’s performance improved with highly cell- 
type-specific signature genes ( γ = 1). Conversely, Semi-NMF 

performed well when CT5 had similar abundance to other cell 
types in the pseudo-bulk samples. LINSEED, known for its in- 
sensitivity to cell-type mRNA amounts, consistently showed 

the worst performance among the methods, except in a few 

specific cases. 
ARTdeConv also showed decent robustness when its as- 

sumptions were challenged, particularly when inaccurate sig- 
nature matrices were observed and applied. In our simula- 
tions, the overall performance of ARTdeConv did not de- 
crease as η grew from 1 to 200, except for under the uniform 

abundance of CT5 and when η reached 200 ( Supplementary 
Figs S1 and S2 ). In contrast, the other two semi-reference- 
based methods were somewhat prone to the misspecification 

of signature matrices, as we could observe a slight drop in per- 
formance as η grew in most scenarios (and a big drop in the 
case of EPIC when CT5 was relatively rare), although a perfor- 
mance gap between them and ARTdeConv still existed when 

η was small ( Supplementary Figs S1 and S2 ). Notice that the 
performance of debCAM, a reference-free method, was also 

affected when η grew. This was due to the loss in the cell- 
type-specificity of genes in �∗ as η increases in magnitude per 
our simulation setup. 

On the other hand, when the observed reference medians 
and ranges of relative proportions between CT1 and CT4 

were accurate but the absolute proportions of all five cell types 
became more inaccurate as ξ grew from 0.05 to 0.5, ART- 
deConv did suffer from a visible slide in performance. The 
slide was more severe when the true underlying proportions 
of CT5 were relatively small, but milder when true CT5 pro- 
portions were relatively large. In all cases, the loss in perfor- 
mance was not as pronounced when ξ < 0.1 ( Supplementary 
Fig. S3 ). These results called for efforts in finding references 
that are accurate in the absolute scale, although more room for 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
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Figure 2. ( A ) Mean CCC by cell type between true proportions and estimated cell-type proportions from simulated pseudo-bulks. ( B ) CCC between 
estimated and true proportions of CT5 in the pseudo-bulks for the benchmark simulations. Each column represents a case of the relative abundance of 
CT5 against other cell types in the simulated pseudo-bulks. Each row represents the level of noises controlled by σ. Colors represent different levels of 
cell-t ype specificit y of genes in �∗ regulated by different γ. 
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Figure 3. ( A ) Mean absolute deviation (MAD) between true proportions and estimated cell-type proportions from simulated pseudo-bulks. ( B ) MAD 

between estimated and true proportions of CT5 in the pseudo-bulks for the benchmark simulations. Each column represents a case of the relative 
abundance of CT5 against other cell types in the simulated pseudo-bulks. Each row represents the level of noises controlled by σ. Colors represent 
different le v els of cell-t ype specificit y of genes in �∗ regulated by different γ. 
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eviation from the accurate proportions is permitted when the
elative proportion of the super cell type is large. 

In conclusion, ARTdeConv showed superior performance
o its semi-reference-based peers and reference-free methods
n our simulations. ARTdeConv also demonstrated the ability
o cope with deviation of the observed signature matrix from
he true underlying �∗, but would decrease in performance
f there are sizable inaccuracies in the reference absolute pro-
ortions. We further remark that, in the simulations described
bove, �∗ included knowledge of marker genes for CT5. In
ractice, obtaining the marker genes of cell types without ref-
rence expression is, while not as straightforward, achievable
hrough methods such as in [ 35 ] and [ 36 ]. Furthermore, even
ithout well-defined marker genes for those cell types, decon-
olution by ARTdeConv is still completely feasible, for in-
tance, the analyses in Sections 3.2 and 3.3. 

RTdeConv accurately estimates cell type 

roportions of PBMC from bulk gene expression in 

 human influenza vaccine study 

o benchmark the performance of ARTdeConv on real-world
ata and exemplify its application, we utilized a dataset
ourced from [ 37 ]. In this study, blood samples were ob-
ained from healthy volunteer subjects who were administered
 trivalent inactivated influenza vaccine (TIV). Both bulk pe-
ipheral blood mononuclear cell (PBMC) samples and sorted
BMC cell lines from two enrolled subjects (“HD30” and
HD31”) vaccinated with a single dose of 2011 and 2012 sea-
onal TIV were collected at four different time points: before
accination (Day 0), and on Day 1, 3, and 7 post-vaccination.

Deconvolution was performed on eight bulk PBMC sam-
les whose gene expression was measured in transcript per
illion (TPM). Gene expression in TPM from the sorted
BMC cell lines of the two subjects on Day 0 was used to
onstruct the partial signature matrix. The study character-
zed four distinct PBMC cell types: T cells, B cells, natu-
al killer (NK) cells, and monocytes. Additionally, there were
ther unspecified cell types collectively termed into one su-
er cell type as “others,” which could include, for instance,
arious types of dendritic cells and low-density neutrophils
 28 , 38 ]. Detailed data processing steps could be referred to
t Supplementary Material Section F.1 . 

The means and ranges of the cell types in question were
btained through the reference values in [ 38 ]. For each cell
ype, the proportion means were calculated by taking the av-
rage of the upper and lower bounds of the reference values,
hile the ranges were calculated by taking the difference be-

ween the two bounds. For the “others” cell type, the mean
as calculated by subtracting the means of all other cell types

rom one, and the range was the difference between the up-
er and lower possible proportions of the other cell types.
he exact values of the means and ranges are reported in
upplementary Table S1 (details of the calculation are given in
upplementary Material Section F.2 ). The vector of ranges was
urther normalized such that it has unit L 2 norm before de-
onvolution. Additional details regarding the tuning grid and
lgorithm parameter setup of this analysis can be found at
upplementary Material Section F.3 . 

The PBMC percentages on Day 0 were measured by flow
ytometry [ 12 , 37 ], which were used as the ground truths for
valuating the performance of AR TdeConv. Indeed, AR Tde-
onv achieved a notable degree of precision in estimating cell-
type proportions on Day 0 as compared to the flow cytometry
measurements (Fig. 4 A), achieving a CCC of 0.974 (Pearson’s
correlation = 0.974, MAD = 0.036). This performance is on
par with that of EPIC and surpassed those of CIBER SOR T
etc. as reported by [ 12 ]. 

We also estimated proportions of PBMC cell types across
all time points utilizing the same partial signature matrix
(Fig. 4 C). On HD30, a decline of T cell abundances before Day
1 and an increase between Days 1 and 3 were observed, fol-
lowed by a slight decline until Day 7. An increase of monocyte
abundances before and a decrease after Day 1 were also seen.
Both trends are consistent with the profile of a virus shedder of
the H1N1 virus in [ 39 ] with a small time shift. The time shift
could be attributed to differences in viral strains and strengths
between [ 39 ] and [ 37 ], as the former is a study on real H1N1
patients. The lack of notable changes in the cell-type propor-
tions of HD31 resembles more to the profile of a non-virus
shedder. More information on the viral progression of these
two subjects is needed to confirm these observations. 

We wish to remark on the utility of adjusting for cell-type
mRNA amounts in this case. It is known that normalization by
TPM loses such information, which was corrected by ARTde-
Conv via diag ( ̂ s ) . When re-running ARTdeConv on the same
samples with diag ( s ) forced to be the identity matrix, we ob-
served less accurate estimates of proportions (Fig. 4 B), corrob-
orating the need for the adjsuetment in this scenario. 

ARTdeConv reveals changes in key PBMC cell type 

proportion in COVID-19 patients 

We performed an extensive deconvolution analysis on PBMC
bulk samples gathered from 17 healthy controls and 14 pa-
tients with COVID-19 diagnosis recruited for a systemic im-
munity assessment against COVID-19 infections in humans
by [ 40 ]. The study also classified the COVID-19 severity
of infected patients. Patients in the study were designated
with three levels of severity: moderate, severe, and intensity
care unit-hospitalized (ICU). Details regarding the patient re-
cruitment and the classification of COVID-19 severity are in
Supplementary Material Section G.1 . 

Bulk RNA-seq data downloaded using NCBI GEO acces-
sion number GSE152418 were utilized to perform deconvo-
lution for estimating the proportions of the four major PBMC
cell types: T cell, B cell, NK cell, and monocyte. The authors
also included scRNA-seq data on separate independent blood
samples from five healthy controls and seven COVID-19 pa-
tients. Of these, all healthy and six COVID-19 infected sub-
jects had matching bulk and single-cell samples that passed
quality control. The single-cell data were downloaded using
GEO accession GSE155673 and were used to construct the
partial signature matrix. Complete descriptions of the bulk
and single-cell data, their quality control and pre-processing,
as well as the creation of gene signature matrices can be found
in Supplementary Material Section G.1 . 

Deconvolution was performed separately on samples from
healthy controls and COVID-19 patients using bulk and sig-
nature matrices that matched the disease status. For each set of
samples, we assumed knowledge on the reference expression
of the four major PBMC cell types: T cell, B cell, NK cell, and
monocyte. All other cell types’ reference expression were as-
sumed unkown and they were grouped into the super cell type
“others.” Since obtaining the reference means and ranges of
the cell types separately for healthy and diseased populations

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
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Figure 4. ( A ) Estimated PBMC proportions by ARTdeConv versus true proportions measured by flow cytometry for two PBMC samples collected on 
Day 0 with flexible mRNA amount parameters. ( B ) Estimated PBMC proportions by ARTdeConv versus true proportions measured by flow cytometry for 
two PBMC samples collected on Day 0 with mRNA amount parameters coerced to 1 for all cell types. ( C ) Estimated PBMC proportions by ARTdeConv 
on all of the eight PBMC samples from two subjects across time points with flexible mRNA amount parameters. 
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proved infeasible, we opted to use the same set of numbers
in Supplementary Table S1 for running ARTdeConv. Detailed
descriptions of the tuning grid and other ARTdeConv param-
eters can be found in Supplementary Material Section G.2 . 

The complete results of deconvolved cell type proportions
from ARTdeConv are shown in Fig. 5 A (boxplots) as well as
Supplementary Figs S4 and S5 (bar charts). We observed that
in COVID-19 samples, the proportions of T cells were notably
lower than in the healthy control samples (Fig. 5 A). Among
the diseased samples, T cell depletion was found in several
severe and ICU samples (Fig. 5 B). This could be explained
by T lymphopenia, commonly observed on blood samples of
COVID-19 patients with severe symptoms but less frequently
on those from patients with mild to moderate symptoms, as a
result of the immunological responses of T cells to COVID-19
[ 41 ]. It was also observed that severe or ICU samples exhib-
ited higher monocyte abundances in PBMC (Fig. 5 C). Similar
trends have also been observed by [ 42 ] in blood samples of
patients with severe COVID-19. 

Arunachalam et al. used the abundances of cells from the
single-cell samples as a surrogate measurement for true abun-
dances (except for dendritic cells, which were manually en-
riched in the single-cell samples) [ 40 ]. The relative decon-
volved abundances of T cells, B cells, NK cells, and monocytes
were then compared against the relative abundances of single
cells. ARTdeConv demonstrated satisfactory accuracy in de- 
convolving cell-type abundances (Fig. 5 D), achieving a CCC 

of 0.815 among healthy control samples (Pearson’s correla- 
tion = 0.860, MAD = 0.098) and 0.694 among COVID-19 

samples (Pearson’s correlation = 0.717, MAD = 0.103). 
While we observed a slightly lower deconovlution accu- 

racy among COVID-19 patients compared to healthy con- 
trols, the COVID-19 patients spanned several disease sever- 
ity classes and were under various duration of infection.
These factors might increase the variation of gene expres- 
sion, both at the cell-type and bulk levels, making decon- 
volution more challenging. The analysis also identified one 
outlier in healthy controls, S066 ( Supplementary Fig. S5 ).
Given that T cells are typically abundant in human PBMC 

samples, it was surprising that ARTdeConv did not detect 
any T cell in this sample, while attributing monocytes as 
the most abundant cell type. After further explorations in 

the expression of CD3 and CD14 genes, two of the ex- 
perimentally validated marker genes of T cells and classi- 
cal monocytes respectively [ 38 ], we discovered exception- 
ally low bulk CD3 expression ( Supplementary Fig. S6 ) and 

high CD14 expression ( Supplementary Fig. S7 ) in the sam- 
ple from S066, which were consistent with and gave reasons 
to the low detected T cell abundance by ARTdeConv in this 
sample. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf046#supplementary-data
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Figure 5. ( A ) B o x plots for estimated PBMC proportions by ARTdeConv in separate deconvolution analyses for healthy control and COVID-19-infected 
samples. ( B ) and ( C ) B o x plots for estimated T cell and monocyte proportions on COVID-19-infected samples of different se v erity. ( D ) Scatter plots for 
estimated PBMC proportions versus matching tissue PBMC proportions from independent single-cell studies from five healthy controls and six 
COVID-19-diagnosed subjects. 
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Discussion 

In this paper, we introduce ARTdeConv, an innovative decon-
volution approach. An important feature of ARTdeConv is its
adoption of a tri-factor model, which integrates the cell-type
mRNA amounts during the deconvolution process. As a semi-
reference-based method, ARTdeConv offers enhanced flexi-
bility compared to reference-based methods, as it accommo-
dates cell types whose reference gene expression is not known
by grouping them into one super cell type, while presenting
advantages over reference-free methods by incorporating the
partial signature matrix. Moreover, the method makes effec-
tive use of reference information on proportion means and
ranges derived from external studies. 

Additionally, we derive the MU algorithm for ARTdeConv
and present a theorem that establishes the convergence of this
algorithm to stationary points. This proof is derived by cast-
ing ARTdeConv’s algorithm as a special case of the BSUM
algorithm introduced by [ 27 ]. 

On simulated pseudo-bulks, we demonstrated the advan-
tages of ARTdeConv over other semi-reference-based meth-
ods. Notably, ARTdeConv performed better compared to
EPIC when the cell types without reference expression be-
came relatively abundant and had an overall edge against SE-
CRET and other well-known reference-free methods. We also
showed that ARTdeConv was robust to challenges to its as-
sumptions, particularly when inaccurate signature matrix or
reference parameters were applied. Moreover, both EPIC and
SECRET require manual re-normalization of the estimated
proportions by relatively precise cell-type mRNA amounts,
specifications that are not required for ARTdeConv. In prac-
tice, such precise amounts can be difficult to obtain when the
cell types with missing reference expression become numer-
ous. Compared to quanTIseq and BayICE, ARTdeConv can
flexibly utilize customized partial signature matrices, which
are common in deconvolution applications. To the best of our
knowledge, current semi-reference-based methods only take
in one cell type or super cell type whose reference expression
is unknown. A direction for future research in methodology is
developing novel semi-reference-based methods that can dis-
tinguish multiple cell types with missing reference, i.e. truly
allowing K > K 0 + 1. 

An argument can be made that obtaining precise refer-
ence information on proportions demands additional efforts
in practice. However, the advantages of integrating this in-
formation are substantial. Without it, the task of associat-
ing estimated proportions with their respective cell types can
prove challenging. First, the estimated proportions of the cell
types without reference expression could be biased towards
zero, as in the case of semi-reference-based methods like EPIC.
Secondly, for all reference-free methods, we had to perform
manual matching of results (as demonstrated in Section 3.1),
which becomes infeasible if multiple cell types lack reference
expression. 

On the algorithmic side, ARTdeConv provides a guarantee
of convergence, closing a gap in the theoretical characteriza-
tion of deconvolution methods in previous studies. Of note,
ARTdeConv does not assure that the estimated proportions
are globally optimal. This challenge is not particular to ART-
deConv and is shared by other deconvolution methods with
iterative optimization procedures such as SECRET, NMF, and
debCAM. To counter this, we recommend employing marker
genes for the deconvolution process and considering multiple
restarts of ARTdeConv. While methods like debCAM miti-
gate this issue by using a different mathematical framework,
their assumptions are usually breached in practice, and their 
performance diminishes as a result. 

We demonstrated the application of ARTdeConv to two 

different sets of real data. While the data from [ 37 ] had lim- 
ited sample size, we validated ARTdeConv’s performance us- 
ing the data from the more extensive study of [ 40 ]. We remark 

that both sets of data offer an edge where both the bulk sam- 
ples and the independent samples for making partial signa- 
ture matrices were collected from independent samples con- 
currently, minimizing the influence of most technical artifacts.
Although we have illustrated the robustness of ARTdeConv 
in simulations, in parctical situations where bulk and cell-type 
reference expression are derived from different studies, addi- 
tional caution against those technical artifacts should be ex- 
ercised during data pre-processing prior to deconvolution. 
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