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A. Technical Assumptions

Before presenting the main results, we state the technical assumptions.

Assumption 1 (Initial conditions). (i) ∀k, ∃jk ∈ {1, . . . ,m} such that θ0jkk > 0; (ii) ∀k,
∃ik ∈ {1, . . . , n} such that p0kik > 0. (iii) ∀i′ ∈ {i1, i2, . . . , iK}, ∀j, Yji′ > 0; ∀j ′ ∈
{j1, j2, . . . , jK}, ∀i, Yj′ i > 0.

Assumption 2 (Boundedness). (i) For any 1 ≤ j ≤ m and 1 ≤ i ≤ n, Yji ≤ MY < ∞.
(ii) For any 1 ≤ j ≤ m and 1 ≤ k ≤ K0, Θ0jk ≤ MΘ < ∞.

These assumptions are reasonable in practice. For every cell type with established
reference expression, it is safe to assume that there exist some genes that display non-zero
cell-type-specific expression, thereby fulfilling Assumption 1(i). For cell types lacking
reference expression, an initial value in Θ0 can be straightforwardly set to a positive value,
thereby also satisfying the same assumption. Assumption 1(ii) is automatically satisfied
due to how P 0 is initialized in Algorithm 1. Assumption 1(iii) plays a pivotal role in
ensuring that positive initialized values remain positive throughout the iterative process
(see Supplementary Material Section B for details). This assumption is easy to verify and
holds true unless the bulk expression matrix is excessively sparse, which is uncommon in
practice. Assumption 2 is a mild assumption on upper bounds of gene expression.

B. The MU Steps

B.1. A Preliminary Lemma

Similar to [1], f(Θ, s,P ) is minimized using block-wise auxiliary functions that are
quadratic over-estimators, which then leads to the MU steps in (4), (5), and (6). The claims
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that these updates will keep the positive initialized values positive will be investigated at
the end of this section. An auxiliary function is defined next.

Definition 1 (Auxiliary function). Given a vector space V and v,v′ ∈ V , a function
g(v|v′) : V × V 7→ R is an auxiliary function for the function f(v) : V 7→ R at v′ if the
following conditions are satisfied:

g(v|v′) ≥ f(v′),∀v ∈ V, and g(v′|v′) = f(v′).

As we shall see, the vector blocks in the auxiliary functions would be each row of Θ,
each column of P , and s. To find the specific auxiliary functions for f(Θ, s,P ), a slightly
modified form of a technical lemma given by [2] is needed and stated next. Its proof is
also given in the same paper and thus omitted.

Lemma 1. Given a positive semi-definite matrix Q ∈ Rb×b
+ and w ∈ Rb

+, let I ⊆ {1, . . . , b}
be a set of indices such that wk > 0 for any k ∈ I, QII ∈ R|I|×|I|

++ , and wI ∈ R|I|
++ be the

sub-matrix of Q and the sub-vector of w with indices in I, where |I| denotes the cardinality
of I. Then,

diag
{
(QIIwI)

wI

}
−QII =


(QIIwI)1

wI1

. . .
(QIIwI)|I|

wI|I|

−QII

is always positive semi-definite.

With Lemma 1, the auxiliary functions and multiplicative update (MU) steps are
ready to be derived.

B.2. Derivations of The MU Steps

In addition to those in Section 2.1, we introduce two additional notation: for two square
matrices of the same dimension, we write A ≻ B and A ⪰ B if A−B is positive-definite
and positive-semidefinite, respectively.

The auxiliary function and update step for each row θ⊤
j is derived and then combined

for j = 1, . . . ,m into the form of (4). For simplicity in notations, the index j is omitted in
subscripts. The iteration number t is also omitted for s and P since both are treated as
fixed. That is, we denote y⊤

j as y⊤, θ⊤
j as θ⊤, and δ⊤

j as δ. We also define δc
j = J − δj

for all j. Thus, for the j-th row of Θ, we can define the sub-problem of f(Θ, s,P ) as

argmin
θ∈RK

+

1

2mn
∥y⊤ − θ⊤diag(s)P ∥22 +

α1

2
∥δ⊤ ⊙ (θ⊤ − θ⊤

0 )∥22 +
α2

2
∥δc⊤ ⊙ θ⊤∥22 + C1(s,P )

(S.1)

=argmin
θ∈RK

+

1

2mn
∥y⊤ − P⊤diag(s)θ∥22 +

α1

2
∥δ ⊙ (θ − θ0)∥22 +

α2

2
∥δc ⊙ θ∥22 + C1(s,P ),

(S.2)

where diag(s) and P are treated as fixed and C1(s,P ) is a constant with respect to θ.
We call the function in (S.2) fθ(θ). (S.2) is derived from (S.1) by transposing. Now, to
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find the auxiliary function hθ(θ|θt), by performing a second-order Taylor series expansion
on fθ(θ) at θ = θt, we have

fθ(θ) = fθ(θ
t) +∇θfθ(θ

t)⊤(θ − θt) +
1

2
(θ − θt)⊤∇2

θfθ(θ
t)(θ − θt).

Next, letting V (δ) = diag(δ) and V c(δc) = diag(δc), it can be observed that δ ⊙ θ =
V θ and δc ⊙ θ = V cθ. Also, V + V c = I. The first and second derivatives of fθ(θ) are
thus:

∇θfθ(θ) =
1

mn
diag(s)P (P⊤diag(s)θ − y⊤) + α1V (θ − θ0) + α2V

cθ,

and
∇2

θfθ(θ) =
1

mn
diag(s)PP⊤diag(s) + α1V + α2V

c.

It can be guaranteed ∇2
θfθ(θ) ≻ 0 given α1, α2 > 0, as ∇2

θfθ(θ) ⪰ α1V + α2V
c ⪰

min(α1, α2)I ≻ 0. Then, define d(θt) = diag(θt)−1∇2
θfθ(θ

t)θt, and D(θt) = diag(d(θt)).
Lemma 1 implies that, on coordinates that correspond to the positive elements of θ,
D(θt)−∇2

θfθ(θ
t) ⪰ 0. Define RK1

++, where K1 ≤ K, as the open half space that contains
this positive subset of θ. For simplification, we use the same notations for the full vectors
and matrices on those positive coordinates. As mentioned in Section 2.2, we shall see that
once a coordinate of θ reaches zero, it stays zero thereafter, which justifies the focus on
these positive coordinates. Next, define

hθ(θ|θt) = fθ(θ
t) +∇θfθ(θ

t)⊤(θ − θt) +
1

2
(θ − θt)⊤D(θt)(θ − θt), (S.3)

which is an auxiliary function of (S.2) (thus of f(Θ, s,P ) when we combine all sub-
problems together for j = 1, . . .m). To demonstrate that it satisfies Definition 1, simply
see that

hθ(θ|θt)− fθ(θ) =
1

2
(θ − θt)⊤(D(θt)−∇2

θfθ(θ
t))(θ − θt) ≥ 0, ∀θ,θt ∈ RK1

++

and due to Lemma 1 and that hθ(θ
t|θt)− fθ(θ

t) = 0, ∀θt ∈ RK1
++. To derive the MU step

from this auxiliary function, we find θt+1 such that

θt+1 = argmin
θ∈RK1

+

hθ(θ|θt). (S.4)

To guarantee the existence of a solution for (S.4), the feasible set of θ is a closed space
that includes 0. Since D(θt) − ∇2

θfθ(θ
t) ⪰ 0 and ∇2

θfθ(θ
t) ≻ 0 by the assumptions,

D(θt) ≻ 0, which implies that (S.3) is strictly convex. Thus, (S.3) has a global minimizer
in the closed half space RK1

+ . By the optimality condition, if a feasible θ̃ ∈ RK1
+ satisfies

∇θhθ(θ̃|θt) = 0, then θ̃ minimizes (S.3) globally and θt+1 = θ̃ becasue of (S.4). Thus, we
solve

∇θhθ(θ
t+1|θt) = ∇θfθ(θ

t) +D(θt)(θt+1 − θt) = 0. (S.5)

Because D(θt) is diagonal, for each k ∈ 1, . . . , K1, (S.5) implies

θt+1
k = θtk −

∇θfθ(θ
t)k

D(θt)k
. (S.6)
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We further simplify the notations by letting

∇θfθ(θ) =
1

mn
diag(s)P (P⊤diag(s)θ − y⊤) + α1V (θ − θ0) + α2V

cθ

=

(
1

mn
diag(s)PP⊤diag(s) + α1V + α2V

c

)
θ

−
(

1

mn
diag(s)PP⊤diag(s)y⊤ + α1V θ0

)
= Aθ − b.

It follows immediately that ∇2
θfθ(θ) = A. Plugging in the values of ∇θfθ(θ

t)k and D(θt)k
to (S.6), we have

θt+1
k = θtk −

(Aθt − b)k
1
θtk
(Aθt)k

= θtk −
(Aθt)k
(Aθt)k

θtk +
bk

(Aθt)k
θtk

=
bk

(Aθt)k
θtk

=

(
1

mn
diag(s)Py⊤ + α1V θ0

)
k[(

1
mn

diag(s)PP⊤diag(s) + α1V + α2V c
)
θt
]
k

θtk

=

(
diag(s)Py⊤ +mnα1V θ0

)
k

[(diag(s)PP⊤diag(s) +mn(α1V + α2V c))θt]k
θtk. (S.7)

The multiplicative form of (S.7) guarantees that θt+1 is feasible. Therefore, θt+1 satisfies
(S.4).

It is straightforward to check that (S.7) also applies to zero coordinates of θt ({θtk :
θtk ∈ RK

+ \ RK1
++}), as zero coordinates remain zero after any multiplication. Therefore, it

is the unified update step for the entire θt ∈ RK
+ . Since it corresponds to the update for

the (j, k)-th element in Θ, combining all elements gives (4).
We remark that (S.6) reflects the block coordinate descent nature of the multiplicative

update in Θ, as observed by [4]. In fact, the update steps for P and diag(s) can be
written in similar fashions.

The update step for P in (5) can be similarly derived as that for Θ. We begin with
specifying the sub-problem for pi, i = 1, . . . , n, treating Θ and diag(s) as fixed and
omitting the subscripts and the iteration number (t for s and t+ 1 for Θ) for convenience
in notations:

argmin
p∈RK

+

fp(p) =
1

2mn
∥y −Θdiag(s)p∥22 +

β

2
ρ−1∥p−m∥22 +K2(Θ, s), (S.8)

where K2(Θ, s) only depends on Θ and s and is a constant with respect to P . Then, its
first and second derivatives with respect to p are

∇pfp(p) =

(
1

mn
diag(s)Θ⊤Θdiag(s) + βρ−1

)
p−

(
1

mn
diag(s)Θ⊤y + βρ−1m

)
= Cp− q, (S.9)
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and
∇2

pfp(p) =
1

mn
diag(s)Θ⊤Θdiag(s) + βρ−1 = C. (S.10)

To find the auxiliary function of (S.8), define d(pt) = diag(pt)−1∇2
pfp(p

t)pt, and D(pt) =
diag(d(pt)), and

hp(p|pt) = fp(p
t) +∇pfp(p

t)⊤(p− pt) +
1

2
(p− pt)⊤D(pt)(p− pt). (S.11)

On the K2 ≤ K positive coordinates in pt, (S.11) is the auxiliary function of (S.8) due to
Lemma 1. The verification is the same to that for hθ(θ|θt) and omitted here. Next, we
find pt+1 such that

pt+1 = argmin
p∈RK2

+

hp(p|pt).

This in turn corresponds to finding pt+1 such that

∇php(p
t+1|pt) = ∇pfp(p

t) +D(pt)(pt+1 − pt) = 0,

given that such a pt+1 is feasible. After some algebra, for any k = 1, . . . , K2,

pt+1
k =

qk
(Cpt)k

ptk

=

(
1

mn
diag(s)Θ⊤y + βρ−1m

)
k{(

1
mn

diag(s)Θ⊤Θdiag(s) + βρ−1
)
p
}
k

ptk

=

(
diag(s)Θ⊤y +mnβρ−1m

)
k

{(diag(s)Θ⊤Θdiag(s) +mnβρ−1)p}k
ptk, (S.12)

which produces a feasible pt+1. Moreover, (S.12) also applies to the zero coordinates in pt.
Since (S.12) corresponds to the update step for the (k, i)-th element for the P matrix,
combining all of these elements yields (5).

Deriving the updates step for diag(s) in (6) largely follows the same footsteps as for
Θ and P . To find a suitable sub-problem, we start from the following identity

Θdiag(s)P = Θdiag(s)P =
K∑
k=1

skθkp
⊤
k . (S.13)

Denoting Gk = θkp
⊤
k and only assuming s a variable, we transform the objective function
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in f(Θ, s,P ) with respect to s as follows

fs(s) =
1

2mn
∥Y −Θdiag(s)P ∥2F + C3(Θ,P ) (by rewriting f(Θ, s,P ))

=
1

2mn
∥Y −

K∑
k=1

skGk∥2F + C3(Θ,P ) (by (S.13))

∝ 1

2

{
K∑
k=1

s2ktr
(
G⊤

k Gk

)
− 2

K∑
k=1

sktr
(
G⊤

k Y
)
+
∑
k ̸=l

sksltr
(
G⊤

k Gl

)}
+ C ′

3(Θ,P )

(by expanding the squared Frobenius norm and dropping m,n)

=
1

2

{
K∑
k=1

s2ktr
(
G⊤

k Gk

)
+
∑
k ̸=l

sksltr
(
G⊤

k Gl

)}
−

K∑
k=1

sktr
(
G⊤

k Y
)
+ C ′

3(Θ,P )

(by rearranging the last step)

=
1

2
s⊤Zs− u⊤s+ C ′

3(Θ,P ), (S.14)

where Z ∈ RK×K
+ , Zij = tr

(
G⊤

i Gj

)
= tr

(
piθ

⊤
i θjp

⊤
j

)
, u ∈ RK

+ , and uk = tr
(
Y ⊤Gk

)
=

tr
(
Y ⊤θkp

⊤
k

)
. Both C3 and C ′

3 only depend on Θ and P , hence are constant with respect
to s. (S.14) is then our sub-problem for s. From (S.14), the first and second derivatives for
s are ∇sfs(s) = Zs− u, and ∇2

sfs(s) = Z. Again, define d(st) = diag(st)−1∇2
sfs(s

t)st,
D(st) = diag(d(st)), and

hs(s|st) = fs(s
t) +∇sfs(s

t)⊤(s− st) +
1

2
(s− st)⊤D(st)(s− st). (S.15)

(S.15) is an auxiliary function of f(Θ, s,P ) for s according to Lemma 1. Since s ∈ RK
++,

there is no need for sub-setting to positive coordinates. Thus, we obtain st+1 by finding a
feasible

st+1 = argmin
s∈RK

+

hs(s|st). (S.16)

We remark that this is a slight relaxation of the problem to update s, since it is originally
assumed that s ∈ RK

++. However, this allows us to obtain a guaranteed closed form global
minimizer for (S.16) in the closed half space RK

+ , and the resulting update satisfies is
feasible in RK

++ as long as not all values of θk or p⊤
k are 0 for any k = 1, . . . , K, which is

stated as Assumption 1(i) and 1(ii). (S.16) leads to solving

∇shs(s
t+1|st) = ∇sfs(s

t) +D(st)(st+1 − st) = 0,

from which we have
st+1
k =

uk

(Zst)k
stk. (S.17)

(S.17) corresponds to the update for the k-th coordinate in (6), which yields feasible st+1
k

under the assumptions, since Zij = tr
(
G⊤

i Gj

)
= (θ⊤

i θj)tr
(
pip

⊤
j

)
, and uk = tr

(
Y ⊤Gk

)
=

tr
(
Y ⊤θkp

⊤
k

)
. Moreover,

Zij = tr
(
piθ

⊤
i θjp

⊤
j

)
= (θ⊤

i θj)(p
⊤
j pi), (S.18)

and that

uk = tr
(
Y ⊤θkp

⊤
k

)
=

m∑
j=1

n∑
i=1

yjiθjkpki. (S.19)
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For the denominator in (S.17), we see that

(Zst)k =
K∑
l=1

Zkls
t
l ≥ Zkks

t
k = ∥θk∥22∥pk∥22stk > 0, (S.20)

where the last step is a result of (S.18) and the stability of updates based Assumption 1(i)
and 1(ii), which will be discussed in details below. As for the numerator of (S.17), taking
from the stability of updates due to Assumption 1(i) and 1(ii) and assuming θjkk > 0
and pkik > 0, by (S.19), we have

uk =
m∑
j=1

n∑
i=1

yjiθjkpki ≥ yjkikθjkkpkik > 0,

as long as yjkik > 0. Given Assumption 1(iii), we conclude that st+1 ∈ RK
++.

B.3. Stability of The Update Steps

To justify the claim that for any j and k, θt+1
jk > 0 whenever θtjk > 0 for t = 0, 1, 2, . . . ,

notice that the denominator of (S.7) is automatically positive whenever α1, α2 > 0. For
guaranteeing that its numerator is also positive, we want to show

(
diag(st)P ty⊤

j

)
k
= stk

n∑
i=1

ptkiyji ≥ stkp
t
kik

yjik > 0, (S.21)

where the index ik is defined as in Assumption 1(ii). By Assumption 1(iii), yjik > 0, and
stk > 0 as discussed above. Thus, (S.21) holds whenever ptkik > 0. Similarly, for proving
the claim that for any k and i, pt+1

ki > 0 whenever ptki > 0, notice that the denominator
for (S.12) is also positive whenever β > 0. To prove that its numerator is positive, we
need to show

(
diag(st)(Θt+1)⊤yi

)
k
= stk

m∑
j=1

θt+1
jk yji ≥ stkθ

t+1
jkk

yjki > 0, (S.22)

where jk is defined as in Assumption 1(i). (S.22) holds whenever θt+1
jkk

> 0.
Since by Assumption 1(ii) and Assumption 1(i), p0kik > 0 and θ0jkk > 0. Therefore, we

can show that ptkik > 0 and θt+1
jkk

> 0 for any t = 0, 1, 2, . . . by induction through (S.21)
and (S.22). Thus, the claims on the stability of updates hold.

C. Proof of Theorem 1

To prove Theorem 1, we leverage on the convergence properties of the block successive
upper-bound minimization (BSUM) algorithms proved by [3]. Namely, we can view
Algorithm 1 as a BSUM algorithm by counting a total of m + n + 1 separate blocks
which the algorithm minimizes successively: m for updating Θt, n for P t, and one for st.
To utilize such properties, we need to prove the following proposition, which states the
conditions on the update steps’ auxiliary functions for Algorithm 1 to formally qualify as
BSUM, which is translated from Assumption 2 of [3]:
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Proposition 1 (Algorithm 1 is BSUM). hθ(θj|θt
j), hp(pi|pt

i), and hs(s|st) satisfy the
following conditions for any j = 1, 2, . . . ,m and i = 1, 2, . . . , n: (1) hθj(θj|θt

j) ≥ fθ(θ
t
j);

hp(pi|pt
i) ≥ fp(p

t
i); hs(s|st) ≥ fs(s

t); (2) hθj (θj|θt
j), hp(pi|pt

i), and hs(s|st) are continous
on their domains; (3) Any directional derivative of hθj(θj|θt

j), hp(pi|pt
i), and hs(s|st)

within their domains are equal to the direactional derivative of fθ(θt
j), fp(pt

i), and fs(s
t)

respectively.

Proof. The proof is quite straightforward. (1) and (2) are direct from the construction of
the surrogate functions and Lemma 1, which also manifests the majorization-minimization
(MM) property [5] of each block’s update. (3) is seen by differentiating (S.3), (S.11),
and (S.15), which leads to ∇θjhθ(θ

t
j|θt

j) = ∇θjfθ(θ
t
j),∀j, ∇pi

hp(p
t
i|pt

i) = ∇pi
fp(p

t
i),∀i,

and ∇shs(s
t|st) = ∇sfs(s

t). Equal gradients automatically guarantee equal directional
derivatives, proving the proposition.

Now that Algorithm 1 is found to be BSUM, Theorem 1 can be proved directly by the
results of Theorem 2(b) in [3]. But a few additional conditions presented in the following
propositions need to be verified, both of which are proved thereafter.

Proposition 2 (Compact Sub-level Sets). The sub-level set X 0 : {(Θ, s,P ) : f(Θ, s,P ) ≤
f(Θ0, s0,P 0)} of f(Θ, s,P ) given the update steps in Algorithm 1 is compact.

Proposition 3 (Unique Global Minimizer of Auxiliary Functions). Given Assumption 1,
∀t ∈ R+ and for all i and j, the auxiliary functions hθ(θj|θt

j), hp(pi|pt
i), and hs(s|st) each

have a unique global minimizer in RK
+ .

C.1. Proof of Proposition 2

We first introduce the definition of coercive functions through:

Definition 2 (Coercivity). A function f(X1, . . . ,XN) : V1 × · · · × VN → R, where Vi is
a Euclidean vector space endorsed with the L2 norm if its elements are vectors or with the
Frobenius norm if the elements are matrices, is called coercive if ∀i, ∥Xi∥ → ∞ implies
f(X1, . . . ,XN) → ∞.

In fact, continuous coercive functions always have compact sub-level sets, as shown by
the following lemma:

Lemma 2. If a continuous function f(X1, . . . ,XN) : V1 × · · · × VN → R is jointly
coercive, then its sublevel set X r := {(X1, . . . ,XN) : f(X1, . . . ,XN) ≤ r} is compact for
any r ∈ R.

Proof. Because f is continuous and the space f(X1, . . . ,Xn) ≤ r is closed, X r is closed.
We prove the boundedness of X r by contrapositive. We let X r = X r

1 × · · · × X r
N , where

X r
i ⊆ Vi. If X r is unbounded, then one of X r

i is unbounded. If X r
i is unbounded, we

can find a sequence of {Xk}∞k=1 such that ∥Xk∥ → ∞ as k → ∞, which implies f is not
jointly coercive. Therefore, whenever f is jointly coercive, X r = X r

1 ×· · ·×X r
N is bounded.

Since Euclidean spaces admit the Heine-Borel property, X r is compact.

Coming back to the proof of Proposition 2, it is easy to check that f(Θ, s,P ) is
continuously differentiable. To prove that it is also coercive, we need to show that
f(Θ, s,P ) tends to ∞ whenever ∥Θ∥F , ∥s∥2, or ∥P ∥F does so.
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Beginning with the case for Θ, we have, by f(Θ, s,P ),

f(Θ, s,P ) ≥ α1

2
∥∆⊙Θ−Θ0∥2F +

α2

2
∥∆c ⊙Θ∥2F

≥ min
(α1

2
,
α2

2

) (
∥∆⊙Θ−Θ0∥2F + ∥∆c ⊙Θ∥2F

)
≥ min

(α1

2
,
α2

2

) (
∥∆⊙Θ∥2F − ∥Θ0∥2F + ∥∆c ⊙Θ∥2F

)
= min

(α1

2
,
α2

2

) (
∥Θ∥2F − ∥Θ0∥2F

)
= min

(α1

2
,
α2

2

)
∥Θ∥2F

(
1− ∥Θ0∥2F

∥Θ∥2F

)
. (S.23)

Since min
(
α1

2
, α2

2

)
> 0 and ∥Θ0∥2F

∥Θ∥2F
≤ mK0MΘ

∥Θ∥2F
→ 0 as ∥Θ∥F → ∞ by Assumption 2, (S.23)

then guarantees that f(Θ, s,P ) → ∞ when ∥Θ∥F → ∞.
In the case for P , whenever ∥P ∥F → ∞, there is a k such that p⊤

k satisfies ∥p⊤
k ∥2 → ∞.

Also, since pk ∈ Rn
+, there exists a column indexed ik as defined in Assumption 1(ii) such

that pkik → ∞. Then,

f(Θ, s,P ) ≥ β

2

K∑
l=1

r−1
l ∥p⊤

l −ml∥22 ≥
β

2
r−1
k ∥p⊤

k −mk∥22

=
β

2
r−1
k

n∑
i=1

(pki − νk)
2 ≥ β

2
r−1
k (pkik − νk)

2 → ∞,

as νk is assumed fixed and β > 0.
Lastly for s, we can similarly argue that, because s ∈ RK

++, ∥s∥2 → ∞ implies there
is a k such that sk → ∞. From the steps leading to (S.14), we have

f(Θ, s,P ) ≥ 1

2mn
∥Y −Θdiag(s)P ∥2F =

1

2mn
∥Y −

K∑
k=1

skGk∥2F

≥ 1

2mn

(
∥

K∑
l=1

slGl∥2F − ∥Y ∥2F

)
=

1

2mn

(
sk∥Gk∥2F − ∥Y ∥2F

)
→ ∞.

The last line is because ∥Gk∥ > 0 due to Assumption 1(i) and Assumption 1(ii) and that
∥Y ∥F ≤ mnMY < ∞ by Assumption 2. Combining the cases for Θ, P , and s completes
the proof that f(Θ, s,P ) is coercive.

Since f(Θ, s,P ) is continuous and coercive, the set X 0 : {(Θ, s,P ) : f(Θ, s,P ) ≤
f(Θ0, s0,P 0)} is compact according to Lemma 2. We have concluded the proof of
Proposition 2.

C.2. Proof of Proposition 3

Since hθ(θj|θt
j), hp(pi|pt

i), and hs(s|st) are quadratic functions, proving Proposition 3
is equivalent to showing their Hessians are positive definite. Also, we only focus on the
positive coordinates of θt

j and pt
i since other coordinates will remain zero through updates,

and the proposition is vacuously true. By (S.3), (S.11), and (S.15), these Hessians are
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D(θt
j), D(pt

i), and D(st) respectively. Since they are all diagonal matrices, we want to
show that their diagonal values are all positive.

For D(θt
j), we have D(θt

j)kk = d(θt
j)k =

(Aθt
j)k

θtjk
. The denominator of D(θt

j)kk is positive.
Dropping the index j, its numerator is{(

diag(s)PP⊤diag(s) +mn(α1V + α2V
c)
)
θt
j

}
k
≥
{
mn(α1V + α2V

c)θt
j

}
k

≥ mnmin(α1, α2)θ
t
jk > 0,

since V + V c = I. Hence, D(θt
j)kk is positive.

For D(pt
i), from (S.9) and (S.10), we also have D(pt

i)kk = d(pt
i)k =

(Cpt
i)k

ptki
. Likewise,

the denominator is positive, and the numerator after dropping the index i is{(
diag(s)Θ⊤Θdiag(s) +mnβρ−1

)
pt
i

}
k
≥
(
mnβρ−1pt

i

)
k

= mnβr−1
k ptki > 0.

Lastly, D(st)kk is already shown to be positive from the conclusion of (S.20). This
completes the proof of Proposition 3.

To finally prove Theorem 1, we combine the results of Propositions 1-3, and apply
these conclusions to Theorem 2(b) in [3]. This way, we have shown that Algorithm 1
converges to a set of stationary points of f(Θ, s,P ).

D. Additional Discussion on Cross-Validation

We wish to discuss our particular design of the CV steps in Section 2.4. In particular, the
calculation of P̂ (b) is through NNLS instead of a re-application of ARTdeConv. This is
different from the conventional design in a regression framework. We argue that this is
necessary because firstly, when applied to the whole Y , ARTdeConv produces a single Θ̂
and a single s shared between all samples, and therefore a single estimate of Θ should be
shared between the training set and the test set, for which we use (Θ̃(b), s̃(b)) and NNLS to
enforce this rationale. On the other hand, a re-application of ARTdeConv might produce
a different Θ and/or s estimate on the test set. Secondly, if the ARTdeConv model (1)
represents the data well on both training and test sets and the tuning parameters are well
chosen for the training set, then heuristically NNLS suffices to produce a P̂ (b) close to its
optimal value in terms of mean squared errors. We also note that [6] has shown through
their simulations that when the deconvolution model is well held, prediction errors in Y
correlate highly with prediction errors in P (see Figure 2 of [6]), which provides additional
justifications for our design choice of the NNLS step.

E. Supplementary Information for The Simulated Pseudo-
Bulk Data

E.1. Data Generation

For k = 1, 2, . . . , 5, s∗k was generated independently from a χ2 distribution with 5 degrees
of freedom. For the rare class and each i = 1, 2, . . . , n, p∗

i
i.i.d.∼ Dir(25, 24, 23, 22, 2), where

Dir represents the Dirichlet distribution. For the uniform class, we first drew αi from
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αik
i.i.d.∼ U(0.3, 0.7), k = 1, . . . , 5, and then generated p∗

i from Dir(αi). For the extra class,
p∗
i

i.i.d.∼ dir(2, 22, 23, 24, 25), in reverse of the rare class.
For experiments where the simulated signature matrix is assumed accurate, to generate

values in Θ∗, for each gene j = 1, 2, . . . ,M , a 5× 1 vector of expression was generated by

θ∗⊤
j ∼ Π

[
χ2
200 · {(1− γ)Dir(1, 1, . . . , 1) + γDir(1, . . . , 1, 5)}

]
,

where Π(·) is the sampling without replacement operator. Π(·) allowed all CT1-CT5
have a number of gene signatures. On the other hand, when errors were presumed in
the signature matrix when it was derived from reference gene expression and γ = 1 was
assumed, the j-th row of the observed signature matrix Θ◦ was generated via

θ∗⊤
j ∼ Π

{
χ2
200 · Dir(1, . . . , 1, 5)

}
,

δjk ∼ η · IG(1, 1), k = 1, . . . , 5,

θ◦⊤
j = θ∗⊤

j + δj.

Here, δj is a 5 × 1 vector with each element generated independently as above, and
IG(1, 1) denotes an inverse Gaussian distribution with 1 as both the mean and the shape
parameters. An inverse Gaussian distribution has the property that the majority of its
density is concentrated near 0. The parameter η controls the mean and variance of the
signature matrix errors. The larger the η, the larger the mean and variance of the errors:
the errors are basically negligible in the observed signature matrix from the truth when
η = 1, while when η = 200 the errors are very strong (basically having the same mean as
the true underlying expression of the gene signatures and a even higher variance), which
is an extreme situation that signals huge discrepancies between the observed and the true
underlying expression of selected gene signatures. The first four columns of Θ◦ were used
as the observed partial signature matrix Θ◦

K0

For scenarios where the reference parameters in m/r and therefore M/ρ are presumed
to be inaccurate in their relative values, we fix γ = 1 and set up the true underlying Θ∗

and P ∗ as described above. We obtain the true reference medians and ranges (m1, . . . ,m5)
and ranges (r1, . . . , r5) from each row of P ∗. We let the observed medians and ranges of
CT1-CT4 proportions be shrunken from the true references by ξ ∈ (0, 1). That is, m∗

k =
(1−ξ)mk and r∗k = (1−ξ)rk for k = 1, . . . , 4. For CT5, we set m∗

5 = max
(
0, 1−

∑4
l=1m

∗
l

)
.

The range of CT5 after the proportions of CT1-CT4 are shrunken is not immediately clear
but is definitely inflated. To this end, we think r∗5 = r5/(1− ξ) can sufficiently represent
this inflation. We can see that, the larger the magnitude of ξ, the more inaccurate the
information we have on the absolute proportions of CT1-CT5. On the other hand, one
might want to consider when the proportions of CT1-CT4 are inflated by ξ. However, this
is completely symmetric to the case where they are shrunken in our model design (due to
the L2 norm in the penalty term) as well as in the simulation setups (as we consider three
classes of CT5 absolute abundances already).

The random errors in the bulk expression ϵ were generated based on the principle
of mean-variance dependency in gene expression data: the higher the mean of a gene’s
expression, the higher their variation [7]. For each gene j, its error-free mean of bulk
expression ȳj was calculated. Then its associated error for each sample i was generated
by eji

i.i.d.∼ N(0, σ2ȳ2j ), i = 1, 2, . . . , n,.
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E.2. Method For Selecting Highly Cell-Type-Specific Genes

First, for each gene, the cell type for which it had the highest expression was picked as
the target cell type. This gene then became a candidate for a marker of this target cell
type. Second, for each candidate marker, the ratio of expression in its target cell type to
those in the cell type with the second highest expression was calculated. Third, for each
cell type, its candidate marker genes were ranked by the ratio calculated in the second
step from highest to lowest. Finally, the top 100 candidate marker genes for each cell type
were selected.

E.3. Tuning Grid And Algorithm Parameters

Cross-validation (CV) was performed in each simulation to find the best values for α1 and
β according to Section 2.4. A tuning grid A1 = B = (10−2, 10−1, · · · , 103, 104) was set
up with the tolerance parameter chosen as δ = 10−5.

E.4. Matching The Estimated Proportions to Cell Types For
Reference-Free Methods

We utilized Θ̂ and the partial signature matrix Θ∗
K0

. Starting from the first column of Θ∗
K0

,
θ∗
K01

, we found the column of Θ̂, say column k, that had the highest Pearson’s correlation
with θ∗

K01
. Then, the k-th row of P̂ was determined to be estimated proportions for CT1.

We did this for the rest of the columns of Θ∗
K0

and those of Θ̂, until there was one last
unmatched column in Θ̂. That unmatched column, and its corresponding row in P̂ , were
then matched to CT5.

F. Supplementary Method And Results For The De-
convolution of Bulk PBMC Samples from The Human
Influenza Vaccine Study

F.1. Data Processing

FASTQ files containing 50bp (base pairs) pair-end raw nucleotide sequence reads of
transcripts from Illumina Hiseq 2000 sequencers were downloaded from the Sequence
Read Archive (SRA) BioProject PRJNA271578. The raw reads were pre-processed and
filtered where reads with length < 50bp, with > 30% bases with quality scores < 30,
having an average quality score < 25 in any 10bp interval, or corresponding to special
adapter sequences were removed using the software fastp [8]. Then, reads passing the
filters were mapped to reference human genome hg38 GRCh38 Release 43 (downloaded
from the GENCODE website) and quantified using salmon [9]. The output files were then
processed using the R package tximport [10]: only protein-coding genes with an official
gene symbol were selected and their transcripts per million (TPM) values were gathered
into a gene-by-sample matrix of gene expression. Additionally, genes with a total TPM of
less than 10 across the four cell types were excluded from consideration.

Distinct marker genes for the four cell types were individually selected for each subject
using sorted bulk profiles of individual cell types. The selection process identified the top
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10 genes exhibiting the highest cell-type specificity for each cell type from each subject
according the ratio of expression method outlined in Section 3.1. The union of the two
sets of marker genes, totalling 73 genes, were used in the deconvolution.

F.2. Calculating Reference PBMC Proportion Medians and Ranges
from External Data

To calculate the reference PBMC cell-type proportion medians and ranges in Table 1, we
adopted the data from [11], a highly cited textbook on PBMC. The median and range for
the cell types with reference expression were calculated through the descriptions in the
textbook using a simple method. For example, the book states that lymphocytes account
for 70% - 90% of all PBMCs, and among the lymphocytes 70% - 85% are T cells. Thus,
the range of T cell percentage among PBMCs is 49% - 76.5%, or 0.49 - 0.765 in proportion.
The median is thus (0.49 + 0.765)/2 = 0.6275 and the range is 0.765 − 0.49 = 0.275,
corresponding to the reference values for T cell in Table 1. The reference values for B
cell, NK cell, and monocyte were similarly calculated. For the “other cells”, their median
proportion is 1 − (0.6275 + 0.0625 + 0.1075 + 0.15) = 0.0525. As for the ranges, the
upper limit of the proportion for “other cells” occurs under the lower limit of lymphocytes
and monocyte, which according to [11] is 1− (0.7 + 0.1) = 0.2 (70% lymphocyte, which
includes T cell, B cell, and NK cell combined, and 10% monocyte), while the lower limit
is 0 (when there are 90% lymphoyte and 20% monocyte, an impossible scenario). This
leads to a range of 0.2.

We notice a range of 0.2 could be a little wide for “other cells”. As it turned out, these
coarse parameters for medians and ranges sufficed for ARTdeConv to work properly. Thus,
it is not always necessary to obtain super accurate reference parameters as long as they
are in the right orders of magnitude.

F.3. Tuning Grid And Algorithm Parameters

A random seed of 1000 was set in the R programming environment. The tuning grid for
α1 was set as the interval from 2−5 to 20 with a step size of 0.2 in the power, and that
for β was set as the interval from 20 to 25 also with a step size of 0.2 in the power. α2

was fixed at 10−12. The difference in magnitudes between α1 and β in the tuning grids
ensured proper regularization, for there was a scale difference between gene expression
and the proportions. A 4-fold cross-validation was invoked to choose the optimal tuning
parameters. The eventual selected tuning parameter values were within the boundaries of
the grids. The tolerance parameter was set as δ = 10−4.

F.4. Fixing mRNA Amounts as One For All Cell Types using
ARTdeConv Results in Biased Deconvolution Results

In Section 3.2, it was posited that bulk and gene signature matrices whose expression
values were measured in TPM would lose the information on cell-type mRNA amounts,
necessitating the inclusion of s described in the underlying model (1). To verify this
claim, we re-ran the data analysis on the same data in TPM as in Section 3.2 using the
same empirical estimates M and ρ, the same tolerance parameter, and the same tuning
grid for the hyperparaters, and the same random seed, but coerced diag(s) to be the
identity matrix (i.e. coerced the cell-type mRNA amounts to 1) throughout updates in
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Algorithm 1. We observed that the estimated proportions for PBMC cell types for both
samples on Day 0 deviates more from those measured by flow cytometry when compared
to when diag(s) is not coerced, as shown in Figure 4b.

Supplementary Table 1: Means and ranges of PBMC cell type proportions calculated
from the reference values.

T cells B cells NK cells Monocytes Other cells

Means 0.6275 0.0625 0.1075 0.15 0.0525
Ranges 0.275 0.055 0.145 0.1 0.2

G. Supplementary Method And Results For The De-
convolution of Bulk PBMC Samples from The COVID-19
Study

G.1. Study Design And Data Processing

The dataset generated from the study of [12] and downloaded using NCBI GEO accession
number GSE152418 contained 34 subjects recruited from Atlanta, GA, USA. It included
gene expression from human blood PBMC bulks samples collected from 17 healthy
control subjects, one convalescent subject, and 16 subjects diagnosed with COVID-19.
Healthy controls were asymptomatic adults whose samples were collected before the
widespread circulation of SARS-COV-2 virus in the community. Subjects with COVID-
19 diagnosis were further classified into three levels of disease severity based on the
based on the adaptation of the Sixth Revised Trial Version of the Novel Coronavirus
Pneumonia Diagnosis and Treatment Guidance. Moderate cases were defined as respiratory
symptoms with radiological findings of pneumonia. Severe cases were defined as requiring
supplemental oxygen, and ICU-hospitalized cases were those in critical conditions who
needed ICU care due to organ failures.

The gene symbols were annotated to 24,259 genes using the gconvert method of the
gProfileR package in R software. The raw counts were then converted to counts per
million (CPM) using those annotated genes. Among the 16 samples from COVID-19
subjects, two (labeled S155 and S179) contained abnormally high levels of HBB expression
(namely, HBB was the most highly expressed gene in those two samples; results are not
shown), which could only been found in red blood cells and suggested sample contamination.
Therefore, these two samples were removed from the deconvolution procedures. This also
led to S155, which also provided the study with single cell samples, being excluded from
the comparison in Figure 5d. The one convalescent sample was also excluded due to its
unique designation.

The scRNA-seq data were generated by [12] using CITE-seq of >63,000 cell samples
from five healthy controls and seven COVID-19 diagnosed patients. Of the seven patients,
three were labeled as moderate cases, three severe cases, and one requiring ICU care.
Notably, dendritic cells were enriched by the experimenters and mixed back into the
samples for CITE-seq. All five healthy subjects and six of the seven (except S155, which
were previously excluded) had measured bulk gene expression from independent PBMC
samples as well for the analysis. To process the raw scRNA-seq data downloaded from
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GEO accession GSE155673, we first merged the single cell gene expression from all 12
subjects together in R package Seurat V4 [13]. We then performed a quality control
procedure for the cells, retaining those with a detected number of genes per cell between
200 and 5000 and filtering out cells with >15% mitochondrial counts. Genes with total
expression less or equal to 2 across all cell samples were removed as well. We applied the
global-scaling normalization method LogNormalize to normalize the feature expression
measurements for each cell by the total expression, multiplied this by a scale factor of 106,
and log-transformed the result. We employed the UMAP dimensional reduction technique
to determine the cell type notation. The R package SingleR [14] was used for the final
determination of cell types, using gene signature data from [15] as the cell type reference.
The single-cell data input now has genes as rows and estimated cell type notations with
subjects as columns. In the end, 41,146 cells and 26,531 genes were retained in the
gene-by-cell expression matrix of all 12 samples.

We then separated the gene-by-cell matrix into two matrices, one containing only cells
from healthy controls (23,531 cells) and the other only those from COVID-19 subjects
(17,615 cells). Due to the limits of memory allocations to CIBERSORTx users, 11,765
cells from healthy controls were randomly sampled for each cell type proportionally to its
original relative abundance. The cell types were re-grouped by merging all cell subsets
of the four major cell types of interest together. The cellular gene expression from cells
not belonging to any of the four cell types were discarded for gene signature generation.
The processed sub-matrices were then separately sent to CIBERSORTx software’s Create
Signature Matrix module [16] to obtain gene signature matrices for both control and
COVID-19 cell samples. The signature matrix for healthy controls contains 1,368 genes
for the four cell types, while that for COVID-19 samples containts 1,388 genes. After
matching the common genes from the bulk expression matrices and the signature matrices
returned from CIBERSORTx, there were 1,280 genes for the deconvolution of healthy
control samples and 1,297 genes for the deconvolution of COVID-19 patient samples.

G.2. Tuning Grid And Algorithm Parameters

We adopted a tuning grid and a set of parameters for ARTdeConv to the settings in
Supplementary Material Section F.3 for the analysis in Section 3.2. A random seed of
1000 was set in the R programming environment. For the deconvolution of healthy control
samples, the tuning grid for α1 was set as the interval from 2−3 to 21 with a step size of
0.2 in the power, and that for β was set as the interval from 22 to 26 also with a step
size of 0.2 in the power. α2 was fixed at 10−12. For that of COVID-19 infected samples,
the tuning grid for α1 was set as the interval from 2−4 to 20 with a step size of 0.2 in
the power, and that for β was also set as the interval from 22 to 26 also with a step size
of 0.2 in the power. α2 was again fixed at 10−12. A 4-fold cross-validation was invoked
in both deconvolution analyses to choose the optimal tuning parameters. The eventual
selected tuning parameter values were within the boundaries of the grids in each case.
The tolerance parameter was set as δ = 10−4.
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Supplementary Figure 1: a. Mean Concordance Correlation Coefficient (CCC) by cell
type between true proportions and estimated cell-type proportions from pseudo-bulks
for the simulations where the observed signature matrix is differed from the truth. b.
CCC between estimated and true proportions of CT5 in the pseudo-bulks. Each column
represents a case of the relative abundance of CT5 against other cell types in the simulated
pseudo-bulks. Each row represents the level of random noises controlled by σ. Colors
represent different levels of deviation from the truths in Θ∗ regulated by η. The larger
the η, the more the deviation. 16



Supplementary Figure 2: a. Mean Absolute Deviation (MAD) by cell type between true
proportions and estimated cell-type proportions from pseudo-bulks for the simulations
where the observed signature matrix is differed from the truth. b. MAD between estimated
and true proportions of CT5 in the pseudo-bulks. Each column represents a case of the
relative abundance of CT5 against other cell types in the simulated pseudo-bulks. Each
row represents the level of random noises controlled by σ. Colors represent different
levels of deviation from the truths in Θ∗ regulated by η. The larger the η, the more the
deviation. 17



Supplementary Figure 3: a. Mean Concordance Correlation Coefficient (CCC) by cell type
between true proportions and estimated cell-type proportions from pseudo-bulks for the
simulations where the observed reference median and range parameters are differed from
the truths. b. Mean Absolute Deviation (MAD) by cell type between true proportions and
estimated cell-type proportions from pseudo-bulks. c. CCC between estimated and true
proportions of CT5 in the pseudo-bulks. d. MAD between estimated and true proportions
of CT5 in the pseudo-bulks. Each column represents a case of the relative abundance of
CT5 against other cell types in the simulated pseudo-bulks. Each row represents the level
of random noises controlled by σ. Colors represent different levels of deviation from the
truths in reference parameters regulated by ξ. The larger the ξ, the more the deviation.
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Supplementary Figure 4: Bar graphs of the deconvolved cell type proportions of all
COVID-19 infected samples, grouped by their classified disease severity
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Supplementary Figure 5: Bar graphs of the deconvolved cell type proportions of all healthy
control samples.
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Supplementary Figure 6: Expression of CD3 genes, the translation of which produces T
cells’ CD3 markers, among healthy samples with exceptionally low expression observed in
sample S066.
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Supplementary Figure 7: Expression of CD14 and FCGR3A genes among healthy samples
with high CD14 expression observed in sample S066. CD14 is responsible for the
production of CD14 surface markers on classical/intermediate monocytes and FCGR3A
responsible for that of CD16 surface markers on non-classical/intermediate monocytes.
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