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When an infectious disease recurs, it may be due to treatment failure or a new
infection. Being able to distinguish and classify these two different outcomes is
critical in effective disease control. A multi-state model based on Markov pro-
cesses is a typical approach to estimating the transition probability between
the disease states. However, it can perform poorly when the disease state is
unknown. This article aims to demonstrate that the transition likelihoods of
baseline covariates can distinguish one cause from another with high accuracy
in infectious diseases such as malaria. A more general model for disease progres-
sion can be constructed to allow for additional disease outcomes. We start from a
multinomial logit model to estimate the disease transition probabilities and then
utilize the baseline covariate’s transition information to provide a more accurate
classification result. We apply the expectation-maximization (EM) algorithm to
estimate unknown parameters, including the marginal probabilities of disease
outcomes. A simulation study comparing our classifier to the existing two-stage
method shows that our classifier has better accuracy, especially when the sample
size is small. The proposed method is applied to determining relapse vs reinfec-
tion outcomes in two Plasmodium vivax treatment studies from Cambodia that
used different genotyping approaches to demonstrate its practical use.
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1 INTRODUCTION

Infectious diseases are a leading cause of death worldwide, particularly in low-income countries.1 Recurrence of infection
after treatment makes disease control difficult and is a critical factor for treatment efficacy. Two processes can cause
recurrence: relapse of the primary infection or reinfection. Identifying recurrence from more than one potential cause is
important in disease control. Modeling disease progression is usually the first step.

The disease progression modeling, known as DPM, utilizes mathematical functions to describe the disease’s time
course and tracks disease severity over time. It enables a better understanding of disease prognosis and provides insights
into effective treatment. Statistical modeling of DPM and its estimation methods have been proposed and studied in the
past decades. Early work in DPM, such as the Emax model2 and path model,3 is commonly used for studying the time
course of drug effects. Desper et al4,5 developed oncogenetic tree models and established distance-based tree models.
Extending the oncogenetic tree model, Beerenwinkel et al6 proposed a mixture model that described the complexity of
disease progression via multiple trees. Gerstung et al7 otherwise used a hidden conjunctive Bayesian network modeling
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that divides the disease process into a hidden part of the actual event accumulation and an observed part of the erroneous
process. Tofigh8 also suggested an entire course of the disease as a hidden process influenced by observational errors.
Multi-state Markov models in continuous time are also often used to model the course of disease progression. Bureau
et al9 proposed a hidden Markov chain approach that considered the actual disease outcome as the hidden state of a
continuous-time Markov chain with an imperfect measurement as an observation. Hjelm et al10 further generalized the
tree models by suggesting probabilistic network aberration models based on Markov models.

Critical therapeutic decisions are based on an understanding of the disease state, especially when the disease recurs.
For example, malaria parasites have a complex life cycle. Plasmodium vivax and Plasmodium ovale, in particular, have a
latent liver stage that magnifies their epidemiological and clinical complexity. Relapses from dormant liver-stage P vivax
parasites (hypnozoites) are responsible for the bulk of the disease burden due to vivax malaria.11 Developing classification
criteria is important in developing and testing anti-relapse drugs and designing public health interventions. In clinical
trials of primaquine and other anti-relapse drugs, the absolute efficacy of a drug against relapse can only be estimated
against the number of infections in the comparator group, as a certain proportion of those treated were reinfected over
time (reinfection), even with 100% efficacy of the anti-relapse drug.12,13 From a public health standpoint, if we could
retrospectively determine how many patients present with relapses as opposed to reinfection, we can begin to understand
the disease burden attributable to relapse and invest in campaigns to detect and treat those harboring latent liver infection.

However, it is clinically impossible to distinguish the cause of recurrent blood-stage infection from hypnozoite-derived
(relapse), a blood-stage treatment failure (recrudescence), or a newly acquired infection (reinfection),14 even though each
of these requires a different prevention strategy. Until now, few methods can determine which patients who administered
anti-relapse drugs failed therapy in clinical trials due to relapse vs reinfection. To classify the late treatment failures of
P vivax as recrudescence or reinfection in Ethiopia, Plucinski et al15 developed a Bayesian algorithm to estimate the
posterior probability of a recrudescent infection using microsatellite genotyping data. Jones et al16 later showed that the
Bayesian algorithm has high accurate estimates of the true recrudescence across different transmission and drug failure
rates, especially in scenarios with a high number of recrudescent patients. Taylor et al14 used time-to-event information to
derive prior probabilities for each of the three recurrent states and subsequently derived the posterior information based
on a genetic model incorporating P vivax microsatellite marker data. Genotyping the microsatellites can also determine
the recrudescence in Plasmodium falciparum by overlapping a variant in both initial and recurrent infections.17 However,
sharing a prevalent variant likely has a false positive relapse because a patient can also contact a new infection with the
variant in the environment.18

In recent technology, the targeted amplicon deep sequencing has been used to differentiate reinfection from relapse.19

It was hypothesized that through genotyping of the initial and recurrent parasite isolates, one might distinguish relapse
from reinfection based on the variant overlap between two sequencing results within an individual. A transition model
can naturally describe the presence or absence of variants between those two sequencing results. However, an unknown
mixture of two causes, relapse and reinfection, complicates the estimation of transition probabilities. Lin et al20 proposed
a novel two-stage method to estimate the transition probabilities. They first established a statistical model to describe the
relapse probability in the recurrent infection and then used baseline information (initial sequencing) to obtain the first
stage estimates. The estimates are further plugged into the likelihood functions of the transition model, that is, transitional
likelihoods, to get the second stage estimates. Using a ratio of two transition likelihoods, one can update the classifica-
tion probability from the first stage to the second one utilizing the transition information. While this approach performs
well using overlapped genetic information between disease occurrence and recurrence, it relies on large sample size for
consistent estimation in both stages.

The EM algorithm21 has been shown to have broad application in a wide variety of incomplete data problems. In this
classification problem with a missing cause of the disease in every recurrence, the EM algorithm shall be more advanta-
geous by simultaneously optimizing the joint likelihood function in two stages. This article aims to classify the unknown
cause of the disease recurrence via transition information of covariates observed in both disease occurrence and recur-
rence. We treat the first observed disease occurrence as the baseline, regardless of whether it reflects a recurrence from
a prior disease. The method is first established on a multinomial logit model that describes the likelihood of latent dis-
ease status when the disease occurs. We then update the disease outcome probability by a ratio of transition likelihoods
of the baseline covariates under a mixture distribution, using a similar approach to Lin et al.20 In addition, we relax
the assumption that the transition probabilities of baseline covariates are all equal, assuming the transition probability
depends on a subject-level covariate. The complete data likelihood function that incorporates the missing cause of the dis-
ease is constructed. A surrogate function that takes expectation of the complete-data likelihood function is derived in the
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E-step, given observed data and the current value of parameter estimates. Maximization of the surrogate function updates
the parameter estimates, and an iteration between E- and M-steps continues until the parameter estimates converge.

The rest of this article is organized as follows. In Section 2, we develop a multinomial logit model for the probability of
observing a disease recurrence in the follow-up period, which sums over probabilities of all latent outcomes of the disease.
An EM algorithm is developed to estimate the parameter of interest. A more accurate classifier using both baseline and
recurrence covariates information is derived based on the EM estimates. A practical implementation of the EM algorithm
to the P vivax malaria progression is discussed in Section 3, compared to the currently existing two-stage method. The
relaxed assumption for the transition probabilities of the baseline covariates is also discussed in Section 3. A simulation
study in Section 4 presents the estimation results by the EM algorithm under different simulation scenarios. We analyze
two P vivax infection datasets in Section 5 and show that our proposed method is feasible for practical use. Possible
generalizations of our work are discussed in Section 6.

2 MODEL AND ESTIMATION

2.1 Model

For subject i, let Xi and Zi denote the same covariates observed at the first observed disease occurrence (baseline) and
recurrence, respectively. Let Yi denote the disease outcome that follows a multinominal distribution with probability
𝜋ik = P(Yi = k), k = 0, 1, … ,K, and

∑K
k=0𝜋ik = 1. We let Yi = 0 indicate the subject is free of disease recurrence, and let

Yi = k indicate the disease outcome is k, k = 1, … ,K. Suppose that Xi = (Xi1, … ,XiJ)′ is a J-column vector. Given a
realization of xi = (xi1, … , xiJ)′, one can assume Yi follows a multinomial logit model written by

log
{
𝜋ik(𝜃y)
𝜋i0(𝜃y)

}

= 𝛼k + 𝛽′kxi, (1)

for k = 1, … ,K, where 𝜃y = (𝛼′, 𝛽′)′, 𝛼 = (𝛼1, … , 𝛼K)′, and 𝛽 = (𝛽′1, … , 𝛽
′
K)
′ are parameters of interest with 𝛽k =

(𝛽k1, … , 𝛽kJ)′.
Model (1) holds for the association between the baseline covariate Xi and disease outcome Yi. However, identifiability

is an issue when Yi is unknown if Yi > 0. The latent outcome of the disease is interchangeable, and any permutation of
the latent disease outcome has the same likelihood function. Therefore, one may not estimate 𝛽k when Yi is unknown. For
the sake of identifiability, one may restrict the model to a more parsimonious one that concisely explains the covariate’s
association with the disease. For example, in malaria research, subjects who live in the epidemic area can be bitten by
mosquitoes entirely at random. Hence, one may assume the new infection rate is constant and independent of Xi, that is,
log{𝜋i1(𝜃)∕𝜋i0(𝜃)} = 𝛼1. However, the new infection rate may depend on genetic or biological factors.22,23 One may build
a regression model relating the new infection to those risk factors. Our approach still applies after such an adjustment.

When the disease recurs, one observes yi as a realization of Yi and zi = (zi1, … , ziJ)′ as a realization of Zi that may
have a different value from xi. To model Zi when yi > 0, we assume the probability density function of Zi possibly depends
on xi and yi and has the form

f (zi|xi, yi = k, 𝜃z) =
J∏

j=1
exp

[{
zijg

(
𝜇

z
ijk

)
− b

(
𝜇

z
ijk

)}
∕a(𝜙jk) + c(zij, 𝜙jk)

]
,

where a(⋅), b(⋅), c(⋅, ⋅) are known functions, 𝜙jk is the dispersion parameter, g
(
𝜇

z
ijk

)
is the canonical link function with

mean 𝜇z
ijk = E(Zij|xi, yi = k), and 𝜃z contains every parameter in 𝜙jk and 𝜇z

ijk. Lin et al20 termed the conditional density as
the transition likelihood, describing the transition mechanism from Xi to Zi.

The transition likelihood depends on the covariate type, which can be binary, normal, and Poisson. One could con-
struct the transition likelihood function by applying the covariate’s corresponding density function and link function. For
example, when xij and zij are both binary, one can have the transition likelihood function written as f (zi|xi, yi = k, 𝜃z) =∏J

j=1 exp
[
zijg

(
𝜇

z
ijk

)
+ log

(
1 − 𝜇z

ijk

)]
with logit link function g

(
𝜇

z
ijk

)
= log

{
𝜇

z
ijk∕

(
1 − 𝜇z

ijk

)}
and 𝜇

z
ijk = P

(
Zij = 1||xij, yi =

k, 𝜃z
)
= xijqijk + (1 − xij)

(
1 − q∗ijk

)
with transition probabilities qij and q∗ij for xij = 1 and xij = 0, respectively, for disease

outcome k. The parameter 𝜃z includes corresponding parameters for qijk and q∗ijk.
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Note that, if the disease recurs, one observes yi > 0. If the subject is disease-free, we assume yi = 0 and Zi has a point
mass at xi with probability density function f (zi|xi, yi = 0) = 1 with no new information collected for the inference on the
parameters.

2.2 Estimation using EM algorithm

Let 𝜃 = (𝜃′y, 𝜃′z)′ be the parameter of interest that includes all of the model parameters for Yi and Zi. When the data i =
{(xi, zi, yi)} is fully observed for subject i, the full likelihood can be written as

L(𝜃|xi, zi, yi) = f (zi|xi, yi, 𝜃)f (yi|xi, 𝜃)f (xi|𝜃). (2)

Assuming xi is fixed and contains no information on 𝜃, the log-likelihood function is proportional to

𝓁(𝜃|xi, zi, yi) = log f (zi|xi, yi, 𝜃) + log f (yi|xi, 𝜃),

with

log f (zi|xi, yi, 𝜃) =
K∑

k=0
I(yi = k) log f (zi|xi, yi = k, 𝜃),

and

log f (yi|xi, 𝜃) =
K∑

k=0
I(yi = k) log{𝜋ik(𝜃)},

where 𝜋ik(𝜃) = P(Yi = k|xi, 𝜃) is the probability model of Yi that follows model (1).
However, when yi is missing, the observed data are i = {xi, 𝛿i, 𝛿izi}, where 𝛿i = I(Yi > 0) indicates whether the

disease progresses to any of the disease outcome k = 1, … ,K. Let =
⋃n

i=1i and =
⋃n

i=1i be data collected
from n independent subjects with an identical distribution. One can write the Q function in the E-step of the EM
algorithm by

Q(𝜃|𝜃old) = E{𝓁(𝜃| )|, 𝜃old}

=
n∑

i=1

K∑

k=1
𝛿iP(Yi = k|i, 𝜃old) log f (zi|xi, yi = k, 𝜃) +

n∑

i=1
(1 − 𝛿i) log{𝜋i0(𝜃)}

+
n∑

i=1

K∑

k=1
𝛿iP(Yi = k|i, 𝜃old) log{𝜋ik(𝜃)},

where

P(Yi = k|i, 𝜃old) =
f (zi|xi, yi = k, 𝜃old)𝜋ik(𝜃old)

∑K
k′=1f (zi|xi, yi = k′, 𝜃old)𝜋ik′ (𝜃old)

.

In the subsequent M-step, we aim to find the value of 𝜃 that maximizes the Q function with a starting value of 𝜃old. One
can solve for a new 𝜃 by

𝜃new = argmax
𝜃
Q(𝜃|𝜃old). (3)

By making 𝜃old = 𝜃new in the Q function and again solving the maximizer, one can obtain the updated estimate of 𝜃.
Repeating the E- and M-steps, one can find the estimate 𝜃̂ that satisfies a predetermined convergence criterion.
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2.3 Classification

The primary aim of this article is to classify yi into one of the disease categories when 𝛿i = 1. With 𝜃̂ denoted as the
convergent estimate of 𝜃 in the EM algorithm, one can classify the unknown yi with the largest 𝜋ik(𝜃̂) = P(Yi = k|xi, 𝜃̂)
among k = 1, … ,K. However, Lin et al20 have shown that this classification criterion may perform poorly since the
classification uses only the baseline covariate information. To improve the classification performance, one can incorporate
the covariate information of zi observed when the disease recurs. As one can see, in the derivation for the EM algorithm,
the classification probability 𝜋ik(𝜃̂) can be updated using the likelihood function f (zi|xi, yi = k, 𝜃) under disease category
k = 1, … ,K, namely,

P(Yi = k|i, 𝜃̂) =
f (zi|xi, yi = k, 𝜃̂)𝜋ik(𝜃̂)

∑K
k′=1f (zi|xi, yi = k′, 𝜃̂)𝜋ik′ (𝜃̂)

,

which can be considered a posterior probability that updates the prior probability 𝜋ik(𝜃̂) using newly observed information
zi.

Given the observed information i, one can classify the unknown yi with the highest P(Yi = k|i, 𝜃̂) among k =
1, … ,K. As discussed in Lin et al,20 one can treat the classification probability P(Yi = k|i, 𝜃) as an updated version of
𝜋ik(𝜃) by a ratio of two transition likelihoods. One can show

P(Yi = k|i, 𝜃)
P(Yi = k′|i, 𝜃)

=
f (zi|xi, yi = k, 𝜃)
f (zi|xi, yi = k′, 𝜃)

𝜋ik(𝜃)
𝜋ik′ (𝜃)

,

for any k, k′ ∈ {1, … ,K}, which indicates the odds of the disease outcome k to k′, in the sense of the prior probability
𝜋ik(𝜃) to 𝜋ik′ (𝜃), is further updated by the ratio of the two transition likelihoods. This updating scheme guarantees a
better, at least not worse, classification probability than 𝜋ik(𝜃). The improvement depends on whether the conditional
distribution of zi given xi is informative on the disease outcome yi.

Since 𝜃̂ is derived from the EM algorithm, statistical inferences on 𝜃 are possible and can be made by deriving the
variance estimation through the Q function. One can show that

√
n(𝜃̂ − 𝜃) converges to a normal random variable with

mean 0 and variance I−1(𝜃), where I(𝜃) = lim
n→∞

n−1E{−𝜕2𝓁(𝜃|)∕𝜕𝜃2}. Empirically, I(𝜃) can be consistently estimated by

𝜎̂
2 = −𝜕2Q(𝜃̂|𝜃̂)∕𝜕𝜃2. However, as Louis24 suggested, a better variance estimator is

𝜎̃
2 = 𝜎̂2 −

n∑

i=1

K∑

k=0
𝜔ik(𝜃̂)Sik(𝜃̂)Sik(𝜃̂)′ +

n∑

i=1

(
𝜕Qi(𝜃̂|𝜃̂)
𝜕𝜃

)(
𝜕Qi(𝜃̂|𝜃̂)
𝜕𝜃

)′

,

where 𝜔ik(𝜃̂) = (1 − 𝛿i) + 𝛿iP(Yi = k|i, 𝜃̂), Qi(𝜃̂|𝜃̂) =
∑K

k=0𝜔ik(𝜃̂)𝓁ik(𝜃̂) with 𝓁ik(𝜃̂) = log f (zi|xi, yi = k, 𝜃̂) + log{𝜋ik(𝜃̂)},
and Sik(𝜃̂) = 𝜕𝓁ik(𝜃)∕𝜕𝜃|𝜃=𝜃̂ .

3 AN APPLICATION

3.1 P vivax malaria progression

Lin et al20 considered a P vivax malaria progression model P(Yi = k) = 𝜋ik for k = 0, 1, 2, written as

log
{
𝜋i1(𝜃)
𝜋i0(𝜃)

}

= 𝜇, (4)

log
{
𝜋i2(𝜃)
𝜋i0(𝜃)

}

= 𝛼 + 𝛽′xi, (5)

where k = 0, 1, 2 indicates no malaria recurrence (k = 0), new infection (k = 1), and relapse from the previous infection
(k = 2), respectively. In their model, the new infection rate 𝜇 is a constant and 𝜃 = (𝛼, 𝛽′)′. A binary sequencing variant
xi = (xi1, … , xiJ)′ at baseline is assumed to be associated with the relapse in (5). They considered a transition model for
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the recurrent variant Zi in the case of relapse from the previous infection, written as

f (zi|xi, yi = 2, 𝜃) =
J∏

j=1
𝜂(xij)zij{1 − 𝜂(xij)}1−zij

, (6)

where

𝜂(xij) = P(Zij = 1|xij, yi = 2, 𝜃) = xijqij + (1 − xij)(1 − q∗ij),

with transition probabilities

qij = P(Zij = 1|xij = 1, yi = 2),

and

q∗ij = P(Zij = 0|xij = 0, yi = 2).

For the reinfection, they assumed Zi is independent of Xi but follows the same distribution written as

f (zi|xi, yi = 1, 𝜃) =
J∏

j=1
pzij

j (1 − pj)1−zij
, (7)

where pj = P(Xij = 1) for j = 1, … , J, indicating the prevalence of variant j.
Note that the estimation of qij and q∗ij depends on the number of subjects with recurrent infections. When the number

of covariates J is greater than the number of subjects with a recurrent infection, solutions of qij and q∗ij may not be well
defined. To avoid this issue, one may assume the transition probabilities qij and q∗ij are the same for every subject i and
covariate j, that is, qij = q and q∗ij = q∗ for every i and j. One may also assume the transition probability depends on a
subject-level covariate wij via logistic models that can be written as

log
( qij

1 − qij

)

= 𝛾0 + 𝛾1wij, (8)

and

log

(
q∗ij

1 − q∗ij

)

= 𝛾∗0 , (9)

where 𝛾1 is regarded as the association between wij and the likelihood of observing persistent variant j in the recurrent
sequencing (zij = 1), given that the variant is observed in the baseline sequencing (xij = 1). The transition model using
identical transition probabilities q and q∗ is a special case of models (8) and (9). Here, we assume wij is observed only when
the variant j is observed (xij = 1) and appears in the model (8). In the real data analysis, we use the reading frequency of
the variant at the baseline sequencing as the covariate wij. General use of the subject-level covariate is possible. In that
case, both models (8) and (9) can have the covariate as a predictor for the transition probabilities.

Note that one may not estimate 𝜇 and 𝛼 in models (4) and (5) simultaneously since both parameters are part of the
baseline relative recurrence of the infection. Lin et al20 assumed 𝜇 is known or estimated via external information to avoid
the identifiability problem. We use the same strategy in our real data analysis.

3.2 EM algorithm for the application

In this application, we observe 𝛿i = I(yi > 0), meaning whether the patient has recurrent infection, that is, 𝛿i = 1 when
yi = 1, 2 (reinfection or relapse) and 𝛿i = 0 when yi = 0 (no recurrent infection). Since the covariate is collected when
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the recurrent infection occurs, we let f (zi|xi, yi = 0, 𝜃) = 1, meaning Zi is not a random variable when the subject is
infection-free. Therefore, the Q function can be simplified to

Q(𝜃|𝜃old) = Q1(𝜃|𝜃old) + Q2(𝜃|𝜃old),

where

Q1(𝜃|𝜃old) =
n∑

i=1
(1 − 𝛿i) log{𝜋i0(𝜃)} +

n∑

i=1

2∑

k=1
𝛿iP(Yi = k|i, 𝜃old) log{𝜋ik(𝜃)},

and

Q2(𝜃|𝜃old) =
n∑

i=1

2∑

k=1
𝛿iP(Yi = k|i, 𝜃old) log f (zi|xi, yi = k, 𝜃),

with

P(Yi = k|i, 𝜃old) =
f (zi|xi, yi = k, 𝜃old)𝜋ik(𝜃old)

∑2
𝓁=1f (zi|xi, yi = 𝓁, 𝜃old)𝜋i𝓁(𝜃old)

.

Iteratively maximizing Q(𝜃|𝜃old), we can obtain the maximum likelihood estimate 𝜃̂ that maximizes the observed
likelihood function.

We apply models (4) and (5) for 𝜋ik(𝜃), k = 0, 1, 2, in Q1(𝜃|𝜃old), where

𝜋i1(𝜃) =
exp(𝜇)

1 + exp(𝜇) + exp(𝛼 + 𝛽′xi)
,

𝜋i2(𝜃) =
exp(𝛼 + 𝛽′xi)

1 + exp(𝜇) + exp(𝛼 + 𝛽′xi)
,

and 𝜋i0(𝜃) = 1 − 𝜋i1(𝜃) − 𝜋i2(𝜃). We apply models (6) to (9) for the transition likelihood functions f (zi|xi, yi = 1, 𝜃) and
f (zi|xi, yi = 2, 𝜃). The unknown parameters may include the prevalence pj = P(Xij = 1). However, since xij is always
observed, one can consistently estimate pj by p̂j = n−1∑n

i=1xij. To reduce the number of parameters for faster convergence
of estimates, we replace pj with p̂j in 𝜃2. Accordingly, we implement the EM algorithm to solve for 𝜃 = (𝛼, 𝛽′, 𝛾 ′, 𝛾∗0 )

′, where
𝛾
′ = (𝛾0, 𝛾1)′.

With 𝜃̂ as the convergent estimate of 𝜃 using the EM algorithm, we calculate the classification probability

P(Yi = k|i, 𝜃̂) =
f (zi|xi, yi = k, 𝜃̂)𝜋ik(𝜃̂)

∑2
𝓁=1f (zi|xi, yi = 𝓁, 𝜃̂)𝜋i𝓁(𝜃̂)

, (10)

for each subject i and classify the recurrent infection as relapse if P(Yi = 2|i, 𝜃̂) > P(Yi = 1|i, 𝜃̂), or simply P(Yi =
2|i, 𝜃̂) > 0.5.

3.3 Comparison with previous work

Based on the observed data O=
⋃n

i=1Oi, where Oi = {xi, 𝛿i, 𝛿izi}, Lin et al20 utilized the observed log-likelihood function,
𝓁(𝜃) =

∑n
i=1 log f (zi|xi, 𝛿i = 1, 𝜃) +

∑n
i=1 log f (𝛿i|xi, 𝜃) +

∑n
i=1 log f (xi|𝜃), and proposed a two-stage method that first used

the baseline sequencing variant xi to obtain the estimator 𝜃̂∗1 of 𝜃1 = (𝛼, 𝛽′)′ in the model (5). The target function they
maximized is

𝓁1(𝜃1) =
n∑

i=1
log f (𝛿i|xi, 𝜃1) =

n∑

i=1
(1 − 𝛿i) log{𝜋i0(𝜃1)} +

n∑

i=1
𝛿i log{1 − 𝜋i0(𝜃1)},
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which is different from the Q1 function that utilizes posterior probability P(Yi = k|i, 𝜃old). Instead, the second term of
the 𝓁1(𝜃1) function uses the observed outcome 𝛿i = I(Yi > 0) with probability P(𝛿i = 1) = 𝜋i1(𝜃1) + 𝜋i2(𝜃1) = 1 − 𝜋i0(𝜃1).

In the second stage, when using both baseline and recurrent sequencing results, they maximized

𝓁2(𝜃2) =
n∑

i=1
𝛿i(1 − 𝜉

(0)
i ) log f (zi|xi, yi = 1, 𝜃̂∗1, 𝜃2) +

n∑

i=1
𝛿i𝜉

(0)
i log f (zi|xi, yi = 2, 𝜃̂∗1, 𝜃2),

where 𝜃̂∗1 = (𝛼̂, 𝛽
′)′, 𝜃2 = (𝛾 ′, 𝛾∗)′, and 𝜉(0)i = 𝜋i2(𝜃̂

∗
1)∕{𝜋i1(𝜃̂

∗
1) + 𝜋i2(𝜃̂

∗
1)} is the classification probability obtained from the

first stage.
The target function 𝓁2(𝜃2) is derived from the mixture distribution of zi with mixture probability replaced by the

estimates 𝜉(0)i from the first stage. It differs from the Q2 function that uses the posterior probability P(Yi = 2|i, 𝜃old) as the
mixture probability. In fact, with 𝜃̂∗2 denoted for the maximizer of 𝜃2 in 𝓁2(𝜃2), the classification probability 𝜉(1)i proposed
in Lin et al20 can be written as

𝜉

(1)
i =

f (zi|xi, yi = 2, 𝜃̂∗1, 𝜃̂
∗
2)𝜋ik(𝜃̂

∗
1)

∑2
𝓁=1f (zi|xi, yi = 𝓁, 𝜃̂

∗
1, 𝜃̂

∗
2)𝜋i𝓁(𝜃̂

∗
1)
,

which can be considered as P(Yi = 2|i, 𝜃̂
∗) with 𝜃̂∗ = (𝜃̂∗′1 , 𝜃̂

∗′
2 )′ and compared with P(Yi = 2|i, 𝜃̂) in (10). We compare

the performance of the two classification probabilities 𝜉(1)i and P(Yi = 2|i, 𝜃̂) in both simulation studies and real data
analysis.

To evaluate the precision of estimators 𝜃̂∗1 and 𝜃̂∗2 under the two-stage method, we estimate the variances of the esti-
mators using bootstrap. First, one can obtain a bootstrapped sample with n observations by drawing (x∗i , 𝛿

∗
i , 𝛿

∗
i z∗i ) with

replacement from the original data (xi, 𝛿i, 𝛿izi), i = 1, … ,n. Then, one can obtain 𝜃̂

∗(1)
1 and 𝜃̂

∗(1)
2 using the two-stage

method based on the bootstrapped sample (x∗i , 𝛿
∗
i , 𝛿

∗
i z∗i ). By repeating the resampling and estimation steps B times, one

can obtain 𝜃̂∗(1)1 , … , 𝜃̂

∗(B)
1 and 𝜃̂∗(1)2 , … , 𝜃̂

∗(B)
2 . The variance of 𝜃̂∗1 can be estimated by 𝜎̂2

B(𝜃̂
∗
1) = (B − 1)−1∑B

b=1(𝜃̂
∗(b)
1 − 𝜃

∗
1)2,

where 𝜃
∗
1 = B−1∑B

b=1𝜃̂
∗(b)
1 . The variance of 𝜃̂∗2 can be estimated similarly. One can simply calculate the standard deviation

of the replications for the bootstrapped standard error of the estimators 𝜃̂∗1 and 𝜃̂∗2.

4 SIMULATION STUDY

In this section, we demonstrate our methodology via comprehensive simulation experiments. We mimic the P vivax
malaria infection data with three disease outcomes, namely, no recurrent infection (y = 0), new infection (y = 1), and
relapse from the previous infection (y = 2). We assume the relative infection rate 𝜇 = −2,−3 in the model (4) for the
new infection, and 𝛼 = −2 and 𝛽 = (log(2), log(2), log(2), 0, … , 0)′ in the ten variants model (5) for the relapse, meaning
three most prevalent variants are associated with the occurrence of relapse. We generated xi following Bernoulli distri-
bution with probability P(Xj = 1) = 0.5 exp{−0.1(j − 1)} for j = 1, … , 10. We generated zi following the transition model
(6) if yi = 2 and model (7) if yi = 1. We evaluate the performance of the EM algorithm and two-stage method in two
scenarios. In scenario 1, we assume the transition probabilities are the same for each variant, that is, q1 = q2 = · · · = qJ
and q∗1 = q∗2 = · · · = q∗J , and the transition probabilities follow logistic models (8) and (9) with 𝛾1 = 0. There are only two
parameters 𝛾0 and 𝛾∗0 in this case. We let 𝛾∗0 = 2.94 (q∗ = 0.95) and 𝛾0 = 0, 2.94 (q = 0.5, 0.95), where a smaller value of
𝛾0 makes model (6) similar to model (7), that is, the transition signal from yi = 2 is weaker when 𝛾0 is smaller. One can
anticipate that the classifier using the transition likelihood improves less when 𝛾0 = 0. In scenario 2, we assume the logis-
tic models include the covariate 𝜔ij with 𝛾1 = 0 or 𝛾1 = 0.5. We generate 𝜔ij uniformly between 0 and 1. The sample size
takes three different values, n = 100,200, 400, and 1000 repetitions were made for each combination of 𝜇, 𝛾0, and n in each
scenario.

Table 1 shows the operating characteristics of classifiers by the two-stage method and EM algorithm. From Table 1,
one can see that both classifiers perform aggressively under a low transition probability when the recurrent infection is a
relapse (y = 2). Most recurrences were claimed as relapses, resulting in high sensitivity but low specificity. Both classifiers
perform well under a high transition probability, reaching a high degree of accuracy in both sensitivity and specificity.
When comparing the two classifiers 𝜉(1)i and P(Yi = 2|i, 𝜃̂), one can see that P(Yi = 2|i, 𝜃̂) has higher accuracy than
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T A B L E 1 Operating characteristics of the classifiers by the two-stage method and the EM algorithm

Two-stage method ̂

𝝃

(1)
i > 0.5 EM algorithm P(Yi = 2|i, ̂𝜽) > 0.5

𝝁 𝜸0 n Sensitivity Specificity Overall Sensitivity Specificity Overall

−3 0 100 96.5% 53.1% 91.4% 97.4% 56.7% 92.7%

200 98.3% 57.0% 93.4% 98.1% 59.2% 93.5%

400 98.4% 58.3% 93.7% 98.3% 59.3% 93.7%

2.94 100 97.8% 83.5% 96.1% 98.9% 85.6% 97.4%

200 99.2% 86.3% 97.6% 99.1% 86.9% 97.7%

400 99.2% 86.2% 97.7% 99.2% 86.5% 97.7%

−2 0 100 84.0% 64.2% 78.5% 93.4% 69.7% 87.0%

200 94.0% 69.5% 87.4% 94.7% 71.4% 88.6%

400 95.5% 71.0% 88.9% 95.3% 72.0% 89.1%

2.94 100 87.5% 85.0% 86.7% 97.6% 89.9% 95.6%

200 97.4% 90.4% 95.6% 98.1% 90.6% 96.2%

400 98.2% 91.3% 96.4% 98.3% 91.6% 96.5%

𝜉

(1)
i , especially when the sample size n is small. When the sample size increases, the two-stage method 𝜉

(1)
i becomes

more competitive and has a similar classification performance. Note that the two-stage method enjoys the advantage of
fast computing. One can use the estimate of the two-stage method as the starting point 𝜃old for the EM algorithm. An
out-of-sample prediction comparison using ten-fold cross-validation is shown in the supplementary material. The result
shows that our proposed classifier using the EM algorithm outperforms the two-stage method in prediction.

Table 2 shows the simulation results for estimating regression coefficients and transition probabilities using the EM
algorithm when the transition probabilities under a relapse are the same for each variant (𝛾1 = 0). We report bias (b),
empirical standard error (𝜎), estimated standard error (𝜎̂), and coverage probabilities (CP) for the regression coefficients
and transition probabilities. To save space, we only show the estimation results for 𝛽1 to 𝛽5 and 𝛾0 and 𝛾∗0 in Table 2. Other
parameter estimations are shown in the supplementary material.

Table 3 shows the simulation results for estimating regression coefficients and transition probabilities by the two-stage
method with variance estimation using B = 100 bootstrapped samples. From Table 3, one can see the bootstrapped
standard errors are generally larger than the empirical standard errors, resulting in high coverage probabilities. When
comparing Tables 2 and 3, one can see the EM algorithm has a better performance overall and a better standard error esti-
mation than the bootstrapped estimation, especially when the sample size is small. When the sample size increases, the
two-stage method with bootstrapped variance estimation performs better but still has a conservative variance estimation.
The coverage probability is generally higher than the 0.95 nominal level.

Tables 4 and 5 show the estimation of regression coefficients and transition probabilities using the EM algorithm at
𝛾1 = 0 and 𝛾1 = 0.5, respectively, when the transition probability follows a logistic model. From Tables 4 and 5, one can
observe that the EM algorithm’s performance is satisfactory when transition probabilities follow logistic models. This
result led us to put our insight into the computation under high dimensionality in the future.

5 REAL DATA ANALYSIS

5.1 P vivax infection in northern Cambodia

It is well-known that many clones and strains exist within a P vivax infected human host.25 In a treatment study conducted
in northern Cambodia from 2010 to 2011, the P vivax merozoite surface protein 1 (pvmsp1) gene was found to have
great nucleotide diversity,25,26 making targeted amplicon deep sequencing an excellent tool to genotype isolates from P
vivax infected patients.19 The pvmsp1 sequence variants were determined by a bioinformatics pipeline using a clustering
method to construct the most likely haplotypes within a patient.27 As a result, 67 unique pvmsp1 haplotypes (variants)



4706 JIANG et al.

T A B L E 2 The bias (b), empirical standard error (𝜎), estimated standard error (𝜎̂), and coverage probability (CP) for the regression
coefficient estimation using EM algorithms for scenario 1 when the transition probabilities under a relapse are the same for each variant

𝝁 𝜸0 n b1 b2 b3 b4 b5 b
𝜸0

b
𝜸

∗
0

𝝈1 𝝈2 𝝈3 𝝈4 𝝈5 𝝈
𝜸0

𝝈
𝜸

∗
0

−3 0 100 0.14 0.17 0.11 0.01 −0.03 −0.01 0.15 0.70 0.67 0.68 0.68 0.83 0.22 1.21

200 0.05 0.06 0.04 0.02 0.01 −0.01 0.02 0.41 0.38 0.39 0.39 0.39 0.15 0.32

400 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.27 0.25 0.26 0.26 0.27 0.10 0.21

2.94 100 0.12 0.15 0.10 0.00 −0.01 0.40 0.08 0.64 0.63 0.63 0.64 0.65 2.10 0.78

200 0.05 0.06 0.03 0.02 0.01 0.06 0.03 0.39 0.37 0.38 0.38 0.37 0.41 0.28

400 0.02 0.03 0.02 0.01 0.00 0.01 0.02 0.26 0.24 0.25 0.26 0.26 0.26 0.19

−2 0 100 0.21 0.23 0.23 −0.07 −0.04 0.02 0.28 1.12 1.53 1.52 0.94 1.09 0.24 1.48

200 0.05 0.07 0.07 −0.03 0.00 0.01 0.06 0.43 0.44 0.42 0.45 0.46 0.16 0.39

400 0.03 0.04 0.04 −0.02 0.00 0.01 0.02 0.27 0.28 0.27 0.29 0.31 0.11 0.25

2.94 100 0.15 0.15 0.14 −0.03 −0.01 0.52 0.13 0.68 0.67 0.68 0.71 0.67 2.32 0.80

200 0.05 0.06 0.06 −0.02 0.00 0.09 0.04 0.39 0.40 0.39 0.41 0.43 0.58 0.29

400 0.02 0.03 0.04 −0.01 0.00 0.03 0.02 0.25 0.26 0.25 0.27 0.28 0.28 0.21

𝝁 𝜸0 n 𝝈̂1 𝝈̂2 𝝈̂3 𝝈̂4 𝝈̂5 𝝈̂
𝜸0

𝝈̂
𝜸

∗
0

CP1 CP2 CP3 CP4 CP5 CP
𝜸0

CP
𝜸

∗
0

−3 0 100 0.56 0.56 0.56 0.57 0.59 0.20 0.40 94.1 94.4 92.9 93.4 93.4 94.2 93.9

200 0.37 0.37 0.37 0.38 0.39 0.14 0.30 93.9 95.0 94.2 94.2 95.7 93.9 94.9

400 0.25 0.25 0.25 0.26 0.26 0.10 0.20 94.1 95.4 93.5 94.5 95.4 94.1 94.6

2.94 100 0.55 0.55 0.54 0.56 0.57 0.50 0.37 94.1 94.6 94.2 94.5 94.3 95.2 93.6

200 0.36 0.36 0.36 0.37 0.38 0.37 0.27 94.0 95.2 94.4 94.4 95.6 95.2 94.6

400 0.25 0.24 0.24 0.25 0.26 0.25 0.18 94.2 95.9 94.4 95.2 94.0 94.0 94.9

−2 0 100 0.62 0.62 0.62 0.64 0.65 0.21 0.46 93.2 92.8 93.3 91.8 94.4 93.1 92.7

200 0.41 0.41 0.41 0.42 0.43 0.15 0.35 93.7 94.0 95.4 94.3 94.6 93.6 94.1

400 0.27 0.27 0.27 0.28 0.28 0.11 0.23 95.5 95.7 95.0 94.8 93.7 94.2 92.8

2.94 100 0.57 0.57 0.57 0.58 0.59 0.53 0.39 93.3 92.6 94.1 92.9 95.6 95.0 95.7

200 0.37 0.37 0.37 0.38 0.39 0.37 0.27 94.5 94.2 94.8 94.1 93.3 95.4 94.8

400 0.25 0.25 0.25 0.26 0.26 0.26 0.19 95.7 95.1 94.9 94.9 93.9 94.5 94.9

Note: The estimates are computed over 1000 repetitions of sample size n = 100, 200, and 400 for each combination of the new infection rate 𝜇, 𝛾0, and n.

were detected among 78 P vivax-infected subjects. Among them, nine haplotypes appeared in at least 10% of individuals.
This analysis uses the nine most frequent variants as the model (5) covariates for model building and classification. During
the follow-up period, 55 (71%) subjects were free of recurrent infection. Assuming the 5% reinfection rate suggested in
Lin et al,20 we used 𝜇 = −3 in the model (4) since log(0.05∕0.71) ≈ −3.

Table 6 shows the classification result based on the EM algorithm and the two-stage method for the 23 subjects
with recurrent infection. We report baseline and recurrence variants, two classification probabilities, classification results
based on the posterior probability P(Yi = 2|i, 𝜃̂) and two-stage method 𝜉(1)i . We use their identification number in our
data set to show the pair of infections from baseline to recurrence, for example, 10→10R, and use letters to represent
the observed variants. For example, in pair 10→10R, we have xi = zi = (1, 0, … , 0)′ since variant A was observed at both
sequencing results. The recurrence sequencing for pairs 31 → 31R and 68 → 68R are blank because the observed variants
are less prevalent. Most recurrences are classified as relapses because of a high degree of overlap in dominant variants.
For pairs with reinfection as the classification result, they mostly have at least one non-sharing variant in the recurrence
sequencing, such as pairs 118 → 118R, 151 → 151R, 160 → 160R, and 179 → 179R. Other pairs classified as reinfection
have multiple non-sharing variants between baseline and recurrence sequencing, resulting in a low posterior classification
probability P(Yi = 2|i, 𝜃̂). For example, in the 125 → 125R pair, the variants A, B, and E that appeared in the recurrence
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T A B L E 3 The bias (b), empirical standard error (𝜎), estimated standard error (𝜎̂), and coverage probability (CP) for the regression
coefficient estimation using the two-stage method for scenario 1 when the transition probabilities under a relapse are the same for each
variant

𝝁 𝜸0 n b1 b2 b3 b4 b5 b
𝜸0

b
𝜸

∗
0

𝝈1 𝝈2 𝝈3 𝝈4 𝝈5 𝝈
𝜸0

𝝈
𝜸

∗
0

−3 0 100 0.54 0.59 0.39 −0.06 −0.17 0.00 0.03 4.65 5.16 2.55 2.50 3.25 0.22 1.05

200 0.06 0.05 0.05 −0.02 −0.01 0.00 0.00 0.41 0.41 0.43 0.44 0.44 0.15 0.31

400 0.05 0.04 0.03 0.01 −0.02 0.00 0.01 0.28 0.28 0.28 0.27 0.28 0.10 0.22

2.94 100 0.54 0.59 0.39 −0.06 −0.17 0.40 0.08 4.72 5.16 2.55 2.50 3.25 2.65 1.03

200 0.06 0.05 0.05 −0.02 −0.01 0.07 0.02 0.41 0.41 0.43 0.44 0.44 0.76 0.28

400 0.05 0.04 0.03 0.01 −0.02 0.02 0.01 0.28 0.28 0.28 0.27 0.28 0.26 0.19

−2 0 100 3.60 3.85 3.15 −0.42 −0.01 −0.04 −0.11 14.5 14.3 13.6 13.6 11.3 0.25 1.51

200 0.17 0.15 0.12 −0.03 0.02 −0.01 −0.02 1.29 0.91 0.89 0.89 0.59 0.16 0.37

400 0.04 0.04 0.05 −0.02 0.00 0.00 −0.03 0.34 0.33 0.33 0.34 0.34 0.11 0.24

2.94 100 3.60 3.85 3.15 −1.12 −0.70 0.34 0.04 14.5 14.3 13.6 13.6 11.3 3.32 1.50

200 0.17 0.15 0.12 −0.03 0.02 0.03 0.02 1.29 0.91 0.89 0.89 0.59 0.44 0.30

400 0.04 0.04 0.05 −0.02 0.00 0.02 0.00 0.34 0.33 0.33 0.34 0.34 0.29 0.21
𝝁 𝜸0 n 𝝈̂1 𝝈̂2 𝝈̂3 𝝈̂4 𝝈̂5 𝝈̂

𝜸0
𝝈̂
𝜸

∗
0

CP1 CP2 CP3 CP4 CP5 CP
𝜸0

CP
𝜸

∗
0

−3 0 100 13.6 13.1 13.0 12.5 13.8 0.68 3.78 99.6 99.6 99.7 99.8 99.9 99.2 98.3

200 1.42 1.36 1.31 1.12 1.25 0.16 0.72 99.5 99.4 99.5 99.7 99.8 96.0 97.4

400 0.30 0.29 0.29 0.30 0.30 0.11 0.24 96.2 96.6 97.0 97.5 96.6 96.6 95.8

2.94 100 13.6 13.1 13.0 12.5 13.8 5.31 3.56 99.6 99.7 99.8 99.9 100 97.7 98.7

200 1.42 1.36 1.31 1.12 1.25 1.23 0.44 99.5 99.4 99.5 99.7 99.8 97.0 97.0

400 0.30 0.29 0.29 0.30 0.31 0.31 0.20 94.0 99.0 95.0 98.0 97.0 97.4 95.1

−2 0 100 20.1 19.6 19.1 19.9 20.6 1.06 4.13 97.9 97.7 97.4 98.4 99.0 99.5 98.1

200 7.69 7.36 6.78 6.71 7.37 0.27 1.51 100 100 99.9 100 100 98.3 98.6

400 0.59 0.54 0.52 0.47 0.51 0.12 0.32 98.5 98.7 98.5 98.3 98.2 96.7 97.1

2.94 100 20.1 19.6 19.1 19.9 20.6 5.88 4.29 97.9 97.7 97.4 98.4 99.0 97.3 99.4

200 7.69 7.36 6.78 6.71 7.37 2.39 1.12 100 100 99.9 100 100 99.3 98.9

400 0.59 0.54 0.52 0.47 0.51 0.40 0.22 98.5 98.7 98.5 98.3 98.2 97.1 95.2

Note: The estimates are computed over 1000 repetitions of sample size n = 100, 200, and 400 for each combination of new infection rate 𝜇, 𝛾0, and n.

sequencing are unobserved in the baseline sequencing, resulting in a low P(Yi = 2|i, 𝜃̂). However, non-sharing variants
in the baseline sequencing have little impact on the recurrence classification probability P(Yi = 2|i, 𝜃̂). Taking pairs
36 → 36R and 126 → 126R for example, the classification probability P(Yi = 2|i, 𝜃̂) remains high, even when multiple
variants were unobserved in the recurrence sequencing. It should be noted that compared to our method, the two-stage
method can be conservative in some situations. Pairs like 80 → 80R, 152 → 152R and 154 → 154R that have both preva-
lent variants overlapping and non-sharing variant appeared in the recurrence sequencing are more likely classified
reinfections by the two-stage method while classified as relapses by our method.

Table 7 shows the estimation of regression coefficients by the EM algorithm. We report variants’ prevalence, regres-
sion coefficient estimate, standard error, and P-value by a Wald-type test. As one can see, variants A, C, E, and D with
relatively high prevalence are not statistically significant. However, the association between variant A and relapse is large
(𝛽 = 10.86, p = 0.561), which is likely due to sparsity in the data. Variant E is the only variant reaching the statistical
significance with a positive association (𝛽 = 0.346, p = 0.006). To estimate the parameters related to transition probabil-
ities, we have 𝛾̂1 = 0.01, indicating the variant’s frequency is positively associated with the transition of the variant in
relapse. Also, parameter estimates 𝛾̂0 = −0.85 and 𝛾̂∗0 = 1.75 show that a baseline variant in relapse is likely absent in the
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T A B L E 4 The bias (b), empirical standard error (𝜎), estimated standard error (𝜎̂), and coverage probability (CP) for the regression
coefficient estimation using EM algorithms for scenario 2 when the transition probability follows a logistic model with 𝛾1 = 0

𝝁 𝜸0 n b1 b2 b3 b4 b
𝜸0

b
𝜸1

b
𝜸

∗
0

𝝈1 𝝈2 𝝈3 𝝈4 𝝈
𝜸0

𝝈
𝜸1

𝝈
𝜸

∗
0

−3 0 100 0.16 0.19 0.08 −0.03 0.02 −0.04 0.12 0.70 1.05 0.66 0.70 0.44 0.76 0.87

200 0.06 0.06 0.02 −0.02 0.00 0.00 0.03 0.39 0.39 0.39 0.39 0.31 0.53 0.32

400 0.03 0.02 0.01 −0.01 −0.01 0.01 0.02 0.26 0.25 0.25 0.25 0.21 0.36 0.21

2.94 100 0.14 0.14 0.06 −0.02 0.61 0.10 0.07 0.62 0.65 0.60 0.63 2.97 4.13 0.43

200 0.06 0.06 0.02 −0.02 0.14 0.00 0.04 0.37 0.38 0.37 0.40 0.87 1.50 0.29

400 0.03 0.02 0.01 −0.01 0.07 −0.01 0.02 0.26 0.25 0.25 0.25 0.54 0.94 0.20

−2 0 100 0.17 0.21 0.21 −0.08 −0.02 0.04 0.31 1.53 1.47 1.19 1.14 0.46 0.80 1.59

200 0.04 0.05 0.06 −0.01 −0.02 0.03 0.07 0.43 0.41 0.43 0.45 0.32 0.55 0.52

400 0.02 0.02 0.03 −0.01 −0.01 0.02 0.02 0.28 0.27 0.28 0.30 0.23 0.40 0.25

2.94 100 0.12 0.12 0.15 −0.04 0.80 0.34 0.12 0.68 0.67 0.65 0.66 3.72 6.25 0.77

200 0.04 0.04 0.06 −0.01 0.16 0.11 0.04 0.40 0.37 0.40 0.40 1.01 2.40 0.31

400 0.02 0.02 0.02 −0.01 0.09 −0.03 0.01 0.26 0.25 0.27 0.27 0.61 1.02 0.21
𝝁 𝜸0 n 𝝈̂1 𝝈̂2 𝝈̂3 𝝈̂4 𝝈̂

𝜸0
𝝈̂
𝜸1

𝝈̂
𝜸

∗
0

CP1 CP2 CP3 CP4 CP
𝜸0

CP
𝜸1

CP
𝜸

∗
0

−3 0 100 0.57 0.56 0.57 0.58 0.41 0.71 0.41 93.9 93.4 94.7 93.3 95.3 95.2 95.8

200 0.37 0.36 0.37 0.38 0.29 0.49 0.29 94.4 93.7 95.3 95.7 92.7 94.4 94.4

400 0.25 0.25 0.25 0.26 0.20 0.35 0.20 95.0 94.7 95.1 95.8 94.2 94.3 94.8

2.94 100 0.55 0.54 0.55 0.56 1.00 1.82 0.37 94.2 93.4 95.0 94.2 95.3 97.0 95.0

200 0.36 0.36 0.36 0.37 0.70 1.23 0.26 95.0 93.8 95.1 95.6 94.6 95.8 94.6

400 0.25 0.24 0.24 0.25 0.49 0.85 0.18 94.8 95.3 95.9 95.6 95.8 95.1 94.2

−2 0 100 0.63 0.62 0.62 0.65 0.43 0.74 0.46 90.6 93.0 92.9 92.7 94.3 94.7 92.3

200 0.40 0.40 0.40 0.41 0.30 0.52 0.32 93.6 95.3 93.9 94.2 94.3 94.0 93.6

400 0.27 0.27 0.27 0.28 0.21 0.36 0.22 94.4 94.9 94.2 94.3 93.0 93.0 93.8

2.94 100 0.57 0.57 0.57 0.58 1.04 1.94 0.39 92.8 93.8 93.9 93.6 94.7 96.7 93.6

200 0.37 0.37 0.37 0.38 0.73 1.31 0.27 93.7 95.8 93.8 94.4 95.2 95.8 94.9

400 0.25 0.25 0.25 0.26 0.52 0.90 0.19 95.4 95.0 94.0 93.9 94.5 94.7 94.5

Note: The estimates are computed over 1000 repetitions of sample size n = 100, 200, and 400 for each combination of new infection rate 𝜇, 𝛾0, and n.

recurrence, and a variant absent in the baseline will likely remain absent in the recurrent infection. The corresponding
standard errors for 𝛾̂0, 𝛾̂1, and 𝛾̂∗0 are 0.37, 0.01, and 0.31, respectively.

5.2 P vivax infection in southern Cambodia

We demonstrate our methodology in another malaria treatment study conducted between August 2006 and February 2008
in Chumkiri District, Kampot Province, in southern Cambodia.28 The study enrolled 110 subjects with uncomplicated P
vivax malaria and treated them with artesunate-mefloquine therapy, which is highly effective for vivax blood-stage para-
site, but does not kill hypnozoites in the liver (that can later emerge to cause relapse). Of the 107 subjects who completed
the follow-up, 45 (42.1%) suffered recurrent P vivax parasitemia. All recurrent parasitaemias occurred between day 28 and
day 42. No attempt was made to distinguish between recrudescence (treatment failure), relapse from the liver, and reinfec-
tion in the original trial. Since recrudescence after ACT therapy is unlikely for P vivax, we applied our method to classify
the 45 recurrences as either relapse or reinfection. For this analysis, we used genotyping information for each baseline
and recurrence derived from heteroduplex tracking assays targeting Pvmsp1.29 In total, 16 unique pvmsp1 variants were



JIANG et al. 4709

T A B L E 5 The bias (b), empirical standard error (𝜎), estimated standard error (𝜎̂), and coverage probability (CP) for the regression
coefficient estimation using EM algorithms for scenario 2 when the transition probability follows a logistic model with 𝛾1 = 0.5

𝝁 𝜸0 n b1 b2 b3 b4 b
𝜸0

b
𝜸1

b
𝜸

∗
0

𝝈1 𝝈2 𝝈3 𝝈4 𝝈
𝜸0

𝝈
𝜸1

𝝈
𝜸

∗
0

−3 0 100 0.15 0.18 0.08 −0.04 −0.01 0.03 0.10 0.67 0.97 0.64 0.70 0.43 0.77 0.69

200 0.06 0.06 0.02 −0.02 0.00 0.01 0.03 0.38 0.39 0.39 0.39 0.31 0.53 0.32

400 0.03 0.02 0.01 −0.01 0.00 0.00 0.02 0.26 0.25 0.25 0.25 0.21 0.37 0.21

2.94 100 0.14 0.13 0.06 −0.02 0.83 0.45 0.07 0.61 0.64 0.60 0.63 3.67 5.63 0.43

200 0.06 0.06 0.02 −0.01 0.17 0.09 0.04 0.37 0.37 0.38 0.37 1.18 1.82 0.29

400 0.03 0.02 0.01 0.00 0.06 0.04 0.02 0.26 0.25 0.24 0.25 0.60 1.14 0.20

−2 0 100 0.15 0.17 0.20 −0.06 0.00 0.04 0.24 0.81 0.94 0.82 0.91 0.47 0.87 1.33

200 0.05 0.05 0.06 −0.01 0.01 0.00 0.05 0.43 0.41 0.43 0.44 0.32 0.56 0.38

400 0.02 0.02 0.03 −0.01 0.01 −0.01 0.01 0.28 0.27 0.28 0.29 0.22 0.39 0.25

2.94 100 0.12 0.12 0.15 −0.04 1.03 0.57 0.11 0.68 0.66 0.65 0.66 4.23 6.95 0.69

200 0.04 0.04 0.06 −0.01 0.24 0.21 0.04 0.40 0.37 0.40 0.40 1.61 3.21 0.31

400 0.02 0.02 0.02 −0.01 0.11 0.01 0.01 0.26 0.25 0.27 0.27 0.70 1.27 0.21
𝝁 𝜸0 n 𝝈̂1 𝝈̂2 𝝈̂3 𝝈̂4 𝝈̂

𝜸0
𝝈̂
𝜸1

𝝈̂
𝜸

∗
0

CP1 CP2 CP3 CP4 CP
𝜸0

CP
𝜸1

CP
𝜸

∗
0

−3 0 100 0.57 0.56 0.57 0.58 0.41 0.72 0.41 94.9 93.9 94.9 94.0 94.9 95.7 95.1

200 0.37 0.36 0.36 0.38 0.29 0.50 0.28 94.9 93.6 94.9 95.3 94.4 94.0 94.2

400 0.25 0.25 0.25 0.26 0.20 0.35 0.20 95.3 95.0 95.1 95.9 94.6 93.5 94.6

2.94 100 0.55 0.54 0.55 0.56 1.07 2.07 0.37 94.2 94.1 94.7 93.8 95.4 97.9 95.0

200 0.36 0.36 0.36 0.37 0.74 1.42 0.26 94.9 94.1 94.8 95.5 95.4 96.5 94.4

400 0.25 0.24 0.24 0.25 0.51 0.96 0.18 94.9 95.3 96.0 95.7 95.4 94.9 94.5

−2 0 100 0.62 0.62 0.61 0.64 0.43 0.76 0.45 92.4 93.6 92.6 93.8 94.6 93.5 92.7

200 0.40 0.39 0.39 0.41 0.30 0.53 0.32 94.3 95.9 94.2 95.2 94.7 95.0 93.2

400 0.27 0.27 0.27 0.28 0.21 0.37 0.22 95.4 95.2 94.1 93.7 94.6 94.1 93.5

2.94 100 0.57 0.56 0.56 0.58 1.11 2.25 0.38 93.1 93.5 94.1 93.2 95.0 97.1 94.1

200 0.37 0.37 0.37 0.38 0.78 1.52 0.27 93.9 95.6 93.9 94.6 94.6 95.9 94.3

400 0.25 0.25 0.25 0.26 0.55 1.03 0.19 95.5 95.2 93.7 93.8 94.2 94.2 94.1

Note: The estimates are computed over 1000 repetitions of sample size n = 100, 200, and 400 for each combination of new infection rate 𝜇, 𝛾0, and n.

detected across 152 isolates. More than 80% of initial infections contained multiple variants, displaying an average of 2.7
co-circulating variants. This analysis uses all the variants observed as the covariates for model building and classification.
We assigned 𝜇 = −3 in the reinfection probability model (4), the same as the northern Cambodia data.

Table 8 shows the classification result based on the EM algorithm and the two-stage method. We also report baseline
and recurrence variants, classification probabilities, and classification results based on the posterior probability P(Yi =
2|i, 𝜃̂) and two-stage method 𝜉(1)i . Two methods agree in every pair. The pair is classified as relapse when there is a
high degree of overlap in dominant variants. For those pairs classified as reinfection, at least one non-sharing prevalent
variant appeared in the recurrence sequencing. For example, in pair 30 → 30R, the variants F and S that appeared in the
recurrence sequencing are unobserved in the baseline sequencing. Our algorithm classifies the recurrence as reinfection.
Besides, the classifier using the recurrence sequencing information performs better than the classifier using only baseline
sequencing. In pair 4 → 4R, for example, the classification probability 𝜋i2 is low, and the classifier would classify the
infection as reinfection if one uses only baseline information. The posterior probability increases from 0.12 to 0.99 due to
multiple overlapped variants between baseline and recurrence sequencing results.

Table 9 shows the estimation of regression coefficients by the EM algorithm. We report variants’ prevalence, regression
coefficient estimates, standard errors, and P-value. We use every variant observed and assess the significance using a
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T A B L E 6 Classification of recurrence pairs based on the EM algorithm and two-stage method for the northern Cambodia data

Recurrence pair Baseline variants 𝝅i2(xi, ̂𝜽) Recurrence variants P(Yi = 2|i, ̂𝜽) EM class Two-stage class

10 → 10 R A 0.17 A 0.89 Relapse Relapse

31 → 31 R A C E 0.79 1.00 Relapse Relapse

36 → 36 R A B C D E F G H 0.27 B C H 0.92 Relapse Relapse

68 → 68 R A C E 0.79 1.00 Relapse Relapse

80 → 80 R A E F I 0.63 A B C D F G H I 0.84 Relapse Reinfection

81 → 81 R A B 0.49 A B 0.99 Relapse Relapse

82 → 82 R A D E 0.64 A B D 0.98 Relapse Relapse

87 → 87 R A B C I 0.70 A H I 0.99 Relapse Relapse

89 → 89 R A E G I 0.90 B 1.00 Relapse Reinfection

96 → 96 R A C E I 0.93 A D 1.00 Relapse Relapse

112 → 112 R A B C E H 0.95 A B C 1.00 Relapse Relapse

118 → 118 R I 0.00 B C 0.00 Reinfection Reinfection

123 → 123 R A C 0.13 A B 0.82 Relapse Reinfection

125 → 125 R C 0.00 A B C E 0.00 Reinfection Reinfection

126 → 126 R A B C D E F G H 0.27 B H 0.96 Relapse Relapse

130 → 130 R A C D E 0.56 A E 0.97 Relapse Relapse

151 → 151 R D F I 0.00 A I 0.00 Reinfection Reinfection

152 → 152 R A B 0.49 A B F H 0.97 Relapse Reinfection

153 → 153 R A E H 0.86 C 0.99 Relapse Relapse

154 → 154 R A G 0.10 D F G 0.81 Relapse Reinfection

160 → 160 R C E H 0.00 A D F 0.00 Reinfection Reinfection

177 → 177 R A E H 0.86 B 0.99 Relapse Relapse

179 → 179 R D F H 0.00 B 0.00 Reinfection Reinfection

Note: Dominant variants with a frequency of more than 50% are presented in italic.

T A B L E 7 Estimation of regression coefficients by the EM algorithm for the northern Cambodia data

Variants Prevalence ̂

𝜷 SE P-value

A 0.590 10.86 18.68 0.561

B 0.269 1.55 1.02 0.129

C 0.410 −0.32 0.90 0.722

D 0.295 −1.10 1.03 0.284

E 0.346 3.26 1.19 0.006

F 0.231 −2.32 1.30 0.076

G 0.231 −0.63 1.19 0.600

H 0.192 0.14 1.05 0.891

I 0.154 1.19 1.34 0.376
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T A B L E 8 Classification based on the EM algorithm and two-stage method for the southern Cambodia data

Recurrence pair Baseline variants 𝝅i2(xi, ̂𝜽) Recurrence variants P(Yi = 2|i, ̂𝜽) EM class Two-stage class

4 → 4 R D S 0.12 D S 0.99 Relapse Relapse

7 → 7 R H 0.67 H 1.00 Relapse Relapse

10 → 10 R H S 0.75 S 1.00 Relapse Relapse

11 → 11 R C F S 0.26 C D F G S 0.03 Reinfection Reinfection

16 → 16 R C H S 0.64 C H 1.00 Relapse Relapse

17 → 17 R C H 0.55 H 1.00 Relapse Relapse

20 → 20 R D G H S 0.89 D G S 1.00 Relapse Relapse

25 → 25 R C E F G 0.46 C G 0.98 Relapse Relapse

27 → 27 R C D G S 0.27 G S 0.98 Relapse Relapse

28 → 28 R C E G H 0.82 C D G 0.70 Relapse Relapse

29 → 29 R F S 0.36 F S 1.00 Relapse Relapse

30 → 30 R G 0.43 F S 0.04 Reinfection Reinfection

42 → 42 R G H 0.91 G 1.00 Relapse Relapse

44 → 44 R C D F G S 0.48 C D E F G M 0.83 Relapse Relapse

47 → 47 R D G 0.30 D E S 0.06 Reinfection Reinfection

49 → 49 R C D F H S 0.72 C D H S 1.00 Relapse Relapse

50 → 50 R H 0.67 H 1.00 Relapse Relapse

51 → 51 R D H S 0.63 H S 1.00 Relapse Relapse

52 → 52 R F S 0.36 S 0.99 Relapse Relapse

54 → 54 R F 0.29 G S 0.02 Reinfection Reinfection

56 → 56 R C D G 0.20 C 0.82 Relapse Relapse

57 → 57 R E G S 0.45 D G S 0.78 Relapse Relapse

59 → 59 R E G M N 1.00 E G M N 1.00 Relapse Relapse

62 → 62 R D F G S 0.61 D G S 1.00 Relapse Relapse

63 → 63 R D H S 0.63 D H S 1.00 Relapse Relapse

66 → 66 R C F G S 0.62 C F 0.98 Relapse Relapse

68 → 68 R E G 0.36 C D G H S 0.00 Reinfection Reinfection

70 → 70 R C D G S 0.27 C S 0.85 Relapse Relapse

74 → 74 R H 0.67 E F N S 0.00 Reinfection Reinfection

75 → 75 R E F H 0.80 E 1.00 Relapse Relapse

77 → 77 R C D 0.05 C D 0.91 Relapse Relapse

78 → 78 R C H 0.55 C H 1.00 Relapse Relapse

80 → 80 R F 0.29 F 1.00 Relapse Relapse

83 → 83 R C F 0.19 F 0.99 Relapse Relapse

84 → 84 R S 0.19 C D S 0.01 Reinfection Reinfection

85 → 85 R C S 0.12 C S 0.97 Relapse Relapse

90 → 90 R G 0.43 G 1.00 Relapse Relapse

95 → 95 R D E F G R 0.80 D F R 1.00 Relapse Relapse

100 → 100 R C D G R 0.55 C G 0.97 Relapse Relapse

101 → 101 R C E G K N 0.56 C E N 1.00 Relapse Relapse

104 → 104 R H 0.67 H 1.00 Relapse Relapse

105 → 105 R H 0.67 H 1.00 Relapse Relapse

107 → 107 R B C F G 0.18 C F 0.89 Relapse Relapse

109 → 109 R C F G H S 0.95 C D G H 0.97 Relapse Relapse

Note: Dominant variants are presented in italic.
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T A B L E 9 Estimation of regression coefficients by the EM algorithm for the southern Cambodia data

Variants Prevalence ̂

𝜷 SE P-value

A 0.007 −18.05 8619.58 0.998

B 0.033 −1.63 1.44 0.257

C 0.582 −0.51 0.56 0.36

D 0.399 −0.55 0.61 0.365

E 0.137 −0.27 1.15 0.817

F 0.294 0.92 0.60 0.127

G 0.320 1.55 0.61 0.011

H 0.229 2.56 0.69 <0.001

K 0.026 0.16 1.61 0.918

L 0.013 −12.84 1499.86 0.993

M 0.020 16.88 6182.29 0.998

N 0.039 1.14 1.80 0.527

Q 0.007 −14.64 2239.05 0.995

R 0.039 1.56 1.31 0.234

S 0.444 0.36 0.60 0.543

T 0.007 −16.62 8318.23 0.998

Wald-type test. As one can see, variants C, S, D, G, F, H, and E have a relatively high prevalence, but only variants G and
H are statistically significant. Both variants have a positive association with the relapse. When variant G or H is presented
in the baseline sequencing, the odds ratio of relapse is exp(1.55) = 4.7 and exp(2.56) = 12.9, respectively. To estimate the
parameters related to transition probabilities, we have 𝛾̂1 = 0.64, indicating that the presence of dominant variants at
the baseline is positively associated with the transition probability of the variant in relapse. Other transition parameter
estimates include 𝛾̂0 = 0.59 and 𝛾̂∗0 = 4.65, indicating that both present and absent variants in the baseline sequencing
would likely remain the same in the relapse. The corresponding standard errors are 0.23 and 0.51, respectively, showing
a statistical significance from an utterly random transition. Some rare variants have a large standard error in Table 9. We
added a sensitivity analysis in the supplementary material excluding those rare variants. Both estimation and classification
results are similar to those using all variants.

We assume the occurrence of the variants is independent. This assumption has been checked for the northern Cam-
bodia data in Lin et al20 using Fisher’s exact tests. We used the same approach for the southern Cambodia data in any 2
of the 16 variants. The result shows that only 10 out of 120 pairs have P-value smaller than 0.05. After adjusting for mul-
tiple comparisons using the Benjamini-Hochberg procedure, only one P-value is smaller than 0.05. The independence
assumption is not significantly violated in the southern Cambodia data. The reinfection parameter is assigned as 𝜇 = −3
in both data analyses. We added a sensitivity analysis in the supplementary material using 𝜇 = −2. The classification
result remains robust.

6 DISCUSSION

This article proposes a novel classification methodology that utilizes the EM algorithm and transition likelihoods to clas-
sify the disease outcome. We applied the method to classify the recurrent P vivax infections as either relapse or reinfection
in two Cambodian malaria research datasets. Compared to the previous method proposed by Lin et al,20 our method
has higher accuracy, especially when the sample size is small. Both simulation studies and real data analysis support
our classifier’s feasibility and practical use. Additionally, we generalize our method to include a transition model for
probabilities qij and q∗ij with external covariates. In our case, the variant’s reading frequency can be used to model the
transition.
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In summary, the EM algorithm is more advantageous because of the simultaneous optimization of the joint likelihood
functions, resulting in a more accurate classifier than the previous one using a two-stage method. The benefit is especially
significant when the sample size is small. When the sample size is large, the two-stage method becomes more compet-
itive and has a similar classification performance. In addition, the estimator derived from the EM algorithm has better
finite-sample properties with a smaller empirical standard error and better variance estimation than the bootstrapping
procedure, leading to better coverage of the true parameter. The better performance also occurs when the sample size is
small. When the sample size is large, the two-stage estimator with bootstrapped variance estimation improves but may
still be conservative and have a larger coverage probability than the nominal level. Since the two-stage method enjoys the
advantage of a quicker convergence, one can use the estimates of the two-stage method as the starting values for the EM
algorithm.

There are several avenues for further research in the applications of EM algorithms to infectious diseases. Our cur-
rent analysis considers only recurrence indicators without the time domain involved, unlike the critical feature of DPM
tracking disease severity over time. Our recent publication shows that the causes of the recurrent infection can be seen
as competing risks, for which one observes the event occurrence of either relapse or reinfection.30 Our simulations
show that the EM algorithm with posterior classification probability can be a better classifier than the two-stage method
when applied to the competing risk data with the missing cause of failure. Extending our algorithm to deal with com-
peting risk data has the potential. However, our estimator is sensitive to selecting background disease occurrence rate
(reinfection rate in the P vivax infection). If the background occurrence rate is misidentified, the maximum likelihood
estimator of the coefficients may not be consistent, as indicated in Lin et al.20 The classification probability P(Yi = 2|i, 𝜃̂)
can also be biased. Multiple analyses under different values of background occurrence rates shall be implemented to
explore the classification result’s robustness. Taylor et al14 used strongly informative priors for recrudescence and rein-
fection rates in a Bayesian framework, which can be considered an alternative approach to avoid the identification
problem.

The EM algorithm performs well when applied to the low dimension data. Maximizing the Q function under
a low-dimension scenario is straightforward and can be implemented by an optimization algorithm such as the
Nelder-Mead method. However, when the dimension is high, for example, J > n, or many covariates are included in the
transition model for q and q∗, the Q function’s direct maximization is difficult or impossible. One may maximize the Q
function with L1 or L2 penalty that shrinks the parameters in 𝜃. Using our classifier, it is unclear how the EM algorithm
would perform under the shrinkage method in the high-dimension scenario. We will leave it for future research.

Other extensions, such as spatial heterogeneity, are worthy of pursuing. For example, the time interval from primary
infection to relapse in the P vivax infection may depend on the geographic location. The relapse often takes longer for peo-
ple in temperate climes than tropical climes.31,32 The difference between regions provides external information to extend
the classification capacity. Also, in the parent study of the northern Cambodia data set, six participants suffered a second
recurrent infection, and one participant suffered a third recurrent infection. We excluded those recurrent infections from
our current analysis to simplify the interpretation. One shall extend the current methodology to recurrent events data
with multiple event types using duration information between recurrent infections. Including the recurrent information
shall improve the transition modeling.
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