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ABSTRACT
Identifying and characterizing relationships between treatments, exposures, or other covariates and time-to-event outcomes
has great significance in a wide range of biomedical settings. In research areas such as multi-center clinical trials, recurrent
events, and genetic studies, proportional hazard mixed effects models (PHMMs) are used to account for correlations observed
in clusters within the data. In high dimensions, proper specification of the fixed and random effects within PHMMs is diffi-
cult and computationally complex. In this paper, we approximate the proportional hazards mixed effects model with a piece-
wise constant hazard mixed effects survival model. We estimate the model parameters using a modified Monte Carlo expec-
tation conditional minimization (MCECM) algorithm, allowing us to perform variable selection on both the fixed and ran-
dom effects simultaneously. We also incorporate a factor model decomposition of the random effects in order to more easily
scale the variable selection method to larger dimensions. We demonstrate the utility of our method using simulations, and we
apply our method to a multi-study pancreatic ductal adenocarcinoma gene expression dataset to select features important for
survival.

1 | Introduction

Modeling survival outcomes has great clinical significance in
medical and public health research. In particular, the Cox pro-
portional hazards model has been widely utilized in order to
characterize the relationship between treatments, exposures, or
other covariates and patient time-to-event outcomes. However,
modern biomedical datasets are increasingly high dimensional,
and groups of samples within the data can exhibit complex
correlations. For example, when studying survival outcomes
with respect to multi-center clinical trials, recurrent events, and

Abbreviations: GLMM, generalized linear mixed model; MCECM, Monte Carlo expectation conditional minimization; PHMM, proportional hazards mixed model.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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genetic studies, proportional hazards mixed effects models are
used to account for correlations among groups within the data
and model the heterogeneity of treatment and predictor effects
across groups [1, 2]. These proportional hazards mixed effects
models are traditionally referred to as frailty models when the
model contains a single random effect applied to the baseline
hazard.

In high dimensional settings, in which the covariate effects are
generally assumed to be sparse, it is often unknown a priori which
covariates should be specified as fixed or random in the model.
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Variable selection methods such as LASSO and SCAD exist for
high dimensional proportional hazards models or frailty models
[3–6], but they do not allow for the selection of random effects.
Several mixed effects model selection methods that rely on the
specification of candidate models have been proposed, including
likelihood ratios, profile Akaike information criterion (AIC) [7],
and conditional AIC [8]. However, specifying all 2𝑝 possible can-
didate models in high dimensions is impractical. Lee et al. [9]
developed a stochastic search variable selection (SSVS) method
that selects both fixed and random effects in proportional haz-
ards mixed effects models in a Bayesian framework, but their
method is only computationally feasible for small or moderate
dimensions.

Rashid et al. [10] developed a method that simultaneously selects
both fixed and random effects in high dimensional generalized
linear mixed models (GLMMs), which has since been developed
into an R package available on CRAN, called glmmPen [11, 12].
This method broadened the feasible dimensionality of perform-
ing variable selection in GLMMs to greater dimensions than pre-
viously existing methods. This method was extended by Heiling
et al. [13], who proposed a new formulation of the GLMM using
a factor model decomposition of the random effects. As a result
of this new formulation, they were able to improve the scalability
of their method and perform variable selection within GLMMs in
cases with much larger dimensions. However, these methods do
not apply to survival data.

In this paper, we propose a method that simultaneously selects
fixed and random effects within clustered survival data. In order
to extend the methods of Rashid et al. [10] and Heiling et al. [13]
to survival data, we first consider an approximation of the Cox
proportional hazards model using a piecewise constant hazard
model. Piecewise constant hazard models, sometimes referred to
as piecewise exponential models, are parametric survival models
that divide the follow-up time of the data into intervals, where
the hazard function is assumed to be constant in each interval;
this piecewise constant hazard survival model can be fit using
a log-linear model which incorporates the duration of exposure
within each interval [14–17]. Piecewise constant hazard mod-
els can be extended to include random effects using piecewise
constant hazard mixed effects models [18–20]. In our piecewise
constant hazard mixed effects model, we utilize the factor model
decomposition of the random effects proposed in Heiling et al.
[13], allowing us to scale our method to cases with hundreds
of predictors. We label our method as phmmPen_FA, which
reflects our goal of estimating penalized proportional hazards
mixed effects models using factor analysis on the random effects.

We demonstrate the application of our method by applying our
method to a case study that we present in Section 4. The devel-
opment of this method was motivated by a case study dataset
that contains gene expression data from pancreatic ductal ade-
nocardinoma patients across seven separate studies. We aim to
select important features that predict subjects’ survival by identi-
fying features that increase or decrease the rate of the occurrence
of death (i.e., identify features with non-zero fixed effect haz-
ard ratios) as well as identify features that have varied effects on
subjects’ survival across the groups (i.e., identify non-zero ran-
dom effects). Due to the large number of features that we con-
sider, it is difficult to have a priori knowledge of which features

have non-zero fixed or random effects. Therefore, we will use the
phmmPen_FA method to fit a penalized piecewise constant haz-
ard mixed effects survival model to select important fixed and
random effects.

The remainder of this paper is organized as follows. Section 2
reviews the statistical models and algorithm used to estimate
piecewise constant hazard mixed effects models. In Section 3,
simulations are conducted to assess the performance of our
method. Section 4 describes the motivating case study for the pre-
diction of survival in pancreatic ductal adenocarinoma cancer
using gene expression data from multiple studies, and provides
results from the application of our new method to the case study.
We close the article with some discussion in Section 5.

Software in the form of R code for the phmmPen_FA pro-
cedure is available through the glmmPen package in CRAN
https://cran.r-project.org/package=glmmPen and the GitHub
repository https://github.com/hheiling/glmmPen. The phmm-
Pen_FA procedure is implemented through thephmmPen_FA()
function within this glmmPen R package.

2 | Methods

2.1 | Model Formulation

In this section, we review the notation and model formulation
of our approach. We begin by introducing the proportional haz-
ards mixed effects model using a generic linear predictor with
both fixed and random effects. We then discuss how we approx-
imate this model with a piecewise constant hazard mixed effects
model, which is similar to how fixed-effects only Cox propor-
tional hazards models are approximated with piecewise constant
hazard models [14, 19–21]. Next, we explain how we represent
this model using a log-linear mixed effects model [15, 16, 19].
Once we have set up the general model scheme, we provide
details about the exact form of our assumed linear predictor,
where we incorporate the factor model decomposition of the ran-
dom effects proposed in Heiling et al. [13] Lastly, we introduce
penalties into the model and discuss how the variable selection
goals of our algorithm relate to the introduced notation. Details
about the MCECM algorithm we use to fit this model are dis-
cussed in Section 2.2.

We consider the case where we want to analyze data
from 𝐾 independent groups of subjects. For each group
𝑘 = 1, . . . , 𝐾 , there are 𝑛𝑘 subjects for a total sample size
of 𝑁 =

∑𝐾

𝑘=1𝑛𝑘. For group 𝑘, let y𝑘 =
(
𝑦𝑘1, . . . , 𝑦kn𝑘

)𝑇 be
the vector of 𝑛𝑘 observed times, where 𝑦ki = min

(
𝑇ki, 𝐶ki

)
,

𝑇ki represents the event time, and 𝐶ki represent censoring
time; let 𝜹𝑘 =

(
𝛿𝑘1, . . . , 𝛿kn𝑘

)
where 𝛿ki = 𝐼

(
𝑇ki < 𝐶ki

)
repre-

sents the indicator that a subject’s event time was observed;
and let xki =

(
𝑥ki,1, . . . , 𝑥ki,𝑝

)𝑇 be the 𝑝-dimensional vector
of predictors, and X𝑘 =

(
x𝑘1, . . . , xkn𝑘

)𝑇 . We standardize the
fixed effects covariates matrix X =

(
X𝑇

1 , . . . ,X
𝑇
𝐾

)𝑇 such that∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1𝑥ki,𝑗 = 0 and 𝑁−1∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1𝑥
2
ki,𝑗 = 1 for 𝑗 = 1, . . . , 𝑝.
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We would like to estimate the proportional hazards mixed effects
model

ℎ
(
𝑡|𝜂ki

)
= ℎ0(𝑡) exp

(
𝜂ki

)
, (1)

where ℎ
(
𝑡|𝜂ki

)
is the individual hazard of subject 𝑖 in group 𝑘 at

time 𝑡, ℎ0(𝑡) represents the baseline hazard at time 𝑡, and 𝜂ki rep-
resents the linear predictor containing the fixed effects log hazard
ratio coefficients, the group-specific random effects, and the sub-
ject’s individual covariates. The exact form of the linear predictor
𝜂ki assumed in our model is described later in this section.

In cases where we are modeling survival data with only fixed
effects in the model (i.e., no random effects) and we are not
using Bayesian techniques to estimate these fixed effects, we can
ignore the baseline hazard function ℎ0(𝑡) during the estimation
of the fixed effects coefficients in the linear predictor. However,
when survival models include random effects or involve estima-
tion using Bayesian techniques, it is necessary to fully specify and
model the baseline hazard function. In this paper, we approxi-
mate the baseline hazard using a piecewise constant function [14]
such that we approximate the model (1) using the piecewise con-
stant hazard mixed effects model [19]. We use this approximation
because modeling the baseline hazard as a piecewise constant
function in this setting allows for relatively convenient compu-
tation. We first partition the time of the study into 𝐽 intervals,
where we assume that the baseline hazard within a particular
time interval is constant. Please see Section 3 for a discussion
on choosing the number of time intervals 𝐽 . Let us define the
cut points 0 = 𝜏0 < 𝜏1 < . . . < 𝜏𝐽 = ∞, and let ℎ𝑗 be the constant
baseline hazard within interval 𝑗,

[
𝜏𝑗−1, 𝜏𝑗

)
. We then approximate

(1) using the model

ℎkij = ℎ𝑗 exp
(
𝜂ki

)
, (2)

where ℎ𝑗 is the baseline hazard for interval 𝑗 and ℎkij is the
constant hazard corresponding to subject 𝑖 in group 𝑘 within
interval 𝑗.

The observed data for each subject includes their observed
time 𝑦ki and their event indicator 𝛿ki. We extend these
to define analogous measures for each interval, where
𝑡∗kij = max

[
min

(
𝑦ki, 𝜏𝑗

)
− 𝜏𝑗−1, 0

]
is the amount of time sub-

ject 𝑖 in group 𝑘 survived within interval 𝑗, and 𝑑kij =
𝐼
(
𝜏𝑗−1 ≤ 𝑦ki < 𝜏𝑗, 𝛿ki = 1

)
is the indicator of whether the sub-

ject died during interval 𝑗. To better clarify 𝑡∗kij, this term has
three possible values, determined by the relative value of their
observed time 𝑦ki to the interval cut points:

𝑡∗kij =
⎧⎪⎨⎪⎩
𝜏𝑗 − 𝜏𝑗−1, 𝑦ki > 𝜏𝑗 ;
𝑦ki − 𝜏𝑗−𝑖, 𝜏𝑗−1 < 𝑦ki ≤ 𝜏𝑗 ;
0, 𝑦ki ≤ 𝜏𝑗−1.

We can then treat the death indicators 𝑑kij as if they are inde-
pendent Poisson observations with means 𝜇kij = 𝑡∗kijℎkij. Conse-
quently, we estimate the fixed and random effect parameters of
our model by fitting the data using the log-linear model

log𝜇kij = log 𝑡∗kij + 𝜓𝑗 + 𝜂ki, (3)

where 𝜓𝑗 = log
(
ℎ𝑗
)

is the logarithm of the constant hazard
within interval 𝑗 and log

(
𝑡∗kij

)
, which represents the log of the

time a subject survived within interval 𝑗, is treated as an offset to
the model. We treat the 𝑑kij values as the outcome (i.e., response)
values of model (3) for each subject 𝑖 in group 𝑘 for each interval
𝑗.

Let us define d𝑘 =
(
𝑑𝑘11, . . . , 𝑑𝑘1𝐽 , . . . , 𝑑kn𝑘1, . . . , 𝑑kn𝑘𝐽

)𝑇 as the
vector of death indicator values for all subjects in group 𝑘 and all
𝐽 time intervals. Then, the piecewise constant hazard likelihood
is defined as

𝑓
(
d𝑘|X𝑘, 𝛼𝑘; 𝜃

)
=

𝑛𝑘∏
𝑖=1

𝐽∏
𝑗=1

[
𝐼
(
𝑡∗kij > 0

)
𝜇kij

]𝑑kij
exp

[
−𝐼

(
𝑡∗kij > 0

)
𝜇kij

]
,

(4)
where 𝜇kij is defined in (3), and 𝐼

(
𝑡∗kij > 0

)
= 1 indicates that a

subject 𝑖 in group 𝑘 survived at least part way through interval 𝑗,
0 if the subject died or was censored before interval 𝑗.

Now we may defined the form of the linear predictor term 𝜂ki used
within this model. We start by introducing the linear predictor
term used in the traditional generalized linear mixed model [10,
22, 23]

𝜂ki = x𝑇ki𝜷 + z𝑇ki𝜸𝑘 = x𝑇ki𝜷 + z𝑇ki𝚪𝝐𝑘, (5)

where 𝜷 =
(
𝛽1, . . . , 𝛽𝑝

)𝑇 is a p-dimensional vector for the fixed
effects coefficients (𝜷 represents the log hazard ratio values for
each predictor and excludes an intercept, just as in a typical Cox
proportional hazards model), 𝚪 is the Cholesky decomposition of
the random effects covariance matrix 𝚺 such that 𝚪𝚪𝑇 = 𝚺, 𝜸𝑘 =
𝚪𝝐𝑘 is a q-dimensional vector of unobservable random effects
(including the random intercept) for group 𝑘where 𝝐𝑘 ∼ 𝑁𝑞(0, I),
and zki is a q-dimensional vector that includes an intercept term
and a subset of xki.

We reformulate the linear predictor of (5) using the technique
described in Heiling et al. [13], where we decompose the random
effects 𝜸𝑘 into a factor model with 𝑟 latent common factors and
we assume 𝑟 ≪ 𝑞. As a result, we assume 𝛾𝑘 = B𝜶𝑘, where B is the
𝑞 × 𝑟 loading matrix and 𝛼𝑘 represents the 𝑟 latent common fac-
tors. We assume the latent factors 𝛼𝑘 are uncorrelated and follow
a 𝑁𝑟(𝟎, I) distribution. We re-write the linear predictor as

𝜂ki = x𝑇ki𝜷 + z𝑇kiB𝜶𝑘. (6)

In the representation of (6), the random component of the linear
predictor has variance Var(B𝜶𝑘)=BB𝑇 =𝚺, which is low rank. By
using this representation, we reduce the dimension of the latent
space from 𝑞 to 𝑟. As a result, this reduces the dimension of the
integral in the likelihood, which reduces the computational com-
plexity of the E-step in the EM algorithm described in Section 2.2.
Consequently, this factor decomposition reduces the computa-
tional time of the algorithm and enables our method to scale to
hundreds of predictors [13].

In order to estimate B, let b𝑡 ∈ ℝ𝑟 be the 𝑡-th row of B and b =(
b𝑇1 , . . . ,b

𝑇
𝑞

)𝑇
. We then reparameterize the linear predictor as

𝜂ki = x𝑇ki𝜷 + z𝑇kiB𝜶𝑘 =
(

x𝑇ki
(
𝜶𝑘 ⊗ zki

)𝑇 J⋄
)(𝜷

b

)
(7)
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in a manner similar to Chen and Dunson [22] and Ibrahim
et al. [23], where J⋄ is a matrix that transforms b to vec(B) such
that vec(B) = J⋄b and J⋄ is of dimension (qr) × (qr). The vec-
tor of parameters 𝜽 =

(
𝜷𝑇 ,b𝑇 ,𝝍𝑇

)𝑇 are the main parameters of
interest.

We denote the true value of 𝜽 as 𝜽∗ =
(
𝜷∗𝑇 ,b∗𝑇 ,𝝍∗𝑇 )𝑇 =

argmin𝜽E𝜽[−𝓁(𝜽)] where 𝓁(𝜽) is the observed log-likelihood
across all 𝐾 groups such that 𝓁(𝜽) =

∑𝐾

𝑘=1𝓁𝑘(𝜽), where 𝓁𝑘(𝜽) =(
1∕𝑛𝑘

)
log ∫ 𝑓(d𝑘|X𝑘,𝜶𝑘;𝜽

)
𝜙
(
𝜶𝑘

)
𝑑𝜶𝑘.

Our primary goal is to select the true nonzero fixed and random
effects, that is, identify the set

𝑆 = 𝑆1 ∪ 𝑆2 =
{
𝑗 ∶ 𝛽∗

𝑙
≠ 0

}
∪
{
𝑡 ∶ ‖‖b∗

𝑡
‖‖2 ≠ 0

}
,

where 𝑆1 and 𝑆2 represent the true fixed and random effects,
respectively. When b𝑡 = 𝟎, this indicates that the effect of covari-
ate 𝑡 is fixed across the 𝐾 groups (i.e., the corresponding 𝑡-th row
and column of 𝚺 is set to 𝟎).

Our objective is to solve the penalized likelihood problem of (8):

�̂� = argmin𝜽 − 𝓁(𝜽) + 𝜆0

𝑝∑
𝑙=1
𝜌0
(
𝛽𝑙
)
+ 𝜆1

𝑞∑
𝑡=1
𝜌1
(‖‖b𝑡‖‖2

)
, (8)

where 𝓁(𝜽) is the observed log-likelihood for all 𝐾 groups,
𝜌0(𝑡) and 𝜌1(𝑡) are general folded-concave penalty functions, and
𝜆0 and 𝜆1 are positive tuning parameters. The penalty func-
tions applied to the fixed effects, represented by 𝜌0(𝑡), could
include the 𝐿1 penalty (LASSO), the smoothly clipped absolute
deviation (SCAD) penalty, and the minimax concave penalty
(MCP) penalty [24, 25]. The penalty functions applied to the
random effects, represented by 𝜌1(𝑡), could include the group
LASSO, the group MCP, or the group SCAD penalties pre-
sented by Breheny and Huang [26] since we treat the elements
of b𝑡 as a group and penalize them in a group wise manner.
As a result, these groups of b𝑡 are estimated to be either all
zero or all nonzero, which means that we select covariates to
have random effects (b̂𝑡 ≠ 𝟎) or fixed effects (b̂𝑡 = 𝟎) across the
𝐾 groups.

Before moving on to the specifics of the algorithm used to per-
form this variable selection procedure and estimate the fixed
and random effect parameters of interest, we want to provide
some further clarifications about the values of 𝑝, 𝑞, and 𝑟 dis-
cussed in both this section and remaining sections. The values
of 𝑝 and 𝑞 refer to the full set of fixed and random effect pre-
dictors, respectively, that are considered in the model and would
be input into the phmmPen_FA variable selection procedure.
Let us represent the true number of non-zero fixed and ran-
dom effects of in the model as 𝑝∗ ≤ 𝑝 and 𝑞∗ ≤ 𝑞, respectively.
When we claim that 𝑟 ≪ 𝑞 (i.e., 𝑟 is much less than 𝑞), this refers
to the relative size of the number of latent factors used in the
model versus the total number of random effects considered in
the model. We do not necessarily assume 𝑟 ≪ 𝑞∗ holds for the
true number of random effects in the model, although we do
assume 𝑟 < 𝑞∗.

2.2 | MCECM Algorithm

We solve (8) for some specific
(
𝜆0, 𝜆1

)
using a Monte Carlo expec-

tation conditional minimization (MCECM) algorithm [27].

Our objective within the 𝑠th iteration of the MCECM algorithm
is to evaluate the expectation of (E-step) and minimize (M-step)
the penalized Q-function defined in (9):

𝑄𝜆

(
𝜽|𝜽(𝑠)) = 𝐾∑

𝑘=1
𝐸
{
− log

(
𝑓
(
d𝑘,X𝑘, 𝛼𝑘;𝜽|D𝑜;𝜽(𝑠)

))}
+ 𝜆0

𝑝∑
𝑗=1
𝜌0
(
𝛽𝑗
)
+ 𝜆1

𝑞∑
𝑡=1
𝜌1
(‖‖b𝑡‖‖2

)
= 𝑄1

(
𝜽|𝜽(𝑠)) +𝑄2

(
𝜽(𝑠)

)
+ 𝜆0

𝑝∑
𝑗=1
𝜌0
(
𝛽𝑗
)
+ 𝜆1

𝑞∑
𝑡=1
𝜌1
(‖‖b𝑡‖‖2

)
,

(9)

where
(
d𝑘,X𝑘,𝜶𝑘

)
gives the complete data for group 𝑘, D𝑘,𝑜 =(

d𝑘,X𝑘

)
gives the observed data for group 𝑘, D𝑜 represents the

entirety of the observed data, and

𝑄1
(
𝜽|𝜽(𝑠)) = −

𝐾∑
𝑘=1

∫ log
[
𝑓
(
d𝑘|X𝑘,𝜶𝑘;𝜽

)]
𝜙
(
𝜶𝑘|D𝑘,𝑜;𝜽(𝑠)

)
𝑑𝜶𝑘,

(10)

𝑄2
(
𝜽(𝑠)

)
= −

𝐾∑
𝑘=1

∫ log
[
𝜙
(
𝜶𝑘

)]
𝜙
(
𝜶𝑘|D𝑘,𝑜;𝜽(𝑠)

)
𝑑𝜶𝑘 (11)

where 𝑓
(
d𝑘|X𝑘,𝜶𝑘;𝜽

)
was defined in (4) and 𝜙

(
𝜶𝑘|D𝑘,𝑜;𝜽(𝑠)

)
represents the posterior distribution of the latent factors 𝜶𝑘.

Our goal in the E-step of the algorithm is to approximate the
r-dimensional integral expressed in (10). We first specify 𝐽 time
intervals (see Section 3 for a discussion on choosing a value of
𝐽 ) defined so that there are an approximately equal number of
events within each time interval [14]. If a subject survived at least
part-way through 𝑗∗ intervals (i.e., 𝑡∗kij > 0 for 𝑗 = 1, . . . , 𝑗∗ ≤ 𝐽 ),
the long-form dataset contains 𝑗∗ observations for that subject.
For subject 𝑖 in group 𝑘 that survived at least part-way through
𝑗∗ time intervals, we define 𝑑kij = 𝐼

(
𝜏𝑗−1 ≤ 𝑦ki < 𝜏𝑗, 𝛿ki = 1

)
for

𝑗 = 1, . . . , 𝑗∗ ≤ 𝐽 , the subject’s xki and zki covariates are repeated
for all 𝑗∗ observations, the log

(
𝑡∗kij

)
offset term is calculated for

each interval, and additional reference coded indicator values
vkij =

(
𝑣kij,1, . . . , 𝑣kij,𝐽

)𝑇 for the time interval 𝑗 = 1, . . . , 𝑗∗ are
specified. The first element vkij (element 𝑣kij,1) is always 1, encod-
ing a fixed effect intercept which represents time interval 1. For
time interval 𝑗 > 1, the 𝑗-th element vkij (element 𝑣kij,𝑗) is also 1.
All other elements of vkij are set to 0.

Instead of estimating 𝜓 directly, we reformulate this quantity as
�̃� , where 𝜓1 = �̃�1 and 𝜓𝑗 = �̃�1 + �̃�𝑗 for 𝑗 ≥ 2. In this formula-
tion, �̃�1 estimates the log of the baseline hazard for time inter-
val

[
𝜏0, 𝜏1

)
, and �̃�1 + �̃�𝑗 estimates the log of the baseline hazard

for time interval
[
𝜏𝑗−1, 𝜏𝑗

)
for 𝑗 = 2, . . . , 𝐽 . By estimating the log

baseline hazard parameters in this way, we are including a fixed
effect intercept in our model. By including a fixed effect inter-
cept, we ensure that the full zki vector, which includes a random
intercept, is a subset of the subject’s fixed effects.

4 of 13 Statistics in Medicine, 2025



We can re-write the log-linear model of (3) as

log𝜇kij = log 𝑡∗kij + v𝑇kij�̃� + x𝑇ki𝛽 + z𝑇kiB𝜶𝑘. (12)

2.2.1 | Monte-Carlo E-Step

The integrals in the Q-function do not have closed forms.
We approximate these integrals using a Markov Chain Monte
Carlo (MCMC) sample of size M from the posterior density
𝜙
(
𝜶𝑘|D𝑘,𝑜;𝜽(𝑠)

)
. Let 𝜶(𝑠,𝑚)

𝑘
be the 𝑚th simulated 𝑟-dimensional

vector from the posterior of the latent common factors, 𝑚 =
1, . . . ,𝑀 , at the 𝑠th iteration of the algorithm for group 𝑘. The
integral in (10) can be approximated as:

𝑄1
(
𝜽|𝜽(𝑠)) ≈ − 1

𝑀

𝑀∑
𝑚=1

𝐾∑
𝑘=1

log𝑓
(

d𝑘|X𝑘,𝜶
(𝑠,𝑚)
𝑘

;𝜽
)

= − 1
𝑀

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝐽∑
𝑗=1
𝐼
(
𝑡∗kij > 0

)[
𝑑kij log𝜇(𝑠,𝑚)kij − 𝜇(𝑠,𝑚)kij

]
,

(13)

where log𝜇(𝑠,𝑚)
kij = log 𝑡∗kij + v𝑇kij�̃� + x𝑇ki𝜷 + z𝑇kiB𝜶

(𝑠,𝑚)
𝑘

. We use the
No-U-Turn Sampler Hamiltonian Monte Carlo sampling proce-
dure (NUTS HMC) from the Stan software [28, 29] to sample
the latent factors 𝛼(𝑠,𝑚)

𝑘
; we use this sampling procedure (imple-

mented using the rstan R package [30]) because this helps
improve the overall speed and efficiency of our E-step com-
pared to other appropriate sampling method options, thereby
helping to improve the speed of the overall MCECM algorithm.
While we used the NUTS HMC sampling procedure for all
of the analyses described in this paper, our software (see the
Data S1) allows for other MCMC sampling procedures including
the Metropolis-within-Gibbs with an adaptive random walk sam-
pler [31] and the Metropolis-within-Gibbs with an independence
sampler [32].

2.2.2 | M-Step

In the M-step of the algorithm, we aim to minimize

𝑄1,𝜆
(
𝜽|𝜽(𝑠)) = 𝑄1

(
𝜽|𝜽(𝑠)) + 𝜆0

𝑝∑
𝑙=1
𝜌0
(
𝛽𝑙
)
+ 𝜆1

𝑞∑
𝑡=1
𝜌1
(‖‖b𝑡‖‖2

)
(14)

with respect to 𝜽 =
(
𝜷𝑇 ,b𝑇 , �̃�𝑇

)𝑇 . We do this by using a
Majorization-Minimization algorithm with penalties applied to
the fixed effects 𝜷 and the rows of B. The step size of the
Majorization-Minimization algorithm is estimated using a proxi-
mal gradient line search algorithm [33].

Let 𝑠 represent the iteration of the MCECM algorithm, and let 𝑔
represent the iteration within a particular M-step of the MCECM
algorithm such that the coefficients for the g-th M-step update
within the s-th MCECM iteration is 𝜽(𝑠,𝑔).

Initialization: We initialize the parameters 𝜽(𝑠,0) using 𝜽(𝑠−1).
The step size for the Majorization-Minimization algorithm, 𝑐(𝑠,0),
is initialized using 𝑐(𝑠−1) (value of 1.0 if 𝑠 = 1). Details on the ini-
tialization of 𝜽(0) is given in Section 2.2.3.

Coefficient updates: Conditional on 𝜷(𝑠,𝑔−1) and b(𝑠,𝑔−1), each
�̃�

(𝑠,𝑔)
𝑗

for 𝑗 = 1, . . . , 𝐽 is given a single update using the

Majorization-Minimization algorithm specified by Breheny and
Huang [26] with no penalization applied.

Conditional on b(𝑠,𝑔−1) and the recently updated �̃� (𝑠,𝑔), each
𝛽
(𝑠,𝑔)
𝑙

for 𝑙 = 1, . . . , 𝑝 is given a single update using the
Majorization-Minimization algorithm specified by Breheny and
Huang [26].

Conditional on the recently updated 𝜷(𝑠,𝑔) and �̃� (𝑠,𝑔), each b(𝑠,𝑔)
𝑡

for 𝑡 = 1, . . . , 𝑞 is updated using the Majorization-Minimization
coordinate descent grouped variable selection algorithm speci-
fied by Breheny and Huang [26].

If necessary, the step size 𝑐𝑠,𝑔+1 is updated using a proximal gradi-
ent line search algorithm [33] and multiplied by a factor of 0.95.

Convergence: The coefficient update steps are repeated until
the convergence criteria specified in Section S1.4 is reached
or until the M-step reaches its maximum number of iterations
(default 50).

2.2.3 | MCECM Algorithm

The full MCECM algorithm for estimating the parameters with a
particular

(
𝜆0, 𝜆1

)
proceeds as described below.

Initialization: Very briefly, we initialize 𝜽(0) using either the
coefficients from a previous model fit or from a naive model
assuming no random effects if no previous model fit is available.
We include additional comments on initialization later in this
section; see Section S1.4 for full details.

E-step: For EM iteration 𝑠, a burn-in sample from the posterior
distribution of the latent factors is run and discarded. A sample of

size𝑀 (𝑠) from the posterior (�̃�(𝑠)
𝑘

=
((
𝜶
(𝑠,1)
𝑘

)𝑇
, . . . ,

(
𝜶
(𝑠,𝑀)
𝑘

)𝑇)𝑇

for 𝑘 = 1, . . . , 𝐾) is then drawn and retained for the M-step.

M-step: Parameter estimates of �̃� (𝑠), 𝜷 (𝑠), and b(𝑠) are then
updated as described in the M-step procedure given in
Section 2.2.2.

Convergence: The E-step and M-step are repeated until the
MCECM convergence condition specified in Section S1.4 is met
two consecutive times (default) or until the maximum number of
EM iterations is reached (25 in our simulations).

Sections S1.2 and S1.3 outline the process of model selection and
finding optimal tuning parameters. In brief, the algorithm runs a
computationally efficient two-stage approach to pick the optimal
set of tuning parameters. In the first stage of this approach, the
algorithm keeps the fixed effect penalty constant at the minimum
value of the fixed effects penalty sequence 𝜆0,min, and searches
over the sequence of the random effects penalties from the mini-
mum random effect penalty 𝜆1,min to the maximum value 𝜆1,max.
We use model selection criteria (BIC-ICQ [23]) to select the best
random effect penalty, or 𝜆1,opt. In the second stage, the algorithm
keeps the random effect penalty fixed at 𝜆1,opt and searches over
the sequence of fixed effect penalties from 𝜆0,min to 𝜆0,max. The
overall best model is chosen from the models in the second stage
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using model selection criteria. Details on the calculation of the 𝝀0
and 𝝀1 sequences are given in Section S1.3.

During the development of this method, we found that certain
initialization procedures helped improve variable selection and
estimation results. Therefore, we briefly summarize our initial-
ization procedure here, with full details of our initialization and
convergence procedures provided in Section S1.4. First, we out-
line how fixed and random effect coefficients are initialized in
the first model (using minimum penalties 𝜆0,min and 𝜆1,min) in the
sequence of models fit for the variable selection procedure.

We initialize the fixed effects coefficients (baseline constant haz-
ard coefficient values �̃� (0) and predictor fixed effect coefficient
values 𝜷 (0)) by first fitting a penalized piecewise constant hazard
model assuming only fixed effects and no random effects. In this
model, the �̃� (0) coefficients are not penalized, and we penalize the
𝜷 (0) coefficients using the minimum fixed effects penalty 𝜆0,min.
The coefficient values from this minimum penalty model assum-
ing no random effects are used as input for the first model of the
overall variable selection procedure.

Based on the initialized 𝜷(0), the predictors with non-zero initial-
ized fixed effects are also initialized to have non-zero random
effects (i.e., the corresponding rows of the B(0) matrix are set
to non-zero values), and predictors with zero-valued initialized
fixed effects are initialized to have zero-valued random effects
(i.e., the corresponding rows of the B(0) matrix are set to zero).
This initial screening of random effects helps improve the speed
of the algorithm. See Section S1.4 for details on how the non-zero
elements of B(0) are initialized.

After we fit the first model in the overall variable selection proce-
dure using the MCECM algorithm, the fixed and random effect
coefficients in consecutive models are initialized using the val-
ues from the previous model fit. We found that progressing
through penalty values from the minimum penalty to the max-
imum penalty (as discussed above and in Sections S1.2 and S1.3)
significantly improved initialization of subsequent models, as
opposed to proceeding from the maximum penalty to the mini-
mum penalty as some other fixed-effects only penalization meth-
ods do [24, 25].

2.3 | Estimation of the Number of Latent
Factors

Performing our proposed phmmPen_FA method requires spec-
ifying the number of latent factors 𝑟. Since 𝑟 is typically unknown
a priori, this value needs to be estimated. Here, we use the Growth
Ratio (GR) procedure [34].

The GR method for our application requires a 𝑞 ×𝐾 matrix of
observed random effects. Since these random effects cannot be
directly observed, we instead calculate pseudo random effects by
first fitting a penalized piecewise constant survival model with a
small penalty to each group individually using the random effect
covariates of interest as the predictors in the model. We then take
these group-specific estimates and center them so that all fea-
tures have a mean of 0. Let these q-dimensional group-specific
estimates be denoted as �̂�k for each group 𝑘 = 1, . . . , 𝐾 . We then

define G =
(
�̂�𝟏, . . . , �̂�K

)
as the final 𝑞 ×𝐾 matrix of pseudo ran-

dom effects.

Let 𝜉𝑗(𝐴) be the 𝑗-th largest eigenvalue of the positive semidefi-
nite matrix𝐴, and let �̃�qK,𝑗 ≡ 𝜉𝑗

(
GG𝑇 ∕(qK)

)
= 𝜉𝑗

(
G𝑇G∕(qK)

)
. To

find the GR estimator, we first order the eigenvalues of GG𝑇 ∕(qK)
from largest to smallest. Then, we calculate the following ratios:

GR(𝑗) ≡ log[𝑉 (𝑗 − 1)∕𝑉 (𝑗)]
log[𝑉 (𝑗)∕𝑉 (𝑗 + 1)]

=
log

(
1 + �̃�∗qK,𝑗

)
log

(
1 + �̃�∗qK,𝑗+1

) , 𝑗 = 1, 2, . . . , 𝑈

(15)
where 𝑉 (𝑗) =

∑min(𝑞,𝐾)
𝑙=𝑗+1 �̃�qK,𝑙, �̃�∗

qK,𝑗 = �̃�qK,𝑗∕𝑉 (𝑗), and 𝑈 is a
pre-defined constant. Then, we estimate 𝑟 by

�̂�GR = max1≤𝑗≤𝑈 GR(𝑗) (16)

3 | Simulations

In this section, we examine how well the phmmPen_FA
algorithm performs variable selection on the fixed and random
effects covariates for piecewise constant hazard mixed effects
models under several different conditions. In all of these sim-
ulations, we use the MCP penalty (MCP penalty for the fixed
effects, group MCP penalty for the rows of the B matrix) and
the BIC-ICQ [23] model selection criterion with the abbreviated
two-stage grid search as described in the Section 2.2 (see full
details in Section S1.2). In order to determine the robustness of
our variable selection procedure based on the assumed value of
𝑟, we fit models in one of two ways: we estimated the number of
common factors 𝑟 using the Growth Ratio estimation procedure,
or we use the true value of 𝑟.

In all of our simulations, we specified 𝐽 = 8 time intervals for the
piecewise constant hazard mixed effect survival model; we chose
𝐽 = 8 because this is the default number of time intervals used
within the piecewise constant hazard procedure implemented in
the SAS proc phreg command [35]. We created the intervals such
that there were an approximately equal number of events within
each time interval, as suggested by Allison [14]. There are sev-
eral alternative options for choosing the number of time intervals
to include in a piecewise constant hazard mixed effect model.
Castillo and van der Pas [36] proposed using 𝐽 =

√
𝑛∕ log 𝑛 as

a data-driven estimate for the number of intervals. Our review
of the literature suggests that it is common to choose between 5
and 10 time intervals for piecewise constant hazard models when
they are fitting real data [17, 19, 35, 37, 38]. One could try several
values of 𝐽 and compare the models using appropriate Bayesian
model selection criteria, including the DIC [39–41], the 𝐿 mea-
sure [18, 42], or the BIC-ICQ [23]. In general, it is suggested to use
a moderate number of time intervals because using too many time
intervals can result in unstable estimates, but too few time inter-
vals can lead to an inadequate model fit [38]. In the Section S3.5,
we repeat some simulations assuming a range between 5 and
10 time intervals in our phmmPen_FA procedure. The variable
selection performance was very similar across this range of time
intervals, see the Supporting Information S2 for full details. Our
software in the package phmmPen_FA recommends choosing
between 5 and 10 time intervals and specifies a default of eight
time intervals.
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3.1 | Variable Selection in Survival Data With
100 Predictors

We examine the performance and scalability of the phmm-
Pen_FA algorithm when performing variable selection in high
dimensions of 𝑝 = 100 total predictors. We simulated survival
data from a piecewise constant hazard mixed effect model with 𝑝
predictors. Of 𝑝 total predictors, we assume that the first five pre-
dictors have truly non-zero fixed and random effects (i.e., 𝑝∗ =
5 and 𝑞∗ = 𝑝∗ + 1, where the additional 1 comes from includ-
ing a random intercept to account for group-specific variations
in the baseline hazard), and the other 𝑝 − 5 predictors have
zero-valued fixed and random effects. We specified a full model
for the algorithm such that the random effect predictors equaled
the fixed effect predictors (e.g., in the full model 𝑞 = 𝑝 + 1), and
our aim was to select the set of true predictors and random effects.

To simulate the data, we set the total sample size to 𝑁 = 1000
and considered the number of groups𝐾 to be either 5 or 10, with
an equal number of subjects per group. We set up the random
effects covariance matrix by specifying a B matrix with dimen-
sions (𝑝 + 1) × 𝑟, where 𝑝 + 1 represents the 𝑝 predictors speci-
fied in the X matrix plus the random intercept, and the number
of latent common factors 𝑟 was set to three. Six of these 𝑝 + 1
rows—corresponding to the true five predictors plus the random
intercept—had non-zero elements, while the remaining 𝑝 − 5
rows were set to zero. For each value of 𝑟, we considered a B
matrix that produced 𝚺 = BB𝑇 with either small or moderate
variances and eigenvalues; see Section S1.1 for further details.
These two cases are referred to as the ‘small’ or ‘moderate’ B
matrices in the simulation results presented in this section. We
generate both moderate and strong predictor effects, where all 5
of the true fixed effects have coefficient values of 0.5 or 1.0, respec-
tively. Each condition was evaluated using 100 total simulated
datasets.

In order to sample event times T =
(
T𝑇

1 , . . . ,T
𝑇
𝑘

)𝑇 where
T𝑘 =

(
𝑇𝑘1, . . . , 𝑇kn𝑘

)𝑇 , we defined five half-year time intervals
as {[0,0.5) , [0.5,1.0) , [1.0,1.5) , [1.5,2.0) , [2.0,∞)}. The cor-
responding log baseline hazard values for these intervals were
𝜓∗
𝑗
= (−1.5,1.0,2.7,3.7,6.8).

For group 𝑘, we generated the event times 𝑇ki, 𝑖 = 1, . . . , 𝑛𝑘,
using the following procedure: We first simulated values from
the exponential distribution 𝑒kij ∼ Exp

(
𝑅kij

)
starting with 𝑗 = 1,

where the exponential rate 𝑅kij = exp
(
𝜓𝑗 + x𝑇ki𝜷 + z𝑇ki𝜸𝑘

)
, where

𝛾𝑘 ∼ 𝑁6
(
0,BB𝑇

)
. If the inequality 𝜏𝑗 < 𝜏𝑗−1 + 𝑒kij was true, then

we simulated 𝑒kij using the 𝑗 + 1 interval parameters until either
the inequality 𝜏𝑗 >= 𝜏𝑗−1 + 𝑒kij held for a particular 𝑗∗ or the last
time interval 𝐽 was reached. We then defined 𝑇ki = 𝑒kij∗ + 𝜏𝑗∗−1.

Censoring times C =
(
C𝑇

1 , . . . ,C
𝑇
𝑘

)𝑇 where C𝑘 =(
𝐶𝑘1, . . . , 𝐶kn𝑘

)𝑇 were simulated from the uniform distribu-
tion 𝐶ki ∼ Unif(0, 5), which assumes an end to follow-up after
5 years. The aforementioned event time simulation in combina-
tion with this censoring time simulation resulted in censoring
rates that fell within 11% to 26% for all simulation conditions;
average censoring rates across the 100 simulation replicates for
the conditions mentioned ranged from 16% to 19%. The average

median follow-up time was approximately 0.60 years for the
various conditions.

For individual 𝑖 in group 𝑘, the vector of predictors for the fixed
effects is given as xki =

(
𝑥ki,1, . . . , 𝑥ki,𝑝

)𝑇 , which does not include
an intercept, and we define the random effects zki =

(
1, xki

)
,

where 𝑥ki,𝑙 ∼ 𝑁(0, 1) for 𝑙 = 1, . . . , 𝑝, and each x𝑙 was standard-
ized as described in Section 2.1. We include a random intercept in
the random effects predictors zki to allow for the baseline hazard
to vary across groups.

We prepared the data to be fit with a piecewise constant haz-
ard survival model by calculating eight time intervals—specified
such that there were an approximately equal number of
events within each time interval—and then creating the
long-form dataset specified in Section 2.2 using the sur-
vival::survSplit() function from the survival R package
[43, 44].

The results for these simulations are presented in Tables 1 and
2. Table 1 provides the average true and false positive percent-
ages for both the fixed and random effects variable selection, the
median time in hours to complete the variable selection proce-
dure, the average of the mean absolute deviation between the
fixed effects coefficient estimates and the true fixed effects coef-
ficients across all simulation replicates, and the average of the
Frobenius norm of the difference between the estimated random
effect covariance matrix �̂� = B̂B̂

T
and the true covariance matrix

𝚺 = BBT (the Frobenius norm was standardized by the number
of random effects selected in the best model). The true positive
percentages express the average percent of the true predictors
selected in the best models across simulation replicates, and the
false positive percentages express the average percent of false pre-
dictors selected in the best models. Table 2 gives the Growth Ratio
estimation procedure results, including the average estimate of 𝑟
and the proportion of times that the Growth Ratio estimate of 𝑟
was underestimated, correct, or overestimated. All simulations
were completed on a high performance computing cluster with
CPU Intel processors between 2.3 and 2.5 GHz.

We see from Table 1 that the phmmPen_FA method is able to
accurately select both the fixed and random effects within the
piecewise constant hazard mixed effects model across a variety of
conditions. The true positive rates of the phmmPen_FA method
are generally above 90% for both fixed and random effects; the
fixed effects true positives increase when the true predictor effects
are larger, and the random effects true positives increase when
the number of groups in the data increase. The false positive rates
are less than 6.5% for fixed effects and less than 3.9% for the ran-
dom effects across all conditions.

We can see from Table 2 that the Growth Ratio estimation proce-
dure generally underestimates the number of latent factors 𝑟 for
the simulated data set-ups used in this section. We expect that this
is a result of a combination of reasons, including relatively low
numbers of groups 𝐾 in the data and B matrices that created 𝚺
matrices with relatively low eigenvalues. This is supported by the
results that show an improvement in the accuracy of the estima-
tion as the number of groups and the relative size of the B matrix
increases. Additionally, the Growth Ratio utilizes group-specific
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TABLE 1 | Variable selection results for the 𝑝 = 100 piecewise constant hazard mixed effects simulations, including true positive (TP) percentages
for fixed and random effects, false positive (FP) percentages for fixed and random effects, the median time in hours for the algorithm to complete (𝑇med),
and the average of the mean absolute deviation (Abs. Dev. [Mean]) between the coefficient estimates and the true 𝛽 values across all simulation replicates.
Column B describes the general size of both the variances and eigenvalues of the resulting 𝚺 = BB𝑇 random effects covariance matrix. Column ‘𝑟 Est.’
refers to the method used to specify 𝑟 in the algorithm: The Growth Ratio (GR) estimate or the true value of 𝑟. Column ||D||𝐹 represents the average
across simulation replicates of the Frobenius norm of the difference (D) between the estimated random effects covariance matrix �̂� and the true random
effects covariance matrix 𝚺; the Frobenius norm was standardized by the number of true random effects selected in the model.

𝜷 𝑲 B 𝒓 est. TP (%) Fixef FP (%) Fixef TP (%) Ranef FP (%) Ranef 𝑻med Abs. dev. (Mean) ||D||𝑭

0.5 5 Small True 91.80 2.39 93.00 0.65 3.81 0.23 0.31
GR 90.80 2.46 91.60 1.40 2.34 0.22 0.42

Moderate True 91.00 4.85 94.40 1.31 6.96 0.34 0.63
GR 91.00 4.18 92.40 2.13 3.78 0.32 0.70

10 Small True 94.60 2.18 98.60 0.99 4.81 0.17 0.27
GR 94.00 3.28 95.80 1.63 2.66 0.17 0.31

Moderate True 90.00 5.25 94.60 3.57 6.08 0.24 0.54
GR 86.20 6.42 93.40 3.83 3.02 0.23 0.61

1.0 5 Small True 99.20 1.05 96.00 0.16 6.01 0.26 0.31
GR 99.00 1.09 93.20 0.54 3.50 0.25 0.39

Moderate True 97.60 2.92 95.20 0.65 8.72 0.36 0.63
GR 95.20 2.75 94.20 1.22 3.63 0.34 0.71

10 Small True 100.00 1.02 99.60 0.15 5.14 0.20 0.27
GR 99.80 1.20 97.00 0.34 2.97 0.23 0.30

Moderate True 98.80 2.39 99.60 1.01 7.55 0.27 0.55
GR 98.20 4.22 98.80 0.66 4.02 0.33 0.61

TABLE 2 | Results of the Growth Ratio 𝑟 estimation procedure for 𝑝 = 100 piecewise constant hazard mixed effects simulation results, including
the average estimate of 𝑟 across simulations and percent of times that the estimation procedure underestimated 𝑟, gave the true 𝑟, or overestimated 𝑟.
Column B describes the general size of both the variances and eigenvalues of the resulting 𝚺 = BB𝑇 random effects covariance matrix.

𝜷 𝑲 B Avg. 𝒓 𝒓 underestimated (%) 𝒓 correct (%) 𝒓 overestimated (%)

0.5 5 Small 2.00 100 0 0
Moderate 2.00 100 0 0

10 Small 2.07 95 3 2
Moderate 2.20 85 10 5

1.0 5 Small 2.00 100 0 0
Moderate 2.00 100 0 0

10 Small 2.13 88 11 1
Moderate 2.19 83 15 2

penalized piecewise constant hazard coefficient estimates, and
these estimates might be sensitive to the fact that for some sim-
ulated datasets, not all groups had a sufficient number of events
within each time interval to get reasonable �̃� estimates, possibly
leading to less than stable pseudo random effect estimates. See a
further discussion on this topic in Sections S4.1 and S3.5.

Even though the Growth Ratio procedure consistently underesti-
mated 𝑟, this did not strongly impact the variable selection results
nor the bias of the fixed effects estimates selected in the best
models. When the algorithm used the Growth Ratio estimate of 𝑟
instead of the true estimate of 𝑟, the true and false positive rates

remained very consistent, with only slight decreases in true posi-
tive rates for the fixed and random effects when the Growth Ratio
procedure is used. The largest impact that underestimating 𝑟 had
on the bias of the fixed effects estimates was when 𝐾 = 10 and
𝛽 = 1.0.

Our observation in these simulations that underestimating the
number of latent factors 𝑟 does not harm our method’s per-
formance compared with using the true 𝑟 can be explained by
the eigenvalues of the random effects covariance matrix 𝚺. Our
assumption that 𝚺 can be represented by the low-rank (rank
𝑟) matrix of BB𝑇 (i.e., can be represented with 𝑟 latent factors)
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means that𝚺has 𝑟non-zero eigenvalues. The sizes of these eigen-
values provide an indication of how important each latent factor
is for representing 𝚺. Suppose we order these 𝑟 eigenvalues from
largest to smallest. If the first 𝑟 − 1 eigenvalues are relatively large
and the 𝑟-th eigenvalue is relatively small, this means that most of
the variation in 𝚺 can be represented by the first 𝑟 − 1 latent fac-
tors (i.e., the first 𝑟 − 1 columns of the B factor loadings matrix).

In our simulations, the moderate B results in eigenvalues (3.38,
3.38, 2.25), and the small B results in eigenvalues (1.5, 1.5, 1.0)
(see details of the B matrices in Section S1.1). Since the third
eigenvalue is smaller than the first two, this indicates that the first
two latent factors are the most important, and the third latent fac-
tor is of lesser importance. Therefore, if we underestimate r as 2
instead of 3 in our simulations, then we are perhaps not losing a
large amount of information when we try and estimate the ran-
dom effect covariance matrix 𝚺.

3.2 | Variable Selection in Survival Data With
500 Predictors

In order to further illustrate the scalability of our method, we
applied our method to survival simulations with 𝑝 = 500 covari-
ates. We simulated the event and censoring times from a piece-
wise constant hazard mixed effects model much like the proce-
dure described in Section 3.1, except the total number of pre-
dictors used in the analyses was 𝑝 = 500 instead of 𝑝 = 100. All
simulations assumed the true number of latent factors 𝑟 was 3
and the Growth Ratio method was used to estimate 𝑟. Just as in
the 𝑝 = 100 survival simulations, we specified a full model for the
algorithm such the random effect predictors equaled the fixed
effect predictors (e.g., 𝑞 = 𝑝 + 1), and our aim was to select the
set of true predictors and random effects. The variable selection
results to these simulations are given in Table 3. The median
times needed to complete these simulations took between 11.9
and 21.3 h.

When we compare specific data conditions (i.e., specific combi-
nations of the size of the fixed and random effects and the number

of groups) between Tables 1 and 3, we see that increasing the
number of total predictors input into the phmmPen_FA proce-
dure from 𝑝 = 100 to 500 tended to decrease the true positive rates
for both the fixed and random effects and increase the total time
needed to complete the variable selection procedure. Similar to
the 𝑝 = 100 simulations, the Growth Ratio procedure continued
to underestimate the number of latent factors in the underlying
model.

3.3 | Supplemental Simulations

The Section S3 provides results from additional simulations.
Section S3.1 compares our phmmPen_FA method to a naive
fixed-effects only variable selection approach (i.e., no random
effects incorporated into the survival model), implemented using
the ncvreg R package [25]. In terms of selecting the fixed effects
predictors, the phmmPen_FA method outperforms the naive
fixed-effects only method of ncvreg when the true fixed effects
coefficients are more moderate or when the true random effect
coefficients are larger; ncvreg performs comparably to phmm-
Pen_FA in situations when the true fixed effects coefficients
are larger and the random effects coefficients are smaller. As
expected, the ncvreg package has the advantage of performing
variable selection much faster since no random effects need to be
selected.

Section S3.2 illustrates how the phmmPen_FA method per-
forms when the mixed effects survival data is simulated using the
Weibull distribution instead of the piecewise constant hazard dis-
tribution. The results indicate that our method performs compa-
rably for either data generation mechanism, and our method even
performs slightly better on the Weibull-generated data according
to some metrics.

Section S3.3 examines how the phmmPen_FA method performs
when the true underlying data has a different number of true
fixed effects predictors and true random effects predictors. The
results show that our method can also accurately select the fixed
and random effects predictors in these scenarios.

TABLE 3 | Variable selection results for the 𝑝 = 500 piecewise constant hazard mixed effects simulations, including true positive (TP) percentages
for fixed and random effects, false positive (FP) percentages for fixed and random effects, the median time in hours for the algorithm to complete (𝑇med),
and the average of the mean absolute deviation (Abs. Dev. (Mean)) between the coefficient estimates and the true 𝛽 values across all simulation replicates.
Column B describes the general size of both the variances and eigenvalues of the resulting 𝚺 = BB𝑇 random effects covariance matrix. Column ‘𝑟 Est.’
refers to the method used to specify 𝑟 in the algorithm: The Growth Ratio (GR) estimate or the true value of 𝑟. Column ||D||𝐹 represents the average
across simulation replicates of the Frobenius norm of the difference (D) between the estimated random effects covariance matrix �̂� and the true random
effects covariance matrix 𝚺; the Frobenius norm was standardized by the number of true random effects selected in the model.

𝜷 𝑲 B Avg. 𝒓 TP (%) Fixef FP (%) Fixef TP (%) Ranef FP (%) Ranef 𝑻med Abs. Dev. (Mean) ||D||𝑭

0.5 5 Small 2.00 86.40 1.97 77.40 0.81 14.19 0.18 0.39
Moderate 2.00 80.60 3.91 76.40 1.63 19.40 0.24 0.77

10 Small 2.01 91.40 1.79 88.00 0.53 16.21 0.16 0.30
Moderate 2.04 81.60 5.82 80.80 2.44 23.62 0.20 0.69

1.0 5 Small 2.00 99.40 0.36 91.40 0.02 18.20 0.30 0.30
Moderate 2.00 93.60 0.79 85.00 0.12 19.77 0.39 0.72

10 Small 2.06 100.00 0.56 95.40 0.04 16.78 0.30 0.27
Moderate 2.03 97.20 1.31 92.80 0.18 24.31 0.40 0.64
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Section S3.4 further explores how the phmmPen_FA method
performs when the number of latent factors 𝑟 is purposefully
underestimated. In general, decreasing 𝑟 helps decrease the time
needed to complete the phmmPen_FA procedure. As the value
of 𝑟 used in the algorithm decreases and deviates further from the
true value of 𝑟, the true positives of the fixed and random effects
generally decreases; the false positives of the random effects gen-
erally increases; and the bias of the random effects covariance
matrix generally increases. However, the differences between
variable selection and bias performances across values of 𝑟 con-
tinue to be fairly minor.

Section S3.5 investigates how the phmmPen_FA method per-
forms when different numbers of time intervals 𝐽 are assumed
(values of 𝐽 from 5 to 10 were considered). In general, there
was very little difference in the variable selection performance
between different values of 𝐽 . In the data scenarios considered
in these simulations, smaller 𝐽 values improved the accuracy of
the Growth Ratio 𝑟 estimate. Smaller 𝐽 also decreased the median
time needed to complete the procedure.

4 | Case Study: Pancreatic Ductal
Adenocarcinoma

Patients diagnosed with Pancreatic Ductal Adenocarcinoma
(PDAC) generally face a very poor prognosis, where the 5-year
survival rate is 6% [45]. Consequently, it is of clinical interest to
robustly identify gene signatures that are associated with overall
survival to better predict patient prognosis in the clinic.

Selecting gene signatures for the prediction of clinical outcomes,
including survival outcomes, can often be inconsistent across
biomedical studies, where gene signatures identified in one study
may have little or no overlap with ones identified in other stud-
ies [46]. Consequences of this lack of replicability in gene sig-
nature selection include variable accuracy in predicting clinical
outcomes in new studies using these models [46, 47] and contra-
dictory effect estimates relating genes to the outcome [48]. This
lack of replicability across studies can come from small sample
size [47] and differences in data pre-processing steps [49, 50],
among other sources.

In order to improve replicability in the prediction of survival in
PDAC, we combine PDAC gene expression data from seven dif-
ferent studies [51–57]. The studies used in these analyses are
summarized in Table S1 (within Section S2.1). The seven com-
bined studies resulted in a sample size of 879 subjects with 539
events. In order to account and adjust for between-study hetero-
geneity, we apply our new method phmmPen_FA to fit a penal-
ized piecewise constant hazard mixed effects model to our data to
select predictors with study-replicable effects, where we assume
that predictor effects may vary between studies.

Moffitt et al. [54] identified a 500-member gene list relevant
to classifying two PDAC tumor subtypes they identified—basal
and classical—which were prognostic of survival. Therefore, we
decided to limit our initial interest to these 500 genes. Of these 500
genes, 420 of these genes were common among all of the datasets.
We removed 20% of the genes with the lowest gene expression
based on their average rank, leaving 336 genes.

We integrated gene expression data from multiple studies by first
using the data integration rank transformation technique as spec-
ified by Rashid et al. [10], allowing us to sidestep complex ques-
tions regarding how to cross-normalize data. This integration
technique creates top scoring pairs (TSPs). To illustrate the inter-
pretation of TSPs, let 𝑔ki,𝐴 and 𝑔ki,𝐵 be the raw expression of genes
𝐴 and𝐵 in subject 𝑖 of group 𝑘. For each gene pair (𝑔ki,𝐴, 𝑔ki,𝐵), the
TSP is an indicator 𝐼

(
𝑔ki,𝐴 > 𝑔ki,𝐵

)
which specifies which of the

two genes has higher expression in the subject. We denote a TSP
predictor as “GeneA_GeneB”. In the dataset, we use 168 TSP pre-
dictors. The Section S2.1 provides additional details on the data
processing and selection of the TSPs used in the analysis.

Due to the presence of several pairwise Spearman correlation val-
ues greater than 0.5 between the TSP covariates used within the
analyses, we used the Elastic Net penalization procedure [24] to
balance between ridge regression and the MCP penalty (regular
MCP penalty [25] for the fixed effects, and grouped MCP penalty
[26] for the rows of the B matrix). We let 𝜋 represent the balance
between ridge regression and the MCP penalty, where 𝜋 = 0 rep-
resents ridge regression, 𝜋 = 1 represents the MCP penalty, and
𝜋 ∈ (0, 1) represents a combination of the two.

We used the phmmPen_FA procedure to fit this PDAC sur-
vival data with a penalized piecewise constant hazard mixed
effect survival model. Like in the simulations presented in
Section 3, we assumed 𝐽 = 8 time intervals, with the interval
boundaries selected such that an approximately equal number
of events within each time interval. We considered values of 𝜋 =
{0.7,0.8,0.9,1.0}, where the same value of 𝜋 was used for both the
fixed and random effects penalization, and 𝑟 evaluated using the
Growth Ratio procedure (evaluated as 2 for all cases) and 𝑟 man-
ually set to a larger value of 3 since our simulations indicated that
the GR estimate of 𝑟 may be underestimated. The sequence of
𝜆 penalties used in the variable selection procedure is described
Section S1.3. The best model within each 𝜋 and 𝑟 combination
was selected using the BIC-ICQ model selection criteria.

To evaluate the performance of phmmPen_FA under the var-
ious 𝜋 and 𝑟 combinations described above, we utilized cross
validation to estimate the C-index for each set-up. We randomly
selected 80% of the observations from each study to be the train-
ing dataset (with random selection stratified by events and cen-
sored observations), and the remaining 20% of the observations
were set as the test dataset. The C-index was calculated using the
intsurv::cIndex function [58], and the C-index risk score was
calculated as the ‘best’ model’s fixed effects coefficients applied
to the training dataset TSP predictors; the absence of any ran-
dom effect coefficients in this risk score calculation was done
in order to replicate typical real-world mixed effects scenarios,
where the groups within the data used to train the models will
not often equal the groups in future data to which the model will
be applied.

The combination of 𝜋 = 0.9 and 𝑟 = 3 produced the largest
C-index value of 0.6511. This combination selected 15 of the 168
total TSPs to have non-zero fixed effects (see Figure 1) and were
therefore considered important for the prediction of survival in
PDAC subjects. One TSP, CBLC_SMURF1, was selected to have
a non-zero random effect (random effect variance estimated as
0.035). The time to complete the algorithm was 2.1 h. The overall
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FIGURE 1 | Log hazard ratios for the TSP covariates selected during the case study analysis.

range of the C-index values across the various 𝜋 and 𝑟 conditions
was fairly small (smallest C-index value was 0.6445 for 𝜋 = 0.7
and 𝑟 = 2 from the GR estimation procedure). This small range
for the C-index is likely a consequence of the high proportion of
censored observations within this dataset [59].

Further details about the sensitivity analyses for this case study
can be found in the Section S2.2.

5 | Discussion

We have shown through simulations and a case study of pan-
creatic ductal adenocarcinoma patients that we can extend the
method to perform variable selection in high dimensional mixed
effects models to survival data. We accomplish this by approxi-
mating proportional hazards mixed effects models using a piece-
wise constant hazard mixed effects model and then applying the
MCECM algorithm to simultaneously select for fixed and ran-
dom effects. We incorporate the factor model decomposition of
the random effects proposed in Heiling et al. [13] in order to
scale this method to larger dimensions, for example, hundreds
of predictors.

The simulations presented in Section 3 show that the phmm-
Pen_FA method can accurately select both fixed and random
effects even for small or moderate effect sizes, which reflects haz-
ard values and variations in typical survival data. By using the
factor model decomposition of the random effects, this model
selection procedure can be accomplished within reasonable time
frames even when we consider hundreds of predictors as input
for the variable selection procedure.

Our method is limited by the need to provide an estimate for the
number of latent factors that model the random effects. The sim-
ulation results showed that the Growth Ratio procedure tended
to underestimate this value for the simulation conditions that we
considered. However, even when the number of latent factors

was estimated incorrectly by the Growth Ratio procedure, this
mis-specification had very little impact on the general variable
selection performance or the fixed effects coefficient estimates.
Therefore, our method is not sensitive to the estimation of the
number of latent factors.

Similar to other penalization approaches to variable selection
such as the glmnet [24] and ncvreg [25] R packages, another
limitation of our method is that it focuses on selecting relevant
predictors but does not provide inference or measurements of
uncertainty for the selected predictors. In order to get inference or
uncertainty measures, one would have to take the selected model
from the phmmPen_FA procedure and use other software that
could fit mixed effects models to provide this information, such as
the coxme R package [60] that fits survival mixed effects models.

In our simulations in Section 3 and our case study analysis in
Section 4, we have not compared the performance of our phmm-
Pen_FA method with other proportional hazards mixed effects
(PHMM) models because we were not aware of other PHMM
methods that could select both fixed and random effects and be
applied to survival data with hundreds of predictors. However,
we do provide a comparison between our method and a naive
method that performs variable selection on fixed effects only
using the ncvreg R package, see Section S3.1 for these results.
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