Statistica Sinica: Supplement

Sparse Quadratic Discriminant Analysis
For High Dimensional Data

Quefeng Li and Jun Shao

University of Wisconsin-Madison and Fast China Normal University

Supplementary Material

S1 Proofs

Proof of Lemma 1. The first result follows from
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where the last equality follows from the fact that L is symmetric. Represent L and R as
their spectral decompositions, L = P'Dy P and R = Q' DgrQ. Then, the second result
follows from
|LCRJ|% = tr(RCL>*CR) = tr(RCP'D% PCR)
= tr(D3, PCR*CP’) < |L|3tr(PCR’CP’)
= | L|3te(R*C?) = || L|3tr(Q" DRQC?)
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= | LI3tr(DRQC*Q") < | LI RI3tr(QC*Q)
= ILIZI R[3tr(C?) = [ LI RIZIC|%-

Proof of Lemma 2. Write A as its spectral decomposition A = U’ DU, where D
is a diagonal matrix whose jth diagonal element is A\, ; = A, j(A). Then,

P
Z p.i%m5 — 20p.i%p.5; (S1.1)

where Z, ; is the jth component of Uz and a, ; is the jth component of U21/22515
Let Cp,j = )\P-,jgp%,j — 2ap,j2p’j — )‘p,j' Then ECp,j = 07 0'12)7]- = ECI%,j = 2)\2 + 4%37 and
T, — E(T,) = Z§:1 (p,j- In the following, we show that {(,;, 7 = 1, 2 ..,p} satisfy
condition (By) on page 43 of Saulis and Statulevicius (1991) for £ > 3. Actually, there
exist constants C; > 0 and My > 0 such that

|E<§,j| =[E(Ap,;2 pJ —2ap,;2p,; — )‘p,j)k|

k
< E|)‘pj Zp.j —2ap,jZp,; — p,j|

< E (A2l + 2ap20s] + Psl)*
= 3°71E (|)‘p7j|k|5p,j|2k i A ) k)

< 3P (g gl" (2K = DN [2a,,50" (B = DI |y 517)
< 3k_101k!2k(|)‘p7j|k + |ap,j|k)

= (1/3)C16"k1(Ap 41" + lap ;1)

Ap.gl*
- (1 k1.0 42 | D,J
( /3)016 klo ])] 2)\2 + 401127,]

< (1/3)C16"kloy ;- 1/2[max{\>\p,j|7 Jap, 1152
< C16F T MEklo?
< (6Mp - max{6C1,1})* ?klo?
Therefore, {(p ;,j = 1,2, ..., p} satisfy condition (B,) with v = 0 and K = 6 M, max{6C1, 1}.

Then, Theorem 3.1 of Saulis and Statulevicius (1991) implies that

324V2K,

sgp|sz($)—‘1>(w)|§ B

where K, = 2max{K, V6My}, 32 Z 2)\ —|—4a27- =2||A||% +45'2§1212;15, and

Fyz, denotes the distribution function of Zy, =T, — E(T})]/+/Var(Tp). In other words,

1 1
($)| 5 2 I —1 —1 1/2 S D77
RlIA[[F +46'%5 5,5, 4] b

sup |FZP (x)
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which converges to 0 as p — 0o, because under (C2), it holds that [|Al|r < ||A||r and
RIDIRED D Mt

Proof of Lemma 3. Under (C2), 33, is asymptoticly invertible by (14). Hence,
L1 1 el _ o1 _ L1 . _
S, =343, -5 X -2t = (3 -
Then,
q 1 -1 o1 —1 o1 A -1
13, [ < B+ 13 =20 < (U413 13, — Zll) =,
Since |25 — Zill1 = Op (an), |25 = Op (vp), and a,v, — 0, it holds that
o1 « 1 el _
/2013 1l < (14 185 = SelalI =0 ) 7 T < 135 s
Hence, |5, |1 < 2S¢ ;. Then,
~—1 _ o1 « _
1B =S = 1%, (B - 0)3 = Op (anvy) -

Proof of Lemma 4. By Chebyshev’s inequality,

|@2?—62;xw—m>:opQﬁmmﬁé?—wigww—un«Xn

—op (V35— 20y s, s - 22—15)>

= Op(a,) + OP(\/Q),

where the third equality follows from (C2) and the last equality follows from (C2),
16]|> = Op(1), and results (12) and (14). It follows from a result in the proof of Theorem
3 in Shao et al. (2011) that

553" i )] = O (/B /1))

Hence, the result follows from

Al ~—1

. _ ala—1 _
|0 2 (x_ﬂ1)_5/221($_ﬂl)| < (0%, —5/221)(35_#1”

Al ~—1
+16 3y (g — )]

Proof of Lemma 5. The result follows from

55,6 — 0’5518 < |58, 6 - 8'5516] + 16's5 16 — a's5 e,
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al A —1n ~ ~ ~—1 ~
165, 6 - 88516 < 85 — 257 2018]° = Op (an)
and
6’5516 — 65576 < |8'S7 (5 - 0)| + 16'55" (6 - 6)
=0 (118118 = o11) + 0r (18115 - o1))

= 0p(v/bn).

Proof of Lemma 6. Consider
(@ — 1) V(@ = ;) = (@ — ) V(@ — )| < T+ IT+ 11,

where I = |(@ — )/ (V = V)(@ — py)|, IT = 2|(py — f1,)' V(@ — )|, and IIT =
|(pt1 — £01)'V (e — f11)]- Let y; be the jth component of  — p; and d;; be the (4, j)th
clement of V — V. Then

p /4 p p
<D iyl = 0p | YD Myl | = 0r (IV = Via).
i=1 j=1

i=1 j=1

where the first equality follows from

|yzy]||X \/Ey |X ?‘X):\/Uliiw/o'ljjSM7

where the last inequality follows from (C2) and Shur-Horn Theorem. It then follows
from Theorem 2(ii) that I = Op (7).

Let A= 2;1A251 and A = ﬁ];lAﬁ];l Then, with fi; = Z4,
IIT = |(py — &1) A(py — 21)] < |(py — 1) Ay — 21)|+ (11 — 1) (A= A) () — Z1)]

Let a;; be the (4, j)th element of A and ¢; be the ith element of gy — Z1. Then,

p p
El(p, —@1) A(py — 1) = E| Y aijeies] < Y Jaij[Bleies|
ig=1 ij=1

= O(|Alla/n) = O(IZ1 L [|AllclIZ5 11 /n)-
Since maxy ; ; |okij| < M, it holds that

INFE S 85 < max A, 177 S Ayl = 2Mer,
1,j=1 i,j=1

Hence, |(pt) — 1)’ A(py — Z1)| = Op(c1pv3/n). Note that,
A-A=3'As, —srlAas;!
= (£, - HAS, 4B A - A8, +EAR, -5

S4
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By Lemma 1,

. A1 B N (1 _ ~ A1
A= Ale <1 = hlAlelZ 1+ 1= A - Allel® |
_ o, —1 _
+I= Al — =51 h
=0Op (Ugclpan) 4+ Op (vialn) + Op (vpc1pan)

=Op (7).

(S1.2)

Let 0 = (p, — 1) (A — A)(p, — 1) = Zij:l &;j€:€5, where &;; is the (4, j)th element
of A — A. Note that,

I ENESIES [| 3 dues|

ij=1

P
(51752)] <) laylE [|€i€j|

ij=1

(51,52)}

p
<Y |yl (Be)HES)? = 0(n Y lay)),
i

i,j=1

where the second inequality follows from Cauchy inequality and the independence of &
and (S1,S2). Hence,

P
0|(51752) =0Op (nl Z |d1]|) . (813)
=1

It follows from (S1.2) and (S1.3) that, for any positive number €1 and e, there exists
Cy > 0 and C5 > 0, such that

p p
P (|é| > C’l/n Z |élzj| (51,52)) < e and P (Z ‘6413| > CQTn> < &o.
i,j=1 ,j=1

Then,

P(|é| > C’lC'ng/n) =FE |:P (|é > C102Tn/n

)

p
=FE |:P |é| > CngTn/n,|é\ > Cl/n Z |OAQJ‘

4,5=1

(51,32)>]
)
)

p
+E [P (Z |dvij| > C27'n) ’(51552)] <e1+eo.

4,j=1

p
(|9 > C1Ca1y /1, |0] < Cy/n Z |6 |

p
§E|:P |é|>Cl/nZ |dij|
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Hence, |(p, —%1)'(A—A)(p,—%1)| = Op (1,,/n). Therefore, IIT = Op (c1pv2/n). Using
a similar argument, we can also show that IT = Op(c1,v7/+/n). Since c1pv2 /v/n = O(7y),
the result follows.

Proof of Lemma 7. From the property of the trace operation, we obtain that

tr(A) — tr(A)‘ -

(A, ) - (AT
< |6r(A - )Y+ [(AE, - 27Y)
o -~ A~ oa—1 -~
< (A - Ao+ AG; - 27
- _ A A —1 _
<A - A=+ Al — =3 s
= Op (a1nvp) + Op (clpanvg)
= OP (Tn) 3

where the third inequality follows from Lemma 1 and the second equality follows from
Lemma 3 and Theorem 2. This proves the first result.

Note that log(|21|/|22|) = log [T+ A| and log(|21|/|22|) = log [T+ A|. We employ
a Taylor expansion of f(t) = log |I 4+ tA| as appeared in equation (9) of Rothman et al.
(2008),

1
log|I+A|l=tr(A) -U'Kl, K :/ (1 —v)(I +vA)' @ (I +vA) 'dv,
0

where 1 is A vectorized to be a p? x 1 vector and ® denotes the Kronecker product of
matrices. Let K be K with A and I replaced by A and l. Then,

log [T+ A| — tr(A) —log [T + A| + tr(A)’ < ‘i'f{i UKl

<T+II+111,
where I = |I'(K — K)I|, II = |(I —1)Kl|, and 11T = ' K (I — )|. Note that

1K — K|» < /01<1 —0) [T +vA) " = (T +vA) @ (T +0A) | dv

[

s/ (1= 0)[|(T +vA)™ = (I +vA) " ado
0

‘(I+ vA) @ [(I+vA)™t — (I + vA)*l]Hde

1
< / (1 —v)||A — Al|adv
0
= [|A — All2/6,

where the first < follows from the fact that eigenvalues of a Kronecker product of sym-
metric matrices are products of the eigenvalues of the symmetric matrices, and the second
< follows from the fact that the spectra of (I +vA)~! and (I + v[&)_l are both positive
and bounded. Thus,

I=U(K-K)l| <|K-K[:l'TS[[A—- Al = ||A = Allo[|A] 3

S6
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Since K is positive definite with bounded spectrum,

Similarly,

From

and Lemma 1,

IA = Alr S|V - VHF+2||21 -x

(1-1'Kl|
-0 K-V K2
SIA -y d -2y

— |A = Allp]|A] .

IN

HI= VK1 -1 SIA~Allr|Alr.

A-a=3"v-w"+3"” -=?)vs/”
1/2 1/2 1/2 (S1.4)
+ 21 V(Zl 21 )7
Vov=3(A-AS + (= - A,
1 2 1 1 2 (815)

+IA -8, ),

Al/
22V e

SIA-Alr+ 13 — ST LIA]F

~1/2 1/2
18, = S LAl + 218 = B2 LAl .

From (C2) and (10), A7 = YA < (2M)?77 3 |Ay|" = (2M)?7"¢y,,. Using this
fact and a similar proof to that of Theorem 2(i), we can show that

Also, ||Ei/2

Therefore,

1/2—n/4

HA —Allr =0p(C1p (n‘l logp)

=Op VCip (n‘l logp)

- Z31/2”2 (131 — Z4l2]/2 = O, (/). Hence,

A = Allr = 0p (Ve (0 logp) ' + yeryan)

IIT+ 111 =0p (clp (n_l logp)(lin)/2 + clp\/@) = Op(m,).

As for term I, by (S1.4),

. . ~1/2
A=Al S IV = V]2 + 2%, = =72,

1/2 1/2
SIS =S+ 15, — 25 e + 213 - =12,
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=0p (\/CTn)v

Hence, I = Op(7,). This together with the proved first result imply the second result.

Proof of Theorem 1. In this proof, 31, 3, ft; and fi, denote the MLEs of the
corresponding parameters without thresholding.
(i) Note that

(@ — 1) V(@ — 1)) = (@ — ) V(@ — )| < T+ T+ 11,

where I = [(z — Iv’ll)/(6 = V(@ — )], 1T = 2|(py — ﬂ1)_/Y(w — M4q)|, and 1] =
(e —f01)'V (11— )| When p < n, both |2~y 2 and |2, —; |2 are Op(y/p/n).
Hence,

1=0p (Ell(@— ) (V - V)(@ - )| | X])

— Op (Z s (BV2(V = W)z 2>|)

Jj=1

= 0p(p|=1*(V - V)=%|12)

= Op(pllV = V1)
= Op(pV/p/n).
Also,
11 = Op (V{1 = ) (s — i) = Or (Vo/n)
and
IIT = Op (k1 — 1) (k1 — f1)) = Op(p/n).
Hence,

(@ = 1)V (@ — 1) = (& — 1) V(@ = py)| = Op(p\/p/n). (S1.7)
By Chebyshev’s inequality,

VS5 srers s, s - 2215>>

P (I8 = 2780+ 12576 - 8)]))

(

e (15,6 - 27"]))
(
(

. —1 _ N _ -
P13 =35 2 flo]l + 1125 116 - 5||>

p (o/v/m) + 0 (Vo/n).
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Also,

188, (1 — i) < 1885 8y — i)' Sy (g — i)]Y? = Op(V/p/n).  (S18)

Hence, \3/2;1(:13 —f1;) — 8'E5 (& — py)| is bounded by

Al

88, =85 )@ — )| +16'S, (1 — f11)| = Op(p/v/n).

From
Al A —1 A /

82,78 =823 < I, = 25" 2)13]12 = Or (pV/p/n)
and
165516 - 6'718] < |65 (8 - 8)| + 1855 (6 - 8)|
=0 (113118 = 811) + O (18113 - o1))
= Op(p/V/7),
we obtain that
165,76 —0'5516) < |88, 16— 8'5716] + 16’5516 — 6’550l
= Op(pvp/n).

(S1.9)

Next

)

2 A~ o —1
[tr(A) = tr(A)] = (213, — 31351
/2

L —1/2 A o —1/2 1/2 L - 1/2
[0 MO STID >15) M IR TOV0 St 0 SMRD >ould S|

A —1

~—1/2 ~—1/2
<pIB, TS -2)E e+l
= Op(p\/p/n).

— 1/2
~ 251,

Similar to the proof of Lemma 7, we have
‘log IT + A] —tr(A) —log [T + A| +tr(A)| < A,

where A = |[A — All2]|Al% + [|A = Al pl|AllF + A = Allr|[A] . By (S1.4),

. 1/2

IA = Allz S IV = Vo + 2%, = 2122 = 0p((p/m) /).

By (S1.4)-(SL5),
~ ~ ~—1 _
IA=Allr SIA-Allr+ (2 —Z2llAllr

o —1 _ 2 1/2 1/2
+IZy =S elAllr + 215, - 372l Allr
= Op(vp(p/n)*'%).

S9
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Then, A = Op(p(p/n)'/*), since |A|r = O(,/p). This together with (S1.7), (S1.8) and
(S1.9) prove that the difference between the quantity on the left hand side of (1) and
the quantity on the left hand side of (3) is Op (p(p/n)*/*), which converges to 0. The
rest of the proof is similar to the proof of Theorem 3(i).
(i) From the proof of part (i), we have | 4[> = Op (p/n) and |A—A|% = Op (p?/n).
Hence, A

1Dp — Dy|*=0p (p2/n) ‘

The rest of the proof is similar to the proof of Theorem 3(ii).

Proof of Theorem 2. (i) Let A = ¥, — ¥, and Afj be the (7, j)th element of Sy — Sj.
We adopt the technique in the proof of Theorem 1 in Bickel and Levina (2008). Note
that,

IA = Alle =Y |ASI(AT] > tin) — Ayl

< Z |AZI(|A§J‘\ > tin) — A I(|Ay] = t1n)] (S1.10)
+ D IAGHT(|Ay] < tin). (S1.11)
0,J

By (10), the sum in (S1.11) is bounded by
tln"ZIAu\"—t C1p-

The sum in (51.10) is bounded by

Z |A Al]|I |A | > tlna |Az]| > tln) (8112)
+Z |AU|I ‘A | < tlny |Azj| > tln) (8113)
+Z|A NI(AS] > tin, |As] < tin). (S1.14)

The quantity in (S1.12) is bounded by
s s A
Y CIAS = AGII(AG] > ty) < Ifgé}X|Aij — Ay 5
i\ ’ ij "

=0Op ((n*1 logp)'/? clptf,?)
= Op (a1n) -
The quantity in (S1.13) is bounded by

H}@XIAZ = Ayl D I(1AG] = ta) + i Y T(1A] = t)

i,5 ,J
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< H}%X |A7i — Ayl ty erp + t%;nclp
= Op (a1n) -

The quantity in (S1.14) is bounded by

Z|A l]|I |A | 2 tin, |AZJ‘ < tln +Z|AU|I |Aw| < tln)
1,7
§I+II+t1n C1p

for some v € (0,1), where

I'= Z ‘A z]‘I |A | > tlm ‘AZJ| < ’Ytln)

< H}%}szj — Ayl ZI(|Afj = Ayl > (1= 7)tin)

and
H—Z|A Al I(AZ] > tip, e < |Ag| < tin)
< HZ_13X|AM — Ayl ZI(\AZ| > tin, Ylin < |Aij < tin)
< HZIS‘X IA;S; - Aij‘(’ytln)inclp
= Op (a1p).
Note that

P(I>0)=P (max A — Ayl > (1 - ’y)tln> < 2p?e < /4
2,3

for some ¢ > 0. Since t1,, = My+/logp/n and 0 < 1—+ < 1, 2logp —n(1 —v)*t3,, /4 —
—o00, if My is sufficiently large. Hence, I = 0 with probability tending to 1. Combining
these results, we conclude that

|A - Allg =Op (a1n). (S1.15)
Consider

|A-Ale = Z A8 + 51 (s163] = ton, [3235] < ton, |AT] > t10)
+ Z |A 521j|I |511]| < t2n> ‘522]| > t2n7 |A”| > tln)

< QthZI |AS] > )

4,J
< Qth(III + IV),
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where
111 = § I(AS — Ayl > (1= 7)tn)
1,

and

A
IV =Y " I(|Ay] > ytn) < 'mf'
i,j ij n

for some v € (0,1). In analogous to the aforementioned analysis of term I, ITT = 0
with probability tending to 1. On the other hand, IV < ¢1,/(vt1,)". Hence, 2t5, IV =
Op (a1,). This shows that |A — A|lg = Op (a1,), which together with result (S1.15)
imply that |A — A|lg = Op (a14).
(ii) It follows from Lemma 1 and result (S1.5) that
N o1 A o1 o1 1 o1
IV =Vlie <% WA -AlalZ i+ 1% == 1llAlal>: :
— &1 _
ISl AllelE T - =
By Lemma 3,
A1 _
13, =271 =O0p (anv}).
Then, it holds that
IV = Ve =0p (I|A - Allgu? + ancy})
=0Op (C1p(n_1 logp)(l—n)/%g + anclpvg)
= OP (Tn) 9

where the second equality follows from part (i).

Proof of Theorem 3. (i) When D, is bounded. Let T}, be defined as in Lemma 2 and

. e . o1 .
Tl X = (x— 1) V(T — 1) =20 %, (z— f1,)

~ A Me1s 3 3
Gl X = tr(A) + 6’8, 6 — log(1=1]/|£])
pp = tr(A) + 8516 — log(|Z1]/[2])

Denote F,(-) the cumulative distribution function (c.d.f) of T, — E(T},) and F,(-)
the conditional c.d.f of 7,| X — E(T,|X). From Lemma 4-7, we have

- ~ P . P
[Tp| X — E(T,|X)] — [T, —E(Tp)] — 0 and  ¢,|X — ¢, — 0.
It follows from (3) that
Ry — Rps = ﬁp(f@p) — Fp(=p),

where Rps and Ry are defined in (2) and (4).

S12
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Next, we show that if (15) holds,
N P
Fyp(=@p) = Fp(—pp) — 0. (S1.16)

Similarly, we can show that Ry — Rp1 L. Then, (i) of Theorem 3 is proved.

We prove (S1.16) by a subsequence argument. For any subsequence {py} C {p},
there is a further subsequence {pg, } C {px} such that

[ Pky |X E( Pky |X)] [ Pry E(Tpkt )] % 0, (81'17)
Ppi, | X — op,, — 0. (S1.18)
Then,
|Fpkt (_@pkt) - Fpkt (_‘:5171%) + Fpkt (_prkt) - Fpkt (_901% )‘
< sup |Fy,, (2) = Fp,, (2)] + sup 1 Fy, (@) (Ppr, — Ppr,)

< (L+sup By, (@))dL(Fyy, , By, ) +sup |y, (@)(0p, — @pi,)s

where the last inequality follows from a well-known inequality on page 43 of Petrov
(1995) and d, (Fpk , Fpy,, ) is the Levy metric between £}, and [, .

Under (C4), it holds that

sup |F1;kt (z)] < C, (S1.19)

where C' does not depend on the index pg,. In addition, (S1.17) implies that dr, (FpA Fp,) —
0. Then, this together with (S1.18) and (S1.19) proves that

|Fpkt (_Sapkt) - Fpkt (_Qppkt” i> 0.
By the above subsequence argument, we prove (S1.16).

In the following, we show that (S1.19) holds in some meaningful cases.
Case 1: 31 = 35. Note that,

p
E, p.i% p] — 2ap,52p,;

ay i \°
_ s %5\
= E , Ap.j (Zpu N\ ) E E apuzpw
o P.J

Ap.i# Ap,; 70 Ap.i

(S1.20)

i

where Z, ;,7 = 1,...,p are i.i.d from N(0,1), A\, ; is the jth smallest eigenvalue of A
and a, ; is the jth component of U21/2Z]2_16, where U'AU = diag(Ap.1,. .-, A\pp)-

If 3, = X5, T}, reduces to a normal random variable with mean 0 and

Var(T)) = §' 25,132,356,
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which is bounded below by a constant under (C3). Then, (S1.19) holds.

Case 2: There are at least two eigenvalues of A in (—oo,m] or [m, c0). Without loss of
generality, assume the two eigenvalues A\, 1 > m and Ay 2 > m.

Let

2
ap1
_ s G,
Yp1=XApa (Zp,l 3 )
p,1

2
Qp,2
_ = P,
Y2 = Ap2 <Zp,2 2 )
D,2

and Y, = Y, 1 + Y, 2. Denote f,1 the p.d.f of Y}, 1, fp2 the p.d.f of Y}, 9; pr the p.d.f
of the noncentral x2-distribution with 1 degree of freedom and noncentrality parameter
af,vl/)\gjl, fp,2 the p.d.f of the noncentral x2-distribution with 1 degree of freedom and
noncentrality parameter ag)Q / )\13,,2.

Then,
_ 0.2 2 _ _
fp,l(y) 72;?11@ (y/2p1t+ p,1/>\p,1)/2(/\p71ap’%y) 1/4
= = —— >
fo1(y) LemWhan A2 (X3 | a-Ty)—1/4
e 2 A 2,
A
p,1

Under (C1) and (C2), ap1 = O(1). This together with A, > m shows that
fp1(y)

sup =— < ¢y,
y>0 fp,l(y)

where ¢; does not depend on p. Similarly, we have

su fp,2(y)
P=
>0 fp2(y)

Let fp0 denote the p.d.f of ¥},. By convolution formula,

< ey

fro(y) = /0 ’ foa(y —t) fp2(t)dt.

Hence,
Y - -
sup fp.,O(y) < SUP/ Clc2fp,1(y - t)fp,Z(t)dt
y>0 y>0.J0

= C1C2 SUp fo(@/%
y>0

where fo(y) is the p.d.f of noncentral y2-distribution with 2 degrees of freedom and
noncentrality parameter (a2 A5 + a2 yA3). Therefore,

~ 1 e 23402 2-3 _ _
Jo(y) = 5¢ (Wap 1Ay itap 22, 2)/2 <\/y(a§71)\p3’ + a§,2)‘p7g)> )
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where Ip(-) is the Bessel function of the first kind. By the property of Iy(-), we have
sup,~.o Lo <\/y(a12)71)\;? +a12772)\;§)) < Land a2, A3 + a2,) 3 = O(1) by (C1) and
(C2). Then, it holds that

sup fp.0(y) < creasup foly) < C,
y>0 y>0

where C' does not depend on p.

Then, it follows from (S1.20) that T}, is a sum of p independent random variables.
By the property of convolution, the density of T},

sup |[Fy(z)| < sup| f0()| < C.
Therefore, (S1.19) holds.

(ii) When D, — oo, by Lemma 2, the misclassification rate of Bayes rule Rg — 0.
Hence, it suffices to show Rgqpa (X) L0, Let

s TP|X — E(TplX) £ ¢p|X
Zy|X = T 1/2 & = 3 1/2°
[Var(7, X)]*/ [Var(7,| X)]*/

where T,| X and ¢,| X are as defined in (i). Note that

E(T,|X) = tr(A) and  Var(T,|X) = 2tr(A”) + 46'S3, ' 3,33, 5.

For D, = /|61 + | A[I%,
Dy > Dy~ /15— 82+ A - A2
=D, — \/Op (max{by,a1n})
- D, (1 —/or (max{bn,aln}/D§)> :

where the first identity follows by (12), (S1.6) and (C5). Therefore, D, — oo if
max{by, a1,}/D} — 0. Using the subsequence argument as in (i) and a proof analo-
gous to Lemma 2,

: 2| P
Fax (=€) = 0(=&)| 2 0.
Since X R X 1
C_olX t(A) —log(Bal/1Ba) +8'S, 75

& = = ~ — = ﬁp,

Var(T,)]'/?  [otr(A)? + 48'S, 5,8, 8]1/2

there exists a constant c¢g such that

O(—E,) < B(—c2Dy) < @ (—021),, (1 ~/or (max{bn,aln}/Df,)>> .

Hence, if max{by, a1, }/D3 — 0, FZplx(—ép) = Ry(X) L5 0, where Ry(X) is defined in
(i). Similarly, we can prove that Ry (X) — 0, and the result follows.
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