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Abstract: Data from a large number of covariates with known popu-

lation totals are frequently observed in survey studies. These auxil-

iary variables contain valuable information that can be incorporated

into estimation of the population total of a survey variable to im-

prove the estimation precision. We consider the generalized regres-

sion estimator formulated under the model-assisted framework in

which a regression model is utilized to make use of the available co-

variates while the estimator still has basic design-based properties.

The generalized regression estimator has been shown to improve the

efficiency of the design-based Horvitz-Thompson estimator when

the number of covariates is fixed. In this study, we investigate the

performance of the generalized regression estimator when the num-
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ber of covariates p is allowed to diverge as the sample size n in-

creases. We examine two approaches where the model parameter is

estimated using the weighted least squares method when p < n and

the LASSO method when the model parameter is sparse. We show

that under an assisted model and certain conditions on the joint dis-

tribution of the covariates as well as the divergence rates of n and p,

the generalized regression estimator is asymptotically more efficient

than the Horvitz-Thompson estimator, and is robust against model

misspecification. We also study the consistency of variance estima-

tion for the generalized regression estimator. Our theoretical results

are corroborated by simulation studies and an example.

Key words and phrases: Asymptotic efficiency; auxiliary informa-

tion; high dimension; LASSO; model-assisted; survey sampling.

1. Introduction

In many survey studies, in addition to the observed data from a study variable

and related covariates, auxiliary information—which comes from, for instance,

administrative records or results from previous surveys—is available in the form

of covariate population totals. This information can be used under the model-

assisted framework to improve the precision of the Horvitz-Thompson estimator,
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a well-known design-based estimator of the total or mean of the survey variable

(Cassel et al. (1977), Särndal et al. (2003)). In this framework, a model is adopt-

ed to reduce the estimation variability by utilizing the auxiliary information from

covariates related to the main study variable. Since the model’s role is only to

assist in the estimation process, the constructed estimator is protected against

model misspecification in the sense that it is still asymptotically design-unbiased

and normally distributed when the model is incorrect.

The generalized regression (GREG) estimator, first discussed in Cassel et al.

(1976) and studied extensively in Cassel et al. (1977), Särndal (1980a), Särndal

(1980b), and Särndal et al. (2003), is a popular estimator under the model-

assisted framework. It includes a wide range of estimators, notably the ratio

estimator and the classical regression estimator (Särndal, 1980b), and is con-

structed for many survey designs that allow arbitrary inclusion probabilities

(Särndal et al., 2003). A closely related estimator is the calibration estimator,

which is asymptotically equivalent to the GREG estimator under certain assump-

tions (Deville and Särndal, 1992). In this paper, we focus on the estimation of

the population total or mean using the GREG estimator.

In traditional applications where a small or moderate number of covariates

are considered, properties of the GREG estimator have been well-studied; see,

for example, Cassel et al. (1977) and Särndal et al. (2003) for a good overview.
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A well-known characteristic of the GREG estimator is that when there is a lin-

ear regression model between the study variable and the covariates, the GREG

estimator is asymptotically more efficient than the Horvitz-Thompson estima-

tor which is based only on data from the study variable. Moreover, the gain in

efficiency is not affected by the fact that the weighted least squares estimator

(WLSE) instead of the true regression parameter is used in the GREG estimator.

However, with the technological advances, it is now possible to collect data

on a large number of covariates, which could even exceed the sample size. Dated

back to Nascimento Silva and Skinner (1997), the authors gave many examples

of survey data with large numbers of covariates. For example, in the 1990 U.S.

Census on law enforcement (http://archive.ics.uci.edu/ml/datasets/communities+

and+crime+unnormalized), 101 covariates are recorded in a population of 2,195

communities, such as population for community, mean people per household,

percentages of population in race groups, median household income, number-

s of people in age groups, percentage of households with salary, farm, or self

employment income, etc. A complete list of these 101 covariates can be found

in the Supplementary Material. Population totals of these covariates can be ob-

tained from the census or administrative records. A more recent example is

the electronic health record (Jha et al., 2009) in which a large number of co-

variates is recorded for each patient, such as patient’s demographic information,
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biometric information, medical records, historical medical test results, etc., and

population totals for many covariates are maintained in social and governmen-

tal organizations. Another example is when we consider covariate interactions

and/or polynomial effects in regression, in which case even though the original

number of covariates with know population total is moderate, the number of co-

variates after adding interactions and/or polynomial terms could be very large

(McConville et al., 2017).

With high-dimensional covariate and auxiliary population information, it is

of interest to know whether the GREG estimator based on the WLSE still im-

proves the efficiency, and whether using a regularized regression estimator leads

to a better GREG estimator. To answer these questions, the present paper s-

tudies the GREG estimator in a setting that both the number of covariates p

and the sample size n are allowed to diverge to infinity. Our first result con-

cerns the GREG estimator based on the WLSE. We show that under a correct

regression model and certain assumptions on the joint distribution of the covari-

ates, the GREG estimator using the WLSE is asymptotically equivalent to the

GREG estimator using the true regression parameter, and hence it outperforms

the Horvitz-Thompson estimator, as long as p/n→ 0. On the other hand, when

p/n does not converge to 0, the GREG estimator using the WLSE may not be

asymptotically more efficient than the Horvitz-Thompson estimator.
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If there are only s of p covariates that are actually related to the study vari-

able, where s diverges slower than the sample size n although p may be compa-

rable to or even larger than n, the GREG estimator using a regularized regression

estimator can be constructed. Dimension reduction has been studied in Cardot

et al. (2014) in which the authors considered a principal component analysis to

reduce the covariate dimension prior to performing calibration. This calibration

approach can also be adopted to form the GREG estimator. However, asymptotic

results of their GREG estimator was established under the condition p3/n→ 0,

which is much stronger than p/n → 0 for the GREG estimator based on the

WLSE (our Theorem 1). As a result, when p3/n→ 0, there is no strong motiva-

tion to consider the principal component regression estimator.

The WLSE is unavailable when p > n, a problem that can occur in some

small area survey estimation and in many economic and biological studies. The

principal component calibration approach also does not perform well in this

high-dimensional problem. We adopt the LASSO (Tibshirani, 1996) as a reg-

ularization method. The use of LASSO in GREG was proposed in McConville

(2011) and McConville et al. (2017), but they only studied empirical and theoret-

ical properties in the case of a fixed p. Under some conditions on the divergence

rates of s and p, we show that the GREG estimator constructed using LASSO

is asymptotically equivalent to the GREG using the true regression parameter
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when the regression model is correct. In addition, this GREG estimator stil-

l possesses asymptotically design-based properties when the assumed model is

misspecified. We also study variance estimation for GREG with LASSO.

We present simulation results to study how much the Horvitz-Thompson

estimator can be improved by the GREG estimators, to observe the effect of p on

the efficiency gain, and to compare the relative performance between the GREG

estimators using the WLSE and the LASSO estimator. All technical proofs are

given in the Supplementary Material.

2. The Generalized Regression Estimator

Consider a finite population U that consists of N units labeled i = 1, 2, ..., N .

Associated with unit i, let yi be the value of the study variable and xi be the

p-dimensional vector of covariates. We consider the estimation of the finite pop-

ulation total Y =
∑

i∈U yi, using data from a sample S of size n selected from U

according to some probability plan called sampling design. The value of (yi, xi)

is observed for unit i in the sample S. To estimate the total Y , Horvitz and

Thompson (1952) introduced the following estimator which was also named af-

ter the authors:

Ŷht =
∑
i∈S

yi/πi (1)
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where πi > 0 is the inclusion probability for unit i, which can be calculated from

the sampling design and may depend on some components of xi. The population

mean Y/N can be estimated using Ŷht/N or Ŷht/
∑

i∈S π
−1
i . Under the nonin-

formative sampling assumption, i.e., πi is a known function of xi but does not

depend on yi, the Horvitz-Thompson estimator in (1) is design-unbiased with

respect to the random selection of S from U . Throughout this paper, we assume

noninformative sampling and that Ŷht − Y is asymptotically normal as n → ∞

under the given sampling design with some conditions; see, for example, Bickel

and Freedman (1984), Krewski and Rao (1981) and Fuller (2009). When con-

sidering asymptotic properties, the finite population is viewed as a member of a

sequence of finite populations with sizes increasing to infinity, and the sample is

then a member of a sequence of samples with sample sizes increasing to infinity.

To abbreviate, we simply write n→∞.

In addition to the observed xi for all i ∈ S, the finite population total vector

X =
∑

i∈U xi is often known in many studies. To make use of the information

provided by the covariates, we consider {(xi, yi) : i ∈ U} as realizations from a

super-population model. In some applications, it may not be practical to impose

an assumption on the entire population U . It is more realistic to assume that U

can be divided into sub-populations such that an assumption can be made for

units within each sub-population. These sub-populations, such as strata or post-

8

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



strata (Valliant, 1993), are constructed so that (xi, yi)’s in each sub-population

can be assumed to be unconditionally independent and identically distributed.

Since an estimator of the sub-population total will be constructed using data

within each sub-population, and the estimator of the overall population total is

the sum of the sub-population total estimators, in what follows we ignore the

sub-populations for notation simplicity, i.e., we assume that for all i ∈ U ,

yi = µ+ βTxi + εi (2)

where µ and β are unknown parameters, aT is the transpose of a vector a, xi’s

are independent and identically distributed random vectors of covariates with

an unknown positive-definite covariance matrix Σ, εi’s are independent random

variables with mean 0 and unknown variance σ2
ε , and xi’s are independent of

εi’s. After the sample S is selected from U , {(xi, yi), i ∈ S} are observed.

To take advantage of the available covariate information under model (2),

Cassel et al. (1976, 1977) proposed the following GREG estimator of the total

Y :

Ŷgr = Ŷht + β̂T (X − X̂ht), (3)

where X =
∑

i∈U xi is the known finite population total of xi’s, X̂ht is the

Horvitz-Thompson estimator of X defined as (1), i.e. X̂ht =
∑

i∈S xi/πi, and β̂

is an estimator of β in (2) based on (yi, xi), i ∈ S. The GREG estimator in (3) is
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the sum of the Horvitz-Thompson estimator Ŷht and an adjustment β̂T (X−X̂ht)

which is used to increase the efficiency.

To study the property of the GREG estimator, we first consider an artificial

situation where β in (2) is known so that β̂ = β and the estimator in (3) is

denoted as

Ŷ ∗gr = Ŷht + βT (X − X̂ht) (4)

Since X̂ht is the Horvitz-Thompson estimator of X , Ŷ ∗gr is a design-unbiased

estimator of Y even if model (2) is wrong or β is a wrong value. If model (2)

is correct, then regardless of how large the dimension p is, the variance of Ŷ ∗gr is

smaller than the variance of Ŷht unless β = 0, where the variance is with respect

to both sampling and model. For this reason, the GREG estimator is referred to

as a model-assisted estimator.

In practice, β is unknown; therefore, the GREG estimator, which involves

β̂, is not exactly, but asymptotically design-unbiased and normally distributed

as long as β̂ does not diverge to infinity. In traditional setting, the covariate

dimension is fixed in the sense that p does not change as n → ∞. Then, under

model (2), the GREG estimator is asymptotically more efficient than the Horvitz-
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Thompson estimator as long as β̂ is consistent, since

Ŷgr − Y = Ŷht − Y + β̂T (X − X̂ht)

= Ŷht − Y + βT (X − X̂ht) + (β̂ − β)T (X − X̂ht)

= Ŷ ∗gr − Y + op(1)(X − X̂ht)

= Ŷ ∗gr − Y + op(1)(Ŷ ∗gr − Y )

where op(1) denotes a quantity converging to 0 in probability. This implies that

in low-dimensional setting, Ŷgr and Ŷ ∗gr in (4) are asymptotically equivalent under

model (2). Note that we do not need to worry about the efficiency of β̂.

When p is fixed, β̂ is typically the following WLSE of β under model (2),

β̂wls =

{∑
i∈S

1

πi

(
xi − X̂ht/N̂

)(
xi − X̂ht/N̂

)T}−1∑
i∈S

(xi − x̂S)yi
πi

(5)

where N̂ =
∑

i∈S πi
−1. The GREG estimator constructed using β̂wls is denoted

by Ŷgr wls. If model (2) is correct, n1/2(β̂wls − β) is asymptotically normal with

mean 0, and thus

Ŷgr wls − Y = Ŷ ∗gr − Y +Op(n
−1/2)(Ŷ ∗gr − Y ) (6)

i.e., Ŷgr wls is asymptotically equivalent to Ŷ ∗gr up to an order of n−1/2, where

Op(an) denotes a sequence that is bounded in probability by |an|.

As discussed in the introduction section, modern data are often high dimen-

sional. When p is unbounded as n → ∞, we examine whether Ŷgr wls is still

11

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



asymptotically equivalent to Ŷ ∗gr so that it improves Ŷht. The answer is given in

the following result.

Theorem 1. Assume model (2) with p < n and the following assumptions.

(A1) maxi∈U π
−1
i = O(N/n).

(A2)
∑

i∈U(π−1
i − 1) ≥ c(N2/n) for a constant c > 0 not depending on n and

p.

(A3) The components of Σ−1/2xi are independent and identically distributed

and have finite 4th order moments.

Then we have the following conclusions.

(a) If p/n→ 0 as n→∞, then

Ŷgr wls − Y = Ŷ ∗gr − Y +Op{(p/n)1/2}(Ŷ ∗gr − Y ) (7)

and hence Ŷgr wls is asymptotically equivalent to Ŷ ∗gr.

(b) If p/n → γ > 0 as n → ∞, then in general Ŷgr wls is not asymptotically

equivalent to Ŷ ∗gr.

Assumptions (A1) and (A2) involve bounds on the inclusion probabilities.

Assumption (A3) is used to obtain the limiting spectral distribution of function-

als of the design matrix. Using the arguments in Bai and Zhou (2008) and Xie

(2013), the results in Theorem 1 can also be established if (A3) is replaced by
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(A3′) p3/n → ∞ and E(xTi Σ−1/2BΣ−1/2xi − trB)2 = o(p3/n) for any p × p

deterministic matrix B with bounded spectral norm.

Note that result (7) includes result (6) for the case of fixed p as a special

case. Theorem 1 indicates that under model (2), if p/n → 0, then Ŷgr wls is

asymptotically more efficient than Ŷht and is asymptotically equivalent to Ŷ ∗gr

which is based on the true β. The difference between Ŷgr wls and Ŷ ∗gr depends

on the rate of convergence of p/n as result (7) indicates. Thus, it is expected

that the efficiency gain by the GREG estimation deteriorates as the rate of p/n

increases, although there is no rigorous proof.

When p/n→ γ > 0, Theorem 1 shows that Ŷgr wls may not be asymptotical-

ly equivalent to Ŷ ∗gr. Consequently, if p diverges at a rate the same as or close to

n, then the performance of Ŷgr wls can be even worse than Ŷht, even if model (2)

is correct. In the next section we consider an improvement of Ŷgr wls when the

true regression coefficient β is sparse in the sense that many of its components

are zero although p can still be large.

3. The LASSO Generalized Regression Estimator

Although data nowadays contain many covariates, it is often true that only a few

of these available covariates are actually related to the study variable. In model

(2), this amounts to that, among p covariates, only s of them have non-zero re-
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gression coefficients, i.e., β-components, and s is fixed or diverges much slower

than p. It is desired to have a sparse estimator of β when β is sparse since retain-

ing the extraneous variables serves no purpose but increases the variability and

model complexity. The WLSE β̂wls, however, is not sparse regardless of whether

β is sparse or not. Therefore, we consider the LASSO estimator, denoted by β̂`1 .

The GREG estimator in (3) using β̂ = β̂`1 , denoted as Ŷgr `1 , is well defined even

when p > n. In this section, we study the asymptotic properties of Ŷgr `1 and

show that it improves Ŷgr wls as well as the Horvitz-Thompson estimator Ŷht and

is asymptotically equivalent to Ŷ ∗gr, under some conditions on sparsity and di-

verging rate of p which allows p/n→∞. It is also design-based robust against

model misspecification.

We use the notation from Section 2. The LASSO estimator β̂`1 is a solution

to the `1-penalized weighted least squares minimization problem:

min
b∈Rp

[
1

2n

∑
i∈S

{yi − bT (xi − X̂ht/N̂)}2

πi
+ λ‖b‖1

]
(8)

where ‖b‖1 is the usual `1-norm of a vector b ∈ Rp and λ ≥ 0 is a penalty

parameter that may depend on n. The `1-norm penalty is applied to shrink the

estimated coefficients and select variables simultaneously. Note that the WLSE

β̂wls is the special case of β̂`1 defined as a solution to (8) with λ = 0.

There is a considerable literature devoted to studying conditions on the co-

variates xi’s in order to guarantee certain good oracle properties of β̂`1 in terms
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of prediction or estimation accuracy and variable selection consistency. Some of

the most well-known conditions are the restricted null space property (Donoho

and Huo, 2001), the restricted isometry property (Candes and Tao, 2005, 2007),

the restricted eigenvalue condition (Bickel et al., 2009), and the irrepresentable

condition (Zhao and Yu, 2006). The last condition is quite strong and is required

only if model-selection consistency is of interest. The restricted null space prop-

erty has been shown to successfully recover the signal in the noiseless setting,

i.e., εi = 0 for all i in (2). When εi’s in (2) are not degenerated, the restricted

isometry property was proved to be sufficient for bounding the estimation error.

A relatively weaker condition is the restricted eigenvalue (RE) condition

introduced in Bickel et al. (2009), which holds for an n× p matrix A if

1

K(l,k,A)

= min
J⊂{1,...,p}
|J |≤l

min
v 6=0

‖v−J‖1≤k‖vJ‖1

‖Av‖2

‖vJ‖2

> 0 (9)

where vJ is the sub-vector of v with components indexed by elements in J ⊂

{1, ..., p}, v−J is the sub-vector of v with components not in vJ , |J | is the number

of elements in J , ‖ · ‖2 is the usual `2-norm, l and k are constants. The condition

is denoted as RE(l, k, A).

The restricted eigenvalue condition requires A to be positive definite on a

restricted set of vectors in the cone

C(l,k) = {v ∈ Rp : ∃J ⊂ {1, ..., p}, |J | ≤ l, ‖v−J‖1 ≤ k‖vJ‖1}, (10)
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and hence the name restricted eigenvalue condition. It is shown in the Supple-

mentary Material that the estimation error β̂`1−β belongs to the cone C(s,3), i.e.,

‖(β̂`1 − β)−S‖1 ≤ 3‖(β̂`1 − β)S‖1, where S contains indices of all non-zero

components of β and s = |S|.

Condition (9) was first assumed in Bickel et al. (2009) on a deterministic

design matrix to establish a bound on the estimation loss of the signal for the

LASSO estimator and the Dantzig selector. Rudelson and Zhou (2013) showed

that with high probability and certain conditions, the RE condition holds for a

large class of random matrices including matrices with uniformly bounded en-

tries and matrices whose rows follow a sub-Gaussian distribution. In this study,

covariates xi’s under the model-assisted framework are random vectors distribut-

ed according to the super-population model. We consider a random design ma-

trix X whose ith row is xi, i ∈ S. If xi’s follow a sub-Gaussian distribution and

Σ is positive definite, then under certain assumptions, condition (9) holds for

A = X/n1/2 with high probability (Rudelson and Zhou, 2013) . Performance of

Ŷgr `1 is stated in the following theorem.

Theorem 2. Assume (A1)-(A2) and the following assumptions.

(A4) εi and xi independently follow sub-Gaussian distributions with scale fac-

tor τ and ν, i.e., E{exp(uεi)} ≤ exp(τ 2u2/2) for any real-valued u and

E{exp(tTxi)} ≤ exp(ν2tT t/2) for any p-dimensional vector t.
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(A5) There exist constants b0, b1, b2, b3 not depending on n and p such that n ≥

b1r log (b2p/r) for all n ≥ b0, where r = min{s+ b3sM
2K2

(s,9,Σ1/2)
, p},

M = max
j
‖Σ1/2ej‖2

and ej = (0, .., 1, .., 0), j = 1, ..., p, form the standard basis of Rp.

(A6) The tuning parameter λ in (8) is dτM(n−1 log p)1/2 for a constant d ≥ 8.

(i) If model (2) holds, then

‖β̂`1 − β‖1 = Op

{
s(n−1 log p)1/2 MK2

(s,3,Σ1/2)

}
(11)

and

Ŷgr `1 − Y = Ŷ ∗gr − Y +Op

{
n−1/2 s log p MK2

(s,3,Σ1/2)

}
(Ŷ ∗gr − Y ). (12)

(ii) If model (2) is wrong, and (A4) holds with εi replaced by yi − xTi β, where β

is defined as β = Σ−1E(x1y1), then (11) still holds and

Ŷgr `1 − Y = Ŷht − Y + βT (X − X̂ht) +Op

{
Nsn−1 log p MK2

(s,3,Σ1/2)

}
.

The result on estimation loss ‖β̂`1 −β‖1 was first established in Bickel et al.

(2009) for deterministic xi’s, where the RE condition was imposed on the design

matrix X. Zhou (2009) also showed that an estimation loss with a similar order as

(11) holds when the rows of the random matrix X follow a sub-Gaussian distri-

bution with a covariance matrix Σ that satisfies the RE conditionRE(s, 3,Σ1/2).
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The lower bound of the sample size n in Zhou (2009), however, depends on a

quantity ρ(s) which is defined as the maximum eigenvalue of Σ restricted to s-

parse vectors with at most s nonzero components. We instead make a similar

assumption (A5) as in Rudelson and Zhou (2013) in which the lower bound of

n does not depend on ρ(s), but a slightly stronger RE(s, 9,Σ1/2) assumption is

used.

Theorem 2 indicates that Ŷgr `1 is asymptotically equivalent to Ŷ ∗gr, even

when working model (2) is misspecified, as long as n−1/2s log p MK2
(s,3,Σ1/2)

→

0, which is reasonable since s log p can be much smaller than n. Hence, Ŷgr `1

asymptotically outperforms Ŷht if model (2) holds. When model (2) is misspec-

ified, both Ŷht and Ŷgr `1 are design-based asymptotically valid and there is no

definite conclusion on the relative performance of Ŷht and Ŷgr `1 , although Ŷgr `1

is expected to be better than Ŷht if (2) is nearly correct. See the simulation results

in Section 4.1.

In the study of Cardot et al. (2014) where the authors used calibration based

on the principal components of the covariates, the number of covariates p was

restrictively assumed to satisfy p3r3/n → 0 to establish the consistency of the

calibration estimator, where r is the number of selected principal components.

This condition is much stronger than p/n → 0 under which the GREG esti-

mator using the WLSE is asymptotically equivalent to Ŷ ∗gr (Theorem 1). If the
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covariate xi is observed for every unit i in the population U , then the assumption

p3r3/n → 0 can be relaxed to r3/n → 0. However, such a result has limited

application since complete covariate information in the entire population is in

general not available, especially when xi has a high dimension.

To assess the estimation variability or make inference about Y , we need a

variance estimator for Ŷgr `1 . First, consider Ŷ ∗gr given by (4). If β is treated as

known, then a classical variance estimator for Ŷ ∗gr is

v(β) =
∑
i∈S

∑
j∈S

πij − πiπj
πij

yi − xTi β
πi

yj − xTj β
πj

, (13)

where πij is the inclusion probability of units i and j in the sample S, i 6= j.

When β is unknown, it is substituted by the same estimator β̂ used in GREG.

In the traditional case where p is fixed, v(β̂) defined as (13) with β replaced by

a consistent β̂ is consistent for the variance of Ŷgr as n → ∞. The next result

shows that this is still true when β is estimated by LASSO.

Theorem 3. Assume model (2), the conditions of Theorem 2, maxi,j |1−πiπj/πij|

= O(n−1), and the right hand side of (11) converges to 0. Then, the variance es-

timator v(β̂`1) defined as (13) is consistent in the sense that v(β̂`1)/var(Ŷgr `1)→

1 in probability.
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4. Simulation Studies

4.1 Results based on simple random sampling

In the first simulation study we considered simple random sampling without

replacement (SRSWO). Finite populations of sizeN = 105 were generated from

three super-population models described as follows. Covariate vectors xi’s were

generated from a multivariate normal distribution N(0,Σ) with

Σ =

B 0

0 Ip/2


where Ip/2 is the identity matrix of order p/2 and B is a p/2 × p/2 symmetric

matrix whose diagonal entries are equal to 1 and every off-diagonal entry is

0 with probability 0.8 and equal to the value of a random variable having the

uniform distribution on (0,1) with probability 0.2. A small positive quantity was

added to the diagonal of B to ensure its positive definiteness.

Different values of p were considered in each model to observe the effect of

the number of covariates on the estimators’ performance. The following three

super-population models were considered:

Model M1: yi = µ+ xTi β + εi as in (2) with s = p1/2, β = (2, . . . , 2, 0, . . . , 0),

where εi’s are i.i.d. N(0, 1), µ =
∑

j βj , and βj is the jth component of

β. In this model, the first p1/2 (with rounding) components of β were set
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to 2 and all other entries are zero. The number of relevant variables in this

model, therefore, increases as the dimension increases.

Model M2: the same as M1 but the first ten entries of β were 1, 2, 3, 4, 5,

0.2, 0.2, 0.2, 0.2, 0.2, and all other entries of β were zeros. Therefore,

the underlying model has a dimension s = 10 although p increases. S-

ince non-zero components of β took different values, the corresponding

covariates were correlated with the variable y with different strength.

Model M3: yi = µ+β1(x
(1)
i )2+β2(x

(2)
i )2+· · ·+βp(x(p)

i )2+εi, where x(j)
i is the

jth component of xi, s = 10, β is the same as that in Model 2, εi’s are i.i.d.

N(0, 1), and µ =
∑

j βj . The parameter β was, however, still estimated

under the assumed model (2) in order to investigate the consequences of

model misspecification.

From each finite population generated according to the models, 500 different

SRSWO samples of size n = 500 were selected. For each sample, Ŷht, Ŷgr wls,

Ŷgr `1 and the optimal estimator Ŷgr opt proposed in Berger et al. (2003) were

computed. A 10-fold cross-validation was used to select the tuning parameter

λ in the minimization problem (8) and the one with the smallest mean squared

error was chosen (Friedman et al., 2010). Based on the 500 simulations, the

standard deviation (SD) of each estimator Ŷ and ratio of mse(Ŷ ) for pairs of
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estimators, where mse(Ŷ ) is the mean squared error of Ŷ , were reported in Table

1 for all three models M1-M3. All estimators Ŷht, Ŷgr wls, Ŷgr opt and Ŷgr `1 have

negligible biases less than 1% of Y and hence were not shown in the table.

Based on the SD, the GREG estimators, which incorporate data from the

covariates, were more efficient than the Horvitz-Thompson estimator in all but

one case, where p is large (p = 400), the model is misspecified, and the GREG

estimator is based on the WLSE. Under models M1 and M2, the mean squared

error of the Horvitz-Thompson estimator was reduced 18 to 100 folds by utiliz-

ing the auxiliary information. Under model M3, which is a wrong model, the

GREG estimators still outperformed the Horvitz-Thompson estimator in terms

of efficiency in most cases, although the improvement was not as large as what

was observed in models M1-M2, since the auxiliary information was not utilized

in a correct way.

Similarly, based on the SD, not only was Ŷgr `1 more efficient than Ŷgr wls,

but its performance was also more consistent than that of Ŷgr wls when the the

complexity of the model grows. For instance, under model M2 in which s is fixed

while p increases, Ŷgr wls was getting worse considerably. It can be observed

from Table 1 that the ratio mse(Ŷgr wls)/mse(Ŷgr `1) is no smaller than 1 in all

cases, and the difference in these mean squared error ratios is more pronounced

as p increases. This suggests that when p is large, using Ŷgr `1 results in a larger
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efficiency gain than using Ŷgr wls even in the case where p < n.

It also can be seen that Ŷgr `1 has comparable performance to the optimal

estimator Ŷgr opt when dimension p ≤ 50, in terms of SD and MSE. However,

when p is large, Ŷgr `1 outperforms Ŷgr opt. This is because Ŷgr opt is not regu-

larized so it does not perform well when p is large, although it is better than the

unregularized Ŷgr wls.

4.2 Results based on probability proportional to size sampling

In the second simulation study we considered an unequal probability sampling,

the probability proportional to size without replacement (PPSWO) sampling.

The size variable was chosen to be 5 plus the first component of xi, i ∈ U ,

and (xi, yi)’s are generated the same as those in the first simulation, except that

µ = 1 + 5
∑

j βj . More specifically, Tille’s algorithm (Tillé, 1996; Deville

and Tille, 1998) was employed to select PPS samples with πi ∝ 5+the first

component of xi.

Finite populations of size N = 5, 000 were generated and 500 different

samples of size n = 500 were selected from each generated finite population.

Simulated SD values are given in Table 2 with β̂wls or β̂`1 . Two other quantities

are included in Table 2: the estimated SD that is the squared root of the variance

estimator v(β̂) defined as (13), and the coverage probability (CP) of the 95%
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confidence interval for Y by normal approximation with estimated SD.

Overall, the results on SD are similar to those in Table 1 for SRSWO. In

addition, the estimated SD is close to the simulated SD and the CP is close to

the nominal value 95%, except for the case of Ŷgr wls when p is large. The high

dimension p has more effects on the estimated SD than the estimated β.

5. Example

As an example, we considered the 1990 Census on law enforcement (http://archive.

ics.uci.edu/ml/datasets/communities+and+crime+unnormalized) as a population,

which consists of N = 2, 195 communities (units) with crime related variables

(study variables) such as murders, rapes, robberies, assaults, burglaries, larce-

nies, auto thefts, etc., and 101 covariates including population for community,

median household income, per capita income, number of police cars, percent of

officers assigned to drug units, etc. A list of all 101 covariates is Lgiven in the

Supplementary Material.

We selected the following six samples from this population:

(a) a simple random sample of size n = 200 without replacement;

(b) a simple random sample of size n = 150 without replacement;

(c) the first 195 communities, i.e., S = {1, . . . , 195};

(d) the last 195 communities, i.e., S = {2001, . . . , 2195};
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(e) a systematic sample of size n = 220, i.e., S = {1, 11, 21, . . . , 2191};

(f) a systematic sample of size n = 439, i.e., S = {1, 6, 11, . . . , 2191}.

We estimate the population totals of murders, rapes, robberies, and assaults (four

study variables) using our proposed estimator Ŷgr `1 , the Horvitz-Thompson es-

timator Ŷht, the unregularized Ŷgr wls with weighted least squares estimator, and

the regularized GREG estimator Ŷgr sis with weighted least squares estimator

after sure independence screening (Fan and Lv, 2008). The results are summa-

rized in Table 3, which includes the true population totals. Overall, our method

gives much more accurate estimate of the total crimes in each category than the

competitors.

6. Discussion

In this study, asymptotic properties of the high-dimensional GREG estimators

are established. We examine two approaches where the GREG estimators are

constructed using the WLSE and the LASSO estimator. When using the weight-

ed least squares method to estimate the regression coefficient, we prove that the

number of covariate p should increase at a much slower rate than the sample

size n in order for the GREG estimator to perform well. When this condition is

not satisfied, the estimator may not be efficient; indeed, its performance deterio-

rates as shown in the numerical analysis. Therefore, it is not true that the more
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variables or auxiliary information we use, the better the estimator is.

The GREG estimator constructed using the LASSO estimator, however,

does not suffer from this instability. Since only a small set of variables is re-

tained after the selection, the estimator is still able to perform efficiently even

when p is large, as shown in the numerical study. Our simulation results not on-

ly support the theoretical analysis, but also encourage the use of the regularized

GREG estimator since it is more robust and stable, especially when p is large.

It can also be observed that the eigenvalue behavior of the design matrix

plays an important role in the theoretical analysis of both GREG estimators. For

the GREG estimator based on the WLSE, a condition is assumed to establish the

limiting spectral distribution of the design matrix, while for the GREG estimator

based on the LASSO estimator, the restricted eigenvalue condition is assumed.

If the population total X in (3) is not available and is replaced by X̂ , an esti-

mated total from another survey, then the GREG estimators are still consistent as

long as X̂ is consistent, but their efficiencies depend on the efficiency of X̂ even

if model (2) holds. Another situation in which our result is useful is when yi

has covariate-dependent nonresponse and xi is always observed. If we replace

S in the retire paper by R, the set of units with observed yi’s, R ⊂ S ⊂ U ,

and replace the known X in GREG by X̂ =
∑

i∈S xi/πi, then Ŷgr wls and Ŷgr `1

are the same as estimators of Y with every missing yi imputed by β̂Twlsxi and
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β̂T`1xi, respectively. Our Theorems 1-2 still apply, i.e., WLSE works well when

p is small relative to n and the LASSO works well when β is sparse and p is

comparable with n.

It should be noted that similar results may be established if the LASSO es-

timator is replaced by a sparse estimator of β obtained by using other penalized

regression or variable selection methods. The results in this paper, together with

those obtained in Cardot et al. (2014), demonstrate that under certain assump-

tions, nice properties of the model-assisted estimators such as the asymptotic

efficiency and consistency are still preserved in high dimension.

Supplementary Material

The supplementary material contains all theoretical proofs of Theorems 1-3 and

a complete list of 101 covariates in data example.
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Table 1: Standard deviation (SD) and mean squared error (MSE) ratio for Ŷht,

Ŷgr wls, Ŷgr opt and Ŷgr `1 based on SRSWO.

SD

p s Ŷht Ŷgr wls Ŷgr opt Ŷgr `1
mse(Ŷht)

mse(Ŷgr `1
)

mse(Ŷgr wls)

mse(Ŷgr `1
)

mse(Ŷgr opt)

mse(Ŷgr `1
)

Model M1

10 3 17099 4495 4489 4477 14.6 1.0 1.0
50 7 29205 5559 4760 4675 39.0 1.4 1.1

100 10 31759 7982 4988 4931 41.5 2.6 1.1
200 14 40717 16832 5715 5019 65.8 11.3 1.6
300 17 44378 26973 7202 5288 70.4 27.0 2.0
400 20 47563 38079 10121 5349 79.1 53.2 4.3

Model M2

10 10 36939 4604 4521 4525 63.8 1.0 1.0
50 10 40344 6240 4730 4689 74.4 1.8 1.0

100 10 33658 8320 5013 4755 50.1 3.1 1.1
200 10 35033 14837 5849 4771 53.9 10.2 1.5
300 10 35740 21874 7304 4803 55.4 21.2 2.3
400 10 33369 26788 10044 4720 52.5 32.5 4.5

Model M3

10 10 88030 51215 51227 51313 2.7 1.1 1.1
50 10 83894 51969 51748 50186 2.7 1.1 1.1

100 10 87616 54823 53962 49398 3.1 1.2 1.2
200 10 86742 62090 60671 49839 3.0 1.5 1.5
300 10 86010 76002 67390 49760 3.0 2.3 1.8
400 10 87531 106794 77554 49498 3.1 4.6 2.4
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Table 2: Standard deviation (SD), estimateld SD, and coverage probability (CP)

for Ŷht, Ŷgr `1 , and Ŷgr wls based on PPSWO.

p s
SD estimated SD CP

Ŷht Ŷgr wls Ŷgr `1 Ŷht Ŷgr wls Ŷgr `1 Ŷht Ŷgr wls Ŷgr `1

Model M1

10 3 1113 218 219 1145 219 223 95 96 96
50 7 2828 223 227 2913 210 230 93 96 96

100 10 4391 263 264 4279 207 243 88 95 92
200 14 6235 281 266 6096 190 253 80 95 95
300 17 7514 431 325 7369 248 287 73 94 92
400 20 8456 585 325 8741 310 289 66 95 94

Model M2

10 10 3748 234 244 3770 224 235 95 94 93
50 10 3677 244 251 3748 213 232 95 93 93

100 10 3793 260 269 3752 205 245 95 87 92
200 10 3611 285 249 3769 188 247 97 81 95
300 10 3719 378 272 3748 219 254 95 70 91
400 10 3885 594 283 3772 293 262 93 59 92

Model M3

10 10 23127 18038 17673 22397 17775 17425 94 94 94
50 10 22304 18345 17594 22372 17895 17159 97 95 95

100 10 22570 16926 16119 22439 17779 16941 95 97 97
200 10 22246 18485 17400 22432 17633 16760 95 94 94
300 10 21042 17596 15772 22367 18464 16710 96 96 97
400 10 21819 16551 15359 22444 17273 16468 94 96 96
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Table 3: Estimates of the total numbers of murders, rapes, robberies and assaults

in the crime data.

Scenarios Ŷht Ŷgr wls Ŷgr `1 Ŷgr sis

Total of murders=16633

(a) 10580 11477 14600 14043
(b) 7521 9983 12522 9995
(c) 52342 24455 16462 20115
(d) 11774 12363 14594 14402
(e) 10885 14916 15712 15451
(f) 15790 15818 17458 16700

Total of rapes=522378

(a) 308781 330875 429309 393961
(b) 230036 307567 477431 441959
(c) 1923417 828442 526686 507847
(d) 316170 350921 430486 415684
(e) 271172 386957 423708 433617
(f) 420225 440654 453555 461957

Total of robberies=716317

(a) 535361 568015 643077 602668
(b) 404348 524835 678994 592765
(c) 1976468 1006262 827473 716354
(d) 585964 596410 664838 628707
(e) 481852 637777 698029 678851
(f) 593685 597974 633935 652702

Total of assaults=1634471

(a) 1398709 1502997 1681493 1675426
(b) 1000144 1283311 1704307 1368095
(c) 3558106 2181098 1791385 1692598
(d) 1516430 1525991 1667527 1580314
(e) 1166383 1506206 1523222 1595661
(f) 1468040 1455648 1576333 1591371
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