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Supplementary Material: Appendix

Proof of part (a) of Theorem 1

Proof. Throughout, we use pr,,, I, and var,, as the probability, expectation
and variance under model (2) and pr, £ and var as the probability, expectation
and variance under both sampling and model. Without loss of generality, we can
assume that F,,(z;) = 0. For two deterministic sequences a,, and b,,, we write
a, =< b, when a,, = O(b,) and b, = O(a,,). For two random sequences a,, and
b,, we write a,, <, b, when a,, = O,(b,,) and b,, = O,(a,).

Let X be the n x p matrix whose ¢th row is x;, Z be the n X p matrix whose
ith row is z; — &g, W = diag{m;',--- ,7 !} and A = XX ~V/2, Under model

(2) and E,,(z;) = 0, A has independent rows with mean 0 and variance I, where



I, is the identity matrix of order p. Let € be the vector of ¢;’s, 7 € .5, and
Ay = (Bats — B)T(X — Xiw) = € WZ(ZTWZ) (X — Xyy).
Note that
En(A2X) = Ep{(X — X))V (Z"WZ) 27 ee " WZ(ZTWZ) " (X — X1) X}

< OA(X — %) 2T (Z20) 12X — X

< oA (X = X)) TR TV2(2T22T 2 Y)Y (X — Xy

_ (X - X)X~ X
- Amin (21227 Z25-1/2)

(S1)
where A, denotes the minimum eigenvalue. A direct calculation shows that

E{(X — Xp)"S (X — Xp)} = tr{Z ' E(Xp — X) (X — X)T}

= tr{2 'var(Xy — X)}

= O(pN*/n)

where the last equality follows from (A1)-(A2). Hence, the numerator in (S1J) is
O,(pN?/n). Let B = (AT A—nl,)/(np)*/?. Asp — 0o, n — oo, and p/n — 0,
under assumption (A3) or (A3’), |Bai and Yin (1988) and |Xie| (2013) showed

that the spectral distribution of B/2 converges almost surely to the semicircle



distribution having density
(2/m)(1—a)? o] <1
w(z) =

0 lz| > 1
Hence, we conclude that almost surely, Ay, (B/2) € [—1 — d,1 + ¢] for some

0 > 0 and large enough n and p. Then
Amin(E72XTXE72) = A (AT A)
= 2(np)Y*Auin(B/2) + 1
= n{2(p/n)" Auin(B/2) + 1)
= n, (S2)
since p/n — 0. Because Z'Z = XX — nzz” + n(z — 25)(Z — 25)7,
Amin (S 7V2ZTWZEY2) < A\ (27V2XTX R 1/2) (S3)
Note that
B Amax(nE 72227827V = E(zTY7'z) = tE(mX~'xxT) = p
Hence,
Amax (PE7V222T5712) = pO, (1) = no(1)0,(1) = no,(1) (S4)
By Weyl’s inequality (Knutson and Tao, |[2001]),

Amin (Z7V2XTXE7Y2) < M\pin (Z7V2ZTWZEY2) 4 A pax (n2 22275 71/2)

(85)



Combining results from (S2)-(S5)), the denominator in is
Amin (S Y2ZTWZEY2) =) A\ (27V2XTXD2) <

From the two established results, we conclude that F(A2|X) = O,(pN?/n?).
From Chebyshev’s inequality, A, = O,(p"/?N/n). Assumptions (A1)-(A2)
ensure that var(Y, —Y) < (N?/n) and (Y;t — Y)/{var(Y;. — V) }'/2 converges
in distribution to the standard normal. Hence, Yg*r —Y x, N/n'/2. Then,
result (7) follows from }A/griwls -Y = f/g*r — Y + A, and the proved result

A, = O,(p'/*N/n).

Proof of part (b) of Theorem 1

Proof. From the proof of part (a), Yg*; —-Y =<, N/n'/2.If Ygr,wls is asymptotically

~

equivalent to Y."

o then we must have A, = 0,(N/n'/?). We now show that in

general A, is not 0,(N/n'/?) by a counter-example in which ¢,;’s are normal
random variables and S is a simple random sample. Therefore, X = N7,

E{2Y%(X — X},)} = 0 and
var{S"V3(X — Xp)} = {N(N — n)/n}1,

For fixed n and p, let ,; be the jth component of the p-dimensional vector
[N(N —n)/n] 25 Y2(X — Xy). Assume further that &y, ..., &, are iid.
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(e.g. ;s are normally distributed). Then p~' >°%_| €2, — 1 = 0,(1), by the law

of large numbers. Thus,

p

n X = X)) "STHX — X)) = [N(N = n)/n]n"! Z &

nj
=1

=, N(N —n)/n (S6)

since p/n — v > 0.
Consider the special case 7 = n/N such that £5 = Z. Similar to the proof of

part (a), we have

2(X — Xp) T2 (X - X,
Amax (21227 Z5-1/2)
o ol (X — Xi) TSN — Ki)
T e (ST2XTX S 1/2)

(87

where A, is the maximum eigenvalue. Under assumption (A3) or (A3’), Bai
and Yin (1993)), Yin| (1986) and Bai and Zhou| (2008) showed that, when p/n —

v > 0 as n — oo, almost surely

Hm ™ Apax(S772XTXDY2) = (1 4 41/2)? (S8)

00
Results (S6)-(S8) imply that
En(A2X) > a, forsome a, =<, N(N —n)(1++"2)72/n <, N*/n (S9)
Let
wy = (N/nY?)7IA, = (N/nY?) "X — X)T(272) 2" €
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Then condition on X, w, has a normal distribution with mean FE,,(w,|X) = 0,

and variance
vary, (w, | X) = (n/NQ)Em(Ai]X) > (n/NQ)an =, 1 (S10)

where the last asymptotic order follows from (S9). Let d? = var,,(w,|X), then

by (S10), for any 1 > 0, there exists C' > 0 such that
pro(dt <C)>1—19 (S11)
Thus for any § > 0,
pr(lwn| > 0) = 2E[1 — (5/d,)]

> 2E[1 — ®(6/d,)|d;" < Clpr(d;! < C)

> 2[1 = ®(0C)](1 —n)

#o(1)
where the second inequality follows from (S1I)) and @ is the standard normal

cdf. Therefore, A, = (N/n'/?)w, where w, # 0,(1), and hence Ygr,wls and Yg*r

are not asymptotically equivalent in this example. 0

Lemma 1. Let x4, ..., xyN be independent sub-Gaussian random vectors with a
scale factor v, i.e., E exp(tTx;) < exp(v?||t||3/2) Vt € RP . Then,
1X — Xitlloe = O, (N(n ' log p)'/?)
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where the infinity norm ||.||o of a vector is the maximum absolute value of its

components.

Proof. Let X}(é) and X ) be the jth components of the vectors Xy and X, re-

spectively. We have

Enll(1/N) (K = X)lloo < B max [(1/N)X]| + E,, max |(1/N)X 0]
]6{1,.-,}7} 36{17"717}

Lett € R, then

exp (tEp | (1/N) (Xne — X)|oc)

< oxp (15, max|(1/N) X)) exp (1B, max |(1/N) X))

< En{exp (max|(¢/N) X5 [) } fexp (max |(t/N) X))}

< Enfmaxexp (|(t/N) X ) }En{maxexp (1(t/N) X))

<> Bufexp (/N X)) +exp (—(t/N) X))

X Z Ep{exp ((t/N)XY) + exp (—(t/N)XY)} (S12)

J

where the second inequality follows from Jensen’s inequality.



Note that

E,, exp ((t/N))A(}(li)) = Enexp ((t/N) Z xz(j)/ﬂi)
i€S

< B, exp ((ta/n) Z :1:5”)
icS
< I;es exp (V2t2a2/2n2)

= exp (V*t°a*/2n)

where the first inequality follows from the assumption (A1) for some constant a,

and the second inequality follows from the sub-Gaussianity property. Similarly,

E,, exp ((t/N)X(j)) = B exp ((t/N) Zml@) < ey exp (V8% /2N?)
= exp (V*t*/2N)

Thus from (S12)),

exp (tEmH(l/N)(Xht — X)||Oo> = 2pexp (V*t°a®/2n) 2pexp (V°1*/2N)

= 4p® exp{(v*t*/2n)(a® + n/N)}
Hence,

EmH(l/N)(XM — X)||so < 2log(2p)/t + (V*t/2n)(a* +n/N)



Choose t = 2v~!(nlog p)'/? (a® + n/N)~'/2. Then

E[[(1/N)(Xu = X)loo = v(a® +n/N)"* log(2p)(nlogp)~/*
+v(a® 4+ n/N)Y?(n " log p)*/?
= v(a® +n/N)"/*(n " logp)'/* (2 + log 2/ log p)
Therefore
||Xht — Xl|oo = O, (]V(?f1 logp)l/Z)

which completes the proof of the lemma. 0

Lemma 2. Assume assumptions (A4)-(A5), then
1(1/n)€e" WZ|| oo = Op (M(n~"log p)'/?)
where Z is the matrix whose ith row is z; = x; — g

Proof. It can be showed that zf =2, —cr < z <z =3 — ¢ 1Z. Define
Z' and Z" be the n x p matrix whose ith row is z! and 2¢, respectively. Since
x;’s follow a sub-Gaussian distribution with a scale factor v and have variance
¥, zV’s follow a sub-Gaussian distribution with a scale factor v(1 — ¢! /n)'/? and
variance (1 — ¢! /n)%, 22’s follow a sub-Gaussian distribution with a scale factor

v(1—c"/n)"/? and variance (1—c*/n)¥%, where ¢ = 2c—c?and ¢ = (2¢—1)/c?.
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Hence, Z' can be expressed as Z! = (1 — ¢! /n)Y/? W'SY/? where W' is an n x p
matrix whose rows are independent, isotropic vectors with mean 0 and finite
sub-Gaussian norm o for some constant o/ > 0 (Vershynin, 2010). To simplify

the notation, let
U =(1-¢/n)"Y2Z! andhence U' = w'xl/? (S13)

Let 0 be a constant in (0, 1). Consider the event

10"l

n1/2||21/21}||2

F:{1—5§ <1+, VUEC(SS)}

where the cone C3) is defined as in (10). As shown in Rudelson and Zhou

(2013), assumption (A4)-(AS) implies that
pr,,(F) > 1 — 2exp(—nd*/ba’) (S14)

for some constant b. Conditioning on the set F, the norm of the jth column of U

is bounded by:
U9 €020+ 8) B2 <020 46 (S15)

where U'Y) denotes the jth column of U'. 1} follows from the definition of
M. Let

w; = n~telUV) = pt Z eiu%(j)

i
€S
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Hence E,,(w; |U") = 0. Since ¢;’s independently follow a sub-Gaussian distribu-
tion with a scale parameter 7, conditional on U, w;’s also follow a sub-Gaussian

distribution with a scale factor D;, where

D? = (72/n%) SO = (7 )| UO) 3 (S16)
€S

Therefore, we have the sub-Gaussian tail bound
pry, (|wy] > {U") < 2exp{~t*/(2D})}
and hence
(] > 11F) = Bl (] > 1)1 = 1,0 F]
< Ep[2exp (—t°D;?/2)|F)
< 2exp (—t’nT (1 +6)2M?/2)
where the last inequality follows from (S15)) and (ST6). Thus,
prm(mjax lw;| > ¢|F) < 2pexp (—t°n7 (1 +6)*M~2/2)
= 2exp (—t’nT (1 + 6) M ~?/2 + log p)
Choose t? = 27%(1 + 6)>M?*n~talog p for some a > 1, then
pry (max [wj] > ¢|F) < 2exp((1 - a)logp) = 2p~ "V
Therefore,
prm(”n*leTulnoo < t|F> = pry,(max ;| <H[F) 21— 2p=*) (S17)
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Combining (S14) and (S17)), we have
prm<(1 — /) TV IneTWZ| o < t) = pI‘m<||TL_1€TWU||OO < t)
> pry, ([~ €' Ulloo < t|F) pr,, (F)

> (1—2p~“"V)(1 — 2exp[-nd®/ (ba")])

(S18)

On the other hand, we can show prm<(1 — " /n)V2||n"Le'WZ| o < t> has
the similar result. Therefore, ||n "'’ WZ|. = O,(t) = O, (M(n"'logp)'/?)

which completes the proof of the lemma.

Proof of Theorem 2

Proof. Since Bgl is the solution to the following minimization problem
arg min (2n) ! [WY2(Y — Zy) |15 + Allyllx
yeERP

we have

(1/20)(Y=ZB0,)" W(Y=Z50, )+M[|Be, |1 < (1/20)(Y=Z8)"W(Y—=Z5)+A||5]|x
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Plug in model (2), Y = ul, + (Z + 1,,2%) 3 + € and re-arrange the terms,
(1/2n)(Be, — B) Z"WZ(By, — B) < n'€"WZ(By, — B) + AllBlI — M B Ila
<n M€ WZ|so| B, — Bl + AllBI = M Be, lla

(S19)

Let S be the support of 5 and s = |S|. Consider the events:

In""/20v]]

F= {1 _5<
= 1320,

<144, Yve 6(5,3)}
G= {n_IHeTWZHOO < 4rM(n! 1ogp)1/2}

where U = (1 — ¢! /n)~1/?Z as defined previously in (S13). Combining results

from Rudelson and Zhou| (2013)) and from lemma[2} we have from (S18)
pr,,(Fand G) > (1 — 2p~ ') (1 — 2exp[—nd?/(ba)]) (520)

where constants 9, «, b are specified in lemma 2| Note that on event F, if v €

C(s,3), then
[n”"2Uolly (1 = OI=0llp  _(1-9)
lvsll o1l K572
by the definition of K 5 y:1/2). Hence,
1 1-06
> >0 (S21)

Kian12u) — Kigae
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since Y is positive definite. Therefore, the restricted eigenvalue condition also
holds for the matrix n~'/2U on event F. Conditional on the events F' and G, it

follows from (S19) that

0 < (1/n)(Br, — B)"Z"WZ(By, — )
< (2/n)[|€"WEZ ool Be, — Bll1 + 2X1Bllx — 271 B lls
< M|Ber = Bl + 2M1B8ll = 2182, |1
= MI(Bes = B)sll + 11(Be)-sll +2118sll = 211 (Bes)slln = 211(Ber) sl }
< MIBe, = Bl + 201(Be, — B)slh — 11(Be)) -1}

= M3/1(B, — B)slli — (B, — B) sl } (S22)

where the third inequality follows from assumption (A6) and the first equality
follows from the fact that || 3_s||1 = 0. Hence, || (3, —8)—sll1 < 3||(Be, —B)sll1»

which implies that (3, — 3) € C(s, 3). Therefore,

1B = B)sllz < lln~"2 WU (By, — )oK (312w 20 (S23)
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Continue from (S22)),

(1/n)(Be, — B)"Z"WZ(By, — B)
<3M(Bes — B)sllt = A{I(Bey = B)ll = 11(Bes — B)sln}
= 4\(Be — B)slh — M Be, — Bllx
< X2 (Be, — B)sllz — MBe, — Bl
< A\ VPWYRU(B,, — N2 K (s 5,0-172w120) — B, = Bl
= A2V |(1 = 1/n)2Z(B,, — B2 K (5 3.0-1/2w120) — A Be — Bl

2 ~ ~
< <2)\31/2K(s,37n*1/2w1/2u)(1 — 1/n)_1/2> + TL_1||W1/2Z(B€1 - B)Hg - /\Hﬁh

— Bl

= ANSKC ooy (1= 1/n) ™ 07 (Be, — B Z"WZ(By, — 8) = M|Be, — Bl

where the second inequality follows from the Cauchy-Schwarz inequality, and

the third inequality follows from (S23). Cancelling some terms leads to
||Bel Bl < 4/\5Ks3n 1/2w1/2y) (1—1/n)""
Hence by (S21),
186, = Bl < 4SAKZ, g oy (1= 6) (1 = 1/n) !

with probability at least one specified in (S20). With assumption (A6), we arrive

at result (11).
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Combining results from Lemma(I]and (11), we obtain:
(B = B)"(X = Xi) < |1 X = Kitlloo 180 — Bllx
= O,(N(n " logp)'? s(n""log p) P MKZ, 4 1/2)

= (N/n'?)0,(n""2slogp MK, ;.12 (S24)

Result (12) follows since Yy, — Y = Yg*r — Y + (B, — B)T(X — Xy). This
completes the proof of part (i).

To prove part (ii), define the function

1
= —|Y =z
LO) =51 2

We apply the theory of general high-dimensional M -estimator (Negahban et al.,
2012) to bound ||3,, — S]|1. Since we assume z; is sub-Gaussian, the restricted

eigenvalue condition still holds with constant 1/K (23 even if the model is

73’21/2)9

wrong. Note that
IVLB) e = [In'Z" (Y — ZB)]|oc-
Since § = X' E(x131), we have 3 = argmin, ., E(y; — 2] 7)? and
B{aly - 18)} = 0.

It follows from the same argument in the proof of Lemma 2 that |VL(5)|| =

Op (M(n~'logp)'/?). Hence, using Corollary 1 of Negahban et al./(2012), we
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obtain (11). The result in (ii) follows from Lemma 1, (11), and |(Bg1 -BT(X -

X)) < 18 = BIL X = Xilloo- U

Proof of Theorem 3

Proof. Note that

mi; — w28 (B — B) 2F (B — B)
R R I
ies jes ¢ J
T 3 T
Ty — 7TZ7T] 2 (ﬂh - 6) Yi — Zj 6
+2) ) - —
€S jeSs v J

Under the given conditions, v(3) /var(Y.¢,) — 1 in probability and var (Y, ¢, ) =

N?/n. Thus, it suffices to show that

: rea
N S Z-T(ﬁi;— 8) 7 (55; D o). 29
€S jES ’ ’

Under (A1) and the condition max; ; |1 — m;7; /m;;| = O(n™!), the left hand side

of (S25) is bounded by
O(n™")(Be, — B) ZWZ" By, — ),

where Z is given in the proof of Theorem 1. It follows from the proof of Theorem

2 that the above quantity is bounded by O(\)||3s, — S]|1, which is 0,(1) by the

established result (11) and the given condition. This completes the proof. 0
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A list of all 101 covariates of communities and crime data

X1 population: population for community

X5 householdsize: mean people per household

X3 racepctblack: percentage of population that is african american

X, racePctWhite: percentage of population that is caucasian

X5 racePctAsian: percentage of population that is of asian heritage

Xg racePctHisp: percentage of population that is of hispanic heritage

X7 agePct12t21: percentage of population that is 12-21 in age

Xg agePct12t29: percentage of population that is 12-29 in age

Xy agePct16t24: percentage of population that is 16-24 in age

Xj0 agePct6b5up: percentage of population that is 65 and over in age

X711 numbUrban: number of people living in areas classified as urban

Xio pctUrban: percentage of people living in areas classified as urban

X13 medIncome: median household income

X4 pctWWage: percentage of households with wage or salary income in 1989
Xi5 pctWFarmSelf: percentage of households with farm or self employment in-
come in 1989

X6 pctWlnvinc: percentage of households with investment / rent income in
1989

Xi7 pctWSocSec: percentage of households with social security income in 1989

18



Xis pctWPubAsst: percentage of households with public assistance income in
1989

Xj9 pctWRetire: percentage of households with retirement income in 1989

X959 medFamlInc: median family income (differs from household income for
non-family households)

X9 perCaplnc: per capita income

Xy whitePerCap: per capita income for caucasians

Xo3 blackPerCap: per capita income for african americans

Xs4 indianPerCap: per capita income for native americans

Xo5 AsianPerCap: per capita income for people with asian heritage

Xy OtherPerCap: per capita income for people with *other’ heritage

Xo7 HispPerCap: per capita income for people with hispanic heritage

Xo8 NumUnderPov: number of people under the poverty level

X9 PctPopUnderPov: percentage of people under the poverty level

X3 Pctless9thGrade: percentage of people 25 and over with less than a 9th
grade education

X371 PctNotHSGrad: percentage of people 25 and over that are not high school
graduates

X3o PctBSorMore: percentage of people 25 and over with a bachelors degree or

higher education
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X33 PctUnemployed: percentage of people 16 and over, in the labor force, and
unemployed

X34 PctEmploy: percentage of people 16 and over who are employed

X35 PctEmplManu: percentage of people 16 and over who are employed in man-
ufacturing

X3 PctEmplProfServ: percentage of people 16 and over who are employed in
professional services

X37 PctOccupManu: percentage of people 16 and over who are employed in
manufacturing

Xsg PctOccupMgmtProf: percentage of people 16 and over who are employed
in management or professional occupations

X39 MalePctDivorce: percentage of males who are divorced

X0 MalePctNevMarr: percentage of males who have never married

X 41 FemalePctDiv: percentage of females who are divorced

X4 TotalPctDiv: percentage of population who are divorced

X3 PersPerFam: mean number of people per family

X 44 PctFam2Par: percentage of families (with kids) that are headed by two par-
ents

X5 PctKids2Par: percentage of kids in family housing with two parents

X6 PctYoungKids2Par: percent of kids 4 and under in two parent households
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Xy7 PctTeen2Par: percent of kids age 12-17 in two parent households

X4g PctWorkMomYoungKids: percentage of moms of kids 6 and under in labor
force

X9 PctWorkMom: percentage of moms of kids under 18 in labor force

X590 NumKidsBornNeverMar: number of kids born to never married

X51 PetKidsBornNeverMar: percentage of kids born to never married

X520 NumImmig: total number of people known to be foreign born

X53 PctlmmigRecent: percentage of immigrants who immigated within last 3
years

X54 PctlmmigRec5: percentage of immigrants who immigated within last 5
years

X55 PctlmmigRec8: percentage of immigrants who immigated within last 8
years

X556 PctlmmigRec10: percentage of immigrants who immigated within last 10
years

X557 PctRecentImmig: percent of population who have immigrated within the
last 3 years

X5s PctRecImmig5: percent of population who have immigrated within the last
S years

X59 PctRecImmig8: percent of population who have immigrated within the last
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8 years

Xgo PctRecImmig10: percent of population who have immigrated within the last
10 years

X1 PctSpeakEnglOnly: percent of people who speak only English

X2 PctNotSpeakEnglWell: percent of people who do not speak English well
Xgs PctLargHouseFam: percent of family households that are large (6 or more)
X4 PctLargHouseOccup: percent of all occupied households that are large (6
or more people)

X5 PersPerOccupHous: mean persons per household

Xes PersPerOwnOccHous: mean persons per owner occupied household

X7 PersPerRentOccHous: mean persons per rental household

Xgg PctPersOwnOccup: percent of people in owner occupied households

X9 PctPersDenseHous: percent of persons in dense housing (more than 1 per-
son per room)

X70 PctHousLess3BR: percent of housing units with less than 3 bedrooms

X771 MedNumBR: median number of bedrooms

X792 HousVacant: number of vacant households

X73 PctHousOccup: percent of housing occupied

X74 PctHousOwnOcc: percent of households owner occupied

X75 PctVacantBoarded: percent of vacant housing that is boarded up
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X76 PctVacMore6Mos: percent of vacant housing that has been vacant more
than 6 months

X77 MedYrHousBuilt: median year housing units built

X7¢ PctHousNoPhone: percent of occupied housing units without phone

X79 PctWOFullPlumb: percent of housing without complete plumbing facilities
Xgo OwnOccLowQuart: owner occupied housing - lower quartile value

Xg1 OwnOccMedVal: owner occupied housing - median value

Xgo OwnOccHiQuart: owner occupied housing - upper quartile value

Xs3 OwnOccQrange: owner occupied housing - difference between upper quar-
tile and lower quartile values

Xg4 RentLowQ: rental housing - lower quartile rent

Xg5 RentMedian: rental housing - median rent

Xgs RentHighQ: rental housing - upper quartile rent

Xgs7 RentQrange: rental housing - difference between upper quartile and lower
quartile rent

Xss MedRent: median gross rent

Xg9 MedRentPctHousInc: median gross rent as a percentage of household in-
come

Xogo MedOwnCostPctlnc: median owners cost as a percentage of household in-

come - for owners with a mortgage
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X91 MedOwnCostPctIncNoMtg: median owners cost as a percentage of house-
hold income - for owners without a mortgage

Xgo NumlInShelters: number of people in homeless shelters

Xo3 NumStreet: number of homeless people counted in the street

Xo4 PctForeignBorn: percent of people foreign born

X5 PctBornSameState: percent of people born in the same state as currently
living

Xgg PctSameHouse85: percent of people living in the same house as in 1985 (5
years before)

Xg7 PctSameCity835: percent of people living in the same city as in 1985 (5 years
before)

Xog PctSameState85: percent of people living in the same state as in 1985 (5
years before)

Xgg9 LandArea: land area in square miles

X100 PopDens: population density in persons per square mile

Xi01 PctUsePubTrans: percent of people using public transit for commuting
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