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Supplementary Material: Appendix

Proof of part (a) of Theorem 1

Proof. Throughout, we use prm, Em and varm as the probability, expectation

and variance under model (2) and pr, E and var as the probability, expectation

and variance under both sampling and model. Without loss of generality, we can

assume that Em(xi) = 0. For two deterministic sequences an and bn, we write

an � bn when an = O(bn) and bn = O(an). For two random sequences an and

bn, we write an �p bn when an = Op(bn) and bn = Op(an).

Let X be the n× p matrix whose ith row is xi, Z be the n× p matrix whose

ith row is xi − x̂S , W = diag{π−1
1 , · · · , π−1

n } and A = XΣ−1/2. Under model

(2) and Em(xi) = 0, A has independent rows with mean 0 and variance Ip where
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Ip is the identity matrix of order p. Let ε be the vector of εi’s, i ∈ S, and

∆n = (β̂wls − β)T (X − X̂ht) = εTWZ(ZTWZ)−1(X − X̂ht).

Note that

Em(∆2
n|X) = Em{(X − X̂ht)

T (ZTWZ)−1ZTεεTWZ(ZTWZ)−1(X − X̂ht)|X}

≤ c−1σ2
ε (X − X̂ht)

TZT (ZZT )−1Z(X − X̂ht)

≤ c−1σ2
ε (X − X̂ht)

TΣ−1/2(Σ−1/2ZTZΣ−1/2)−1Σ−1/2(X − X̂ht)

≤ c−1σ2
ε (X − X̂ht)

TΣ−1(X − X̂ht)

λmin(Σ−1/2ZTZΣ−1/2)
(S1)

where λmin denotes the minimum eigenvalue. A direct calculation shows that

E{(X − X̂ht)
TΣ−1(X − X̂ht)} = tr{Σ−1E(X̂ht −X)(X̂ht −X)T}

= tr{Σ−1var(X̂ht −X)}

= tr

{
Σ−1

∑
i∈U

(π−1
i − 1)Σ

}

= O(pN2/n)

where the last equality follows from (A1)-(A2). Hence, the numerator in (S1) is

Op(pN
2/n). LetB = (ATA−nIp)/(np)1/2. As p→∞, n→∞, and p/n→ 0,

under assumption (A3) or (A3’), Bai and Yin (1988) and Xie (2013) showed

that the spectral distribution of B/2 converges almost surely to the semicircle
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distribution having density

w(x) =


(2/π)(1− x2)1/2 |x| < 1

0 |x| > 1

Hence, we conclude that almost surely, λmin(B/2) ∈ [−1 − δ, 1 + δ] for some

δ > 0 and large enough n and p. Then

λmin(Σ−1/2XTXΣ−1/2) = λmin(ATA)

= 2(np)1/2λmin(B/2) + n

= n{2(p/n)1/2λmin(B/2) + 1}

�p n, (S2)

since p/n→ 0. Because ZTZ = XTX− nx̄x̄T + n(x̄− x̂S)(x̄− x̂S)T ,

λmin(Σ−1/2ZTWZΣ−1/2) ≤ λmin(Σ−1/2XTXΣ−1/2) (S3)

Note that

Em[λmax(nΣ−1/2x̄x̄TΣ−1/2)] = E(nx̄TΣ−1x̄) = trE(nΣ−1x̄x̄T) = p

Hence,

λmax(nΣ−1/2x̄x̄TΣ−1/2) = pOp(1) = no(1)Op(1) = nop(1) (S4)

By Weyl’s inequality (Knutson and Tao, 2001),

λmin(Σ−1/2XTXΣ−1/2) ≤ λmin(Σ−1/2ZTWZΣ−1/2) + λmax(nΣ−1/2x̄x̄TΣ−1/2)

(S5)
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Combining results from (S2)-(S5), the denominator in (S1) is

λmin(Σ−1/2ZTWZΣ−1/2) �p λmin(Σ−1/2XTXΣ−1/2) �p n

From the two established results, we conclude that E(∆2
n|X) = Op(pN

2/n2).

From Chebyshev’s inequality, ∆n = Op(p
1/2N/n). Assumptions (A1)-(A2)

ensure that var(Ŷ ∗gr−Y ) � (N2/n) and (Ŷ ∗gr−Y )/{var(Ŷ ∗gr−Y )}1/2 converges

in distribution to the standard normal. Hence, Ŷ ∗gr − Y �p N/n1/2. Then,

result (7) follows from Ŷgr wls − Y = Ŷ ∗gr − Y + ∆n and the proved result

∆n = Op(p
1/2N/n).

Proof of part (b) of Theorem 1

Proof. From the proof of part (a), Ŷ ∗gr−Y �p N/n1/2. If Ŷgr wls is asymptotically

equivalent to Ŷ ∗gr, then we must have ∆n = op(N/n
1/2). We now show that in

general ∆n is not op(N/n1/2) by a counter-example in which εi’s are normal

random variables and S is a simple random sample. Therefore, X̂ht = Nx̄,

E{Σ−1/2(X − X̂ht)} = 0 and

var{Σ−1/2(X − X̂ht)} = {N(N − n)/n}Ip

For fixed n and p, let ξnj be the jth component of the p-dimensional vector

[N(N − n)/n]−1/2Σ−1/2(X − X̂ht). Assume further that ξn1, ..., ξnp are i.i.d.
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(e.g. xi’s are normally distributed). Then p−1
∑p

j=1 ξ
2
nj − 1 = op(1), by the law

of large numbers. Thus,

n−1(X − X̂ht)
TΣ−1(X − X̂ht) = [N(N − n)/n]n−1

p∑
j=1

ξ2
nj

�p N(N − n)/n (S6)

since p/n→ γ > 0.

Consider the special case π = n/N such that x̂S = x̄. Similar to the proof of

part (a), we have

Em(∆2
n|X) ≥ σ2

ε (X − X̂ht)
TΣ−1(X − X̂ht)

λmax(Σ−1/2ZTZΣ−1/2)

≥ n−1σ2
ε (X − X̂ht)

TΣ−1(X − X̂ht)

n−1λmax(Σ−1/2XTXΣ−1/2)
(S7)

where λmax is the maximum eigenvalue. Under assumption (A3) or (A3’), Bai

and Yin (1993), Yin (1986) and Bai and Zhou (2008) showed that, when p/n→

γ > 0 as n→∞, almost surely

lim
n→∞

n−1λmax(Σ−1/2XTXΣ−1/2) = (1 + γ1/2)2 (S8)

Results (S6)-(S8) imply that

Em(∆2
n|X) ≥ an for some an �p N(N−n)(1+γ1/2)−2/n �p N2/n (S9)

Let

ωn = (N/n1/2)−1∆n = (N/n1/2)−1(X − X̂ht)
T (ZTZ)−1ZTε
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Then condition on X, ωn has a normal distribution with mean Em(ωn|X) = 0,

and variance

varm(ωn|X) = (n/N2)Em(∆2
n|X) ≥ (n/N2)an �p 1 (S10)

where the last asymptotic order follows from (S9). Let d2
n = varm(ωn|X), then

by (S10), for any η > 0, there exists C > 0 such that

prm(d−1
n < C) > 1− η (S11)

Thus for any δ > 0,

pr(|ωn| > δ) = 2E[1− Φ(δ/dn)]

≥ 2E[1− Φ(δ/dn)|d−1
n < C]pr(d−1

n < C)

≥ 2[1− Φ(δC)](1− η)

6= o(1)

where the second inequality follows from (S11) and Φ is the standard normal

cdf. Therefore, ∆n = (N/n1/2)ωn where ωn 6= op(1), and hence Ŷgr wls and Ŷ ∗gr

are not asymptotically equivalent in this example.

Lemma 1. Let x1, . . . , xN be independent sub-Gaussian random vectors with a

scale factor ν, i.e., E exp(tTxi) ≤ exp(ν2‖t‖2
2/2) ∀t ∈ Rp . Then,

‖X − X̂ht‖∞ = Op

(
N(n−1 log p)1/2

)
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where the infinity norm ‖.‖∞ of a vector is the maximum absolute value of its

components.

Proof. Let X̂(j)
ht and X(j) be the jth components of the vectors X̂ht and X , re-

spectively. We have

Em‖(1/N)(X̂ht −X)‖∞ ≤ Em max
j∈{1,..,p}

|(1/N)X̂
(j)
ht |+Em max

j∈{1,..,p}
|(1/N)X(j)|

Let t ∈ R, then

exp
(
tEm‖(1/N)(X̂ht −X)‖∞

)
≤ exp

(
tEm max

j
|(1/N)X̂

(j)
ht |
)

exp
(
tEm max

j
|(1/N)X(j)|

)
≤ Em{exp

(
max
j
|(t/N)X̂

(j)
ht |
)
}Em{exp

(
max
j
|(t/N)X(j)|

)
}

≤ Em{max
j

exp
(
|(t/N)X̂

(j)
ht |
)
}Em{max

j
exp

(
|(t/N)X(j)|

)
}

≤
∑
j

Em{exp
(
(t/N)X̂

(j)
ht

)
+ exp

(
−(t/N)X̂

(j)
ht

)
}

×
∑
j

Em{exp
(
(t/N)X(j)

)
+ exp

(
−(t/N)X(j)

)
} (S12)

where the second inequality follows from Jensen’s inequality.
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Note that

Em exp
(
(t/N)X̂

(j)
ht

)
= Em exp

(
(t/N)

∑
i∈S

x
(j)
i /πi

)
≤ Em exp

(
(ta/n)

∑
i∈S

x
(j)
i

)
≤ Πi∈S exp

(
ν2t2a2/2n2

)
= exp

(
ν2t2a2/2n

)
where the first inequality follows from the assumption (A1) for some constant a,

and the second inequality follows from the sub-Gaussianity property. Similarly,

Em exp
(
(t/N)X(j)

)
= Em exp

(
(t/N)

∑
i∈U

x
(j)
i

)
≤ Πi∈U exp

(
ν2t2/2N2

)
= exp

(
ν2t2/2N

)
Thus from (S12),

exp
(
tEm‖(1/N)(X̂ht −X)‖∞

)
= 2p exp

(
ν2t2a2/2n

)
2p exp

(
ν2t2/2N

)
= 4p2 exp{(ν2t2/2n)(a2 + n/N)}

Hence,

Em‖(1/N)(X̂ht −X)‖∞ ≤ 2 log(2p)/t+ (ν2t/2n)(a2 + n/N)
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Choose t = 2ν−1(n log p)1/2 (a2 + n/N)−1/2. Then

E‖(1/N)(X̂ht −X)‖∞ = ν(a2 + n/N)1/2 log(2p)(n log p)−1/2

+ ν(a2 + n/N)1/2(n−1 log p)1/2

= ν(a2 + n/N)1/2(n−1 log p)1/2 (2 + log 2/ log p)

Therefore

‖X̂ht −X‖∞ = Op

(
N(n−1 log p)1/2

)
which completes the proof of the lemma.

Lemma 2. Assume assumptions (A4)-(A5), then

‖(1/n)εTWZ‖∞ = Op

(
M(n−1 log p)1/2

)
where Z is the matrix whose ith row is zi = xi − x̂S

Proof. It can be showed that zli = xi − cx̄ ≤ zi ≤ zui = xi − c−1x̄. Define

Zl and Zu be the n × p matrix whose ith row is zli and zci , respectively. Since

xi’s follow a sub-Gaussian distribution with a scale factor ν and have variance

Σ, zli’s follow a sub-Gaussian distribution with a scale factor ν(1− cl/n)1/2 and

variance (1− cl/n)Σ, zui ’s follow a sub-Gaussian distribution with a scale factor

ν(1−cu/n)1/2 and variance (1−cu/n)Σ, where cl = 2c−c2 and cl = (2c−1)/c2.
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Hence, Zl can be expressed as Zl = (1 − cl/n)1/2 ΨlΣ1/2 where Ψl is an n × p

matrix whose rows are independent, isotropic vectors with mean 0 and finite

sub-Gaussian norm αl for some constant αl > 0 (Vershynin, 2010). To simplify

the notation, let

Ul = (1− cl/n)−1/2Zl and hence Ul = ΨlΣ1/2 (S13)

Let δ be a constant in (0, 1). Consider the event

F =

{
1− δ ≤ ‖Ulv‖2

n1/2‖Σ1/2v‖2

≤ 1 + δ, ∀v ∈ C(s,3)

}

where the cone C(s,3) is defined as in (10). As shown in Rudelson and Zhou

(2013), assumption (A4)-(A5) implies that

prm(F ) ≥ 1− 2 exp(−nδ2/bα4) (S14)

for some constant b. Conditioning on the set F, the norm of the jth column of U

is bounded by:

‖Ul(j)‖2 ≤ n1/2(1 + δ)‖Σ1/2(j)‖2 ≤ n1/2(1 + δ)M (S15)

where Ul(j) denotes the jth column of Ul. (S15) follows from the definition of

M . Let

wj = n−1εTUl(j) = n−1
∑
i∈S

εiu
l(j)
i
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HenceEm(wj|Ul) = 0. Since εi’s independently follow a sub-Gaussian distribu-

tion with a scale parameter τ , conditional on Ul, wj’s also follow a sub-Gaussian

distribution with a scale factor Dj , where

D2
j = (τ 2/n2)

∑
i∈S

(u
l(j)
i )2 = (τ 2/n2)‖Ul(j)‖2

2 (S16)

Therefore, we have the sub-Gaussian tail bound

prm(|wj| > t|Ul) ≤ 2 exp{−t2/(2D2
j )}

and hence

prm(|wj| > t|F ) = Em[prm(|wj| > t|IF = 1,Ul)|F ]

≤ Em[2 exp
(
− t2D−2

j /2
)
|F ]

≤ 2 exp
(
−t2nτ−2(1 + δ)−2M−2/2

)
where the last inequality follows from (S15) and (S16). Thus,

prm(max
j
|wj| > t|F ) ≤ 2p exp

(
−t2nτ−2(1 + δ)−2M−2/2

)
= 2 exp

(
−t2nτ−2(1 + δ)−2M−2/2 + log p

)
Choose t2 = 2τ 2(1 + δ)2M2n−1a log p for some a > 1, then

prm(max
j
|wj| > t|F ) ≤ 2 exp((1− a) log p) = 2p−(a−1)

Therefore,

prm

(
‖n−1εTUl‖∞ ≤ t|F

)
= prm(max

j
|wj| ≤ t|F ) ≥ 1− 2p−(a−1) (S17)
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Combining (S14) and (S17), we have

prm

(
(1− cl/n)−1/2‖n−1εTWZ‖∞ ≤ t

)
= prm

(
‖n−1εTWU‖∞ ≤ t

)
≥ prm

(
‖n−1εTU‖∞ ≤ t|F

)
prm(F )

≥ (1− 2p−(a−1))(1− 2 exp[−nδ2/(bα4)])

(S18)

On the other hand, we can show prm

(
(1 − cu/n)−1/2‖n−1εTWZ‖∞ ≤ t

)
has

the similar result. Therefore, ‖n−1εTWZ‖∞ = Op(t) = Op

(
M(n−1 log p)1/2

)
which completes the proof of the lemma.

Proof of Theorem 2

Proof. Since β̂`1 is the solution to the following minimization problem

arg min
γ∈Rp

(2n)−1‖W1/2(Y− Zγ)‖2
2 + λ‖γ‖1

we have

(1/2n)(Y−Zβ̂`1)
TW(Y−Zβ̂`1)+λ‖β̂`1‖1 ≤ (1/2n)(Y−Zβ)TW(Y−Zβ)+λ‖β‖1
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Plug in model (2), Y = µ1n + (Z + 1nx̂
T
S )β + ε and re-arrange the terms,

(1/2n)(β̂`1 − β)TZTWZ(β̂`1 − β) ≤ n−1εTWZ(β̂`1 − β) + λ‖β‖1 − λ‖β̂`1‖1

≤ n−1‖εTWZ‖∞‖β̂`1 − β‖1 + λ‖β‖1 − λ‖β̂`1‖1

(S19)

Let S be the support of β and s = |S|. Consider the events:

F =
{

1− δ ≤ ‖n
−1/2Uv‖2

‖Σ1/2v‖2

≤ 1 + δ, ∀v ∈ C(s, 3)
}

G =
{
n−1‖εTWZ‖∞ ≤ 4τM(n−1 log p)1/2

}
where U = (1 − cl/n)−1/2Z as defined previously in (S13). Combining results

from Rudelson and Zhou (2013) and from lemma 2, we have from (S18)

prm(F and G) ≥ (1− 2p−1)(1− 2 exp[−nδ2/(bα4)]) (S20)

where constants δ, α, b are specified in lemma 2. Note that on event F , if v ∈

C(s, 3), then

‖n−1/2Uv‖2

‖vJ‖2

≥ (1− δ)‖Σ1/2v‖2

‖vJ‖2

≥ (1− δ)
K(s,3,Σ1/2)

by the definition of K(s,3,Σ1/2). Hence,

1

K(s,3,n−1/2U)

≥ 1− δ
K(s,3,Σ1/2)

> 0 (S21)
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since Σ is positive definite. Therefore, the restricted eigenvalue condition also

holds for the matrix n−1/2U on event F . Conditional on the events F and G, it

follows from (S19) that

0 ≤ (1/n)(β̂`1 − β)TZTWZ(β̂`1 − β)

≤ (2/n)‖εTWZ‖∞‖β̂`1 − β‖1 + 2λ‖β‖1 − 2λ‖β̂`1‖1

≤ λ‖β̂`1 − β‖1 + 2λ‖β‖1 − 2λ‖β̂`1‖1

= λ
{
‖(β̂`1 − β)S‖1 + ‖(β̂`1)−S‖1 + 2‖βS‖1 − 2‖(β̂`1)S‖1 − 2‖(β̂`1)−S‖1

}
≤ λ

{
‖(β̂`1 − β)S‖1 + 2‖(β̂`1 − β)S‖1 − ‖(β̂`1)−S‖1

}
= λ

{
3‖(β̂`1 − β)S‖1 − ‖(β̂`1 − β)−S‖1

}
(S22)

where the third inequality follows from assumption (A6) and the first equality

follows from the fact that ‖β−S‖1 = 0. Hence, ‖(β̂`1−β)−S‖1 ≤ 3‖(β̂`1−β)S‖1,

which implies that (β̂`1 − β) ∈ C(s, 3). Therefore,

‖(β̂`1 − β)S‖2 ≤ ‖n−1/2 W1/2U(β̂`1 − β)‖2K(s,3,n−1/2W1/2U) (S23)
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Continue from (S22),

(1/n)(β̂`1 − β)TZTWZ(β̂`1 − β)

≤ 3λ‖(β̂`1 − β)S‖1 − λ
{
‖(β̂`1 − β)‖1 − ‖(β̂`1 − β)S‖1

}
= 4λ‖(β̂`1 − β)S‖1 − λ‖β̂`1 − β‖1

≤ 4λs1/2‖(β̂`1 − β)S‖2 − λ‖β̂`1 − β‖1

≤ 4λs1/2‖n−1/2W1/2U(β̂`1 − β)‖2K(s,3,n−1/2W1/2U) − λ‖β̂`1 − β‖1

= 4λs1/2n−1/2‖(1− 1/n)−1/2Z(β̂`1 − β)‖2K(s,3,n−1/2W1/2U) − λ‖β̂`1 − β‖1

≤
(

2λs1/2K(s,3,n−1/2W1/2U)(1− 1/n)−1/2
)2

+ n−1‖W1/2Z(β̂`1 − β)‖2
2 − λ‖β̂`1 − β‖1

= 4λ2sK2
(s,3,n−1/2W1/2U)

(1− 1/n)−1 + n−1(β̂`1 − β)TZTWZ(β̂`1 − β)− λ‖β̂`1 − β‖1

where the second inequality follows from the Cauchy-Schwarz inequality, and

the third inequality follows from (S23). Cancelling some terms leads to

‖β̂`1 − β‖1 ≤ 4λsK2
(s,3,n−1/2W1/2U)

(1− 1/n)−1

Hence by (S21),

‖β̂`1 − β‖1 ≤ 4sλK2
(s,3,Σ1/2)(1− δ)−2(1− 1/n)−1

with probability at least one specified in (S20). With assumption (A6), we arrive

at result (11).
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Combining results from Lemma 1 and (11), we obtain:

(β̂`1 − β)T (X − X̂ht) ≤ ‖X − X̂ht‖∞ ‖β̂`1 − β‖1

= Op(N(n−1 log p)1/2 s(n−1 log p)1/2MK2
(s,3,Σ1/2))

= (N/n1/2)Op

(
n−1/2s log p MK2

(s,3,Σ1/2)

)
(S24)

Result (12) follows since Ŷgr `1 − Y = Ŷ ∗gr − Y + (β̂`1 − β)T (X − X̂ht). This

completes the proof of part (i).

To prove part (ii), define the function

L(γ) =
1

2n
‖Y − Zγ‖22.

We apply the theory of general high-dimensional M -estimator (Negahban et al.,

2012) to bound ‖β̂`1 − β‖1. Since we assume xi is sub-Gaussian, the restricted

eigenvalue condition still holds with constant 1/K2
(s,3,Σ1/2)

, even if the model is

wrong. Note that

‖∇L(β)‖∞ = ‖n−1ZT (Y − Zβ)‖∞.

Since β = Σ−1E(x1y1), we have β = argminγ∈Rp E(yi − zTi γ)2 and

E{zi(yi − zTi β)} = 0.

It follows from the same argument in the proof of Lemma 2 that ‖∇L(β)‖∞ =

OP

(
M(n−1 log p)1/2

)
. Hence, using Corollary 1 of Negahban et al. (2012), we
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obtain (11). The result in (ii) follows from Lemma 1, (11), and |(β̂`1 −β)T (X −

X̂ht)| ≤ ‖β̂`1 − β‖1‖X − X̂ht‖∞.

Proof of Theorem 3

Proof. Note that

v(β̂`1) = v(β) +
∑
i∈S

∑
j∈S

πij − πiπj
πij

zTi (β̂`1 − β)

πi

zTj (β̂`1 − β)

πj

+ 2
∑
i∈S

∑
j∈S

πij − πiπj
πij

zTi (β̂`1 − β)

πi

yj − zTj β
πj

Under the given conditions, v(β)/var(Ŷgr `1)→ 1 in probability and var(Ŷgr `1) �

N2/n. Thus, it suffices to show that

n

N2

∑
i∈S

∑
j∈S

πij − πiπj
πij

zTi (β̂`1 − β)

πi

zTj (β̂`1 − β)

πj
= op(1). (S25)

Under (A1) and the condition maxi,j |1−πiπj/πij|= O(n−1), the left hand side

of (S25) is bounded by

O(n−1)(β̂`1 − β)TZWZT (β̂`1 − β),

where Z is given in the proof of Theorem 1. It follows from the proof of Theorem

2 that the above quantity is bounded by O(λ)‖β̂`1 − β‖1, which is op(1) by the

established result (11) and the given condition. This completes the proof.
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A list of all 101 covariates of communities and crime data

X1 population: population for community

X2 householdsize: mean people per household

X3 racepctblack: percentage of population that is african american

X4 racePctWhite: percentage of population that is caucasian

X5 racePctAsian: percentage of population that is of asian heritage

X6 racePctHisp: percentage of population that is of hispanic heritage

X7 agePct12t21: percentage of population that is 12-21 in age

X8 agePct12t29: percentage of population that is 12-29 in age

X9 agePct16t24: percentage of population that is 16-24 in age

X10 agePct65up: percentage of population that is 65 and over in age

X11 numbUrban: number of people living in areas classified as urban

X12 pctUrban: percentage of people living in areas classified as urban

X13 medIncome: median household income

X14 pctWWage: percentage of households with wage or salary income in 1989

X15 pctWFarmSelf: percentage of households with farm or self employment in-

come in 1989

X16 pctWInvInc: percentage of households with investment / rent income in

1989

X17 pctWSocSec: percentage of households with social security income in 1989

18



X18 pctWPubAsst: percentage of households with public assistance income in

1989

X19 pctWRetire: percentage of households with retirement income in 1989

X20 medFamInc: median family income (differs from household income for

non-family households)

X21 perCapInc: per capita income

X22 whitePerCap: per capita income for caucasians

X23 blackPerCap: per capita income for african americans

X24 indianPerCap: per capita income for native americans

X25 AsianPerCap: per capita income for people with asian heritage

X26 OtherPerCap: per capita income for people with ’other’ heritage

X27 HispPerCap: per capita income for people with hispanic heritage

X28 NumUnderPov: number of people under the poverty level

X29 PctPopUnderPov: percentage of people under the poverty level

X30 PctLess9thGrade: percentage of people 25 and over with less than a 9th

grade education

X31 PctNotHSGrad: percentage of people 25 and over that are not high school

graduates

X32 PctBSorMore: percentage of people 25 and over with a bachelors degree or

higher education
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X33 PctUnemployed: percentage of people 16 and over, in the labor force, and

unemployed

X34 PctEmploy: percentage of people 16 and over who are employed

X35 PctEmplManu: percentage of people 16 and over who are employed in man-

ufacturing

X36 PctEmplProfServ: percentage of people 16 and over who are employed in

professional services

X37 PctOccupManu: percentage of people 16 and over who are employed in

manufacturing

X38 PctOccupMgmtProf: percentage of people 16 and over who are employed

in management or professional occupations

X39 MalePctDivorce: percentage of males who are divorced

X40 MalePctNevMarr: percentage of males who have never married

X41 FemalePctDiv: percentage of females who are divorced

X42 TotalPctDiv: percentage of population who are divorced

X43 PersPerFam: mean number of people per family

X44 PctFam2Par: percentage of families (with kids) that are headed by two par-

ents

X45 PctKids2Par: percentage of kids in family housing with two parents

X46 PctYoungKids2Par: percent of kids 4 and under in two parent households
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X47 PctTeen2Par: percent of kids age 12-17 in two parent households

X48 PctWorkMomYoungKids: percentage of moms of kids 6 and under in labor

force

X49 PctWorkMom: percentage of moms of kids under 18 in labor force

X50 NumKidsBornNeverMar: number of kids born to never married

X51 PctKidsBornNeverMar: percentage of kids born to never married

X52 NumImmig: total number of people known to be foreign born

X53 PctImmigRecent: percentage of immigrants who immigated within last 3

years

X54 PctImmigRec5: percentage of immigrants who immigated within last 5

years

X55 PctImmigRec8: percentage of immigrants who immigated within last 8

years

X56 PctImmigRec10: percentage of immigrants who immigated within last 10

years

X57 PctRecentImmig: percent of population who have immigrated within the

last 3 years

X58 PctRecImmig5: percent of population who have immigrated within the last

5 years

X59 PctRecImmig8: percent of population who have immigrated within the last
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8 years

X60 PctRecImmig10: percent of population who have immigrated within the last

10 years

X61 PctSpeakEnglOnly: percent of people who speak only English

X62 PctNotSpeakEnglWell: percent of people who do not speak English well

X63 PctLargHouseFam: percent of family households that are large (6 or more)

X64 PctLargHouseOccup: percent of all occupied households that are large (6

or more people)

X65 PersPerOccupHous: mean persons per household

X66 PersPerOwnOccHous: mean persons per owner occupied household

X67 PersPerRentOccHous: mean persons per rental household

X68 PctPersOwnOccup: percent of people in owner occupied households

X69 PctPersDenseHous: percent of persons in dense housing (more than 1 per-

son per room)

X70 PctHousLess3BR: percent of housing units with less than 3 bedrooms

X71 MedNumBR: median number of bedrooms

X72 HousVacant: number of vacant households

X73 PctHousOccup: percent of housing occupied

X74 PctHousOwnOcc: percent of households owner occupied

X75 PctVacantBoarded: percent of vacant housing that is boarded up
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X76 PctVacMore6Mos: percent of vacant housing that has been vacant more

than 6 months

X77 MedYrHousBuilt: median year housing units built

X78 PctHousNoPhone: percent of occupied housing units without phone

X79 PctWOFullPlumb: percent of housing without complete plumbing facilities

X80 OwnOccLowQuart: owner occupied housing - lower quartile value

X81 OwnOccMedVal: owner occupied housing - median value

X82 OwnOccHiQuart: owner occupied housing - upper quartile value

X83 OwnOccQrange: owner occupied housing - difference between upper quar-

tile and lower quartile values

X84 RentLowQ: rental housing - lower quartile rent

X85 RentMedian: rental housing - median rent

X86 RentHighQ: rental housing - upper quartile rent

X87 RentQrange: rental housing - difference between upper quartile and lower

quartile rent

X88 MedRent: median gross rent

X89 MedRentPctHousInc: median gross rent as a percentage of household in-

come

X90 MedOwnCostPctInc: median owners cost as a percentage of household in-

come - for owners with a mortgage
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X91 MedOwnCostPctIncNoMtg: median owners cost as a percentage of house-

hold income - for owners without a mortgage

X92 NumInShelters: number of people in homeless shelters

X93 NumStreet: number of homeless people counted in the street

X94 PctForeignBorn: percent of people foreign born

X95 PctBornSameState: percent of people born in the same state as currently

living

X96 PctSameHouse85: percent of people living in the same house as in 1985 (5

years before)

X97 PctSameCity85: percent of people living in the same city as in 1985 (5 years

before)

X98 PctSameState85: percent of people living in the same state as in 1985 (5

years before)

X99 LandArea: land area in square miles

X100 PopDens: population density in persons per square mile

X101 PctUsePubTrans: percent of people using public transit for commuting
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