Supplementary Material for “Time-varying Hazards
Model for Incorporating Irregularly Measured,

High-Dimensional Biomarkers”

S1 Proof of equivalence between (6) and (7)

We prove that if the global minimizers of (6) and (7) are unique, they are equivalent in the

A A

sense that if (4, @) solves (7) for ¢, there exists a ¢, such that (%, 0) also solves (6) for c,;

and vice versa.

A

First, we prove that if (%, 0) is the global minimizer of (7), it also solves (6) with ¢, =

el — 6,2. Denote L(v,0) = —1,(7) + p(8;v,). Suppose there exists (¥, ) different

A

from (4, @) such that

pn
L(%,60) < L(¥,0) and ) |7, — 0]l < cn.
j=1



Then, by definition,

Pn Pn
L(7,0) + ¢uv/Gn Y |17, — 05ll2 < L(3.0) + ¢u/@n > 14, — 0,112,
j=1 j=1

which contradicts with the fact that (%,0) is the minimizer of (7).

Next, we prove that, for any given c,, if (¥, 0) is the solution to (6), we can always find
a ¢, such that (%, 0) also solves (7). Suppose (¥,0) = arg min,, g L(7,0) is the minimizer of
the unconstrained problem. Let Crax = > 7" || — 0;2. Then, for any ¢, > Chay, (7, 0) is

also the solution to (6). In this case, it’s easy to check that (%, @) also solves (7) with ¢, = 0.

For ¢, < Cinax, suppose the solution to (6) is given by (4,0). Let Co, =200l A?’”

- éj ' ||27
where (%", 9%) is the solution to (7) for ¢,,. We prove that Cy, is a decreasing function of
¢n. In fact, suppose (5%, 9¢1) and (4% 0 ) are solutions to (7) for ¢; and ¢y respectively

and ¢; < ¢9. By definition,
L(4%,6" +¢2Z||’Y]2—
L(5*,6" +¢QZ||~7; -
é o 6
NP1 ~ ~P1
L(3%,6" +¢1Z||7]1 =0 2+ (62— 1) Y 47 — 6512
=1
6 - 6
~P2 ~ ~P1
L(7%,6%) + ¢, ZH%Q =072+ (62— 61) Y 47 — 6] 12
=1
Therefore, Cy, = S " |45 — 5 < A% —_” 5 = Cy,. Then, by the continuity of
P2 j=111"1j 1 J ] 1

the objective function in (7) and the uniqueness of the global minimizer, for every ¢, < Cpax,

we can always find a ¢,, such that ¢, = Cy,. We prove that (7, é) solves (7) with such a ¢,.



Otherwise, let (4, é) be the solution. Then,

Pn
L(7:0)+¢n2|ﬁ’j JH? < L +¢n ZH'Y; j”2-
j=1

By definition, ZIJ?LH'AYJ- — éj”Q = ¢,,. Therefore,

L('Aﬁé) < L 7a + ¢n Z||7] j||2 - Cn) S L(;%é)

This contradicts with the assumption that (%, 0) is the global minimizer of (6).

S2 Proof of Lemma 1

As discussed in Remark 2, all following arguments are conditioned on the event {n; < M.},

which has probability at least 1 — € to hold. We have

1 n P )
252/ D Kt = t) Zita ) = Buy (7" )}
=1

+%Z / ZKhn — tao){ 2yt 1) = By (", 0) M (1)

= Il + ]2.



The upper bound of I; will be given in Lemma S1 in Section S4. For I, we have

To bound Ji,, since nJy, is the sum of i.i.d random variables with mean zero, which are

bounded by O(h;!), it follows from the Hoeffding inequality that
P(|(nh3)" 2 J1a| > ) < 2exp(—Ca?). (5.1)
To bound Js,, consider the event A = A; N Ay, where

Al = { sup ‘57(10) (7*7t> - 57(10) (7*7t)| S D(rnQnCnd}z/z/n)lﬂ} ’

te(0,7]

Ay = { sup [\, ) = sU) (v, 1) < D(rnqncnd;ﬂ/nf”} .

te[0,7]

By Lemma S2 in Section S$4, P(A) > 1 — 2exp(—Crogncads *h22?). Conditioning on A, we
show that

sup | B (7", 1) = en; (7", 1)) = o(1). (5.2)

te[0,7]



In fact, we have

v*, 1)
L gy ) sy gm0 o g0
= n 7 I Sn ] 7 ) . n FY I - Sn 7 )
Sw (vt ’ i (v )i (v 1)

Then, conditioning on A, condition 8 implies (S.2).
Let M(t) = >0 > Ky, (t — tip) M;(t). Since M;(t) = N;(t) — A;(t) is a martingale
with compensator

A1) = / () exp[{ 8" (u) ¥ X ()] Ao us)du,

so M(t) is also a martingale. We have |A(M(t))] = O(h;'). Next, we show that both

A((nh2)Y2 Jo,(t)) and ((nh2)Y/2Jy,(t)) are bounded. For A((nh?)Y/2Ja,(t)), we have

te(0,7]

A((nh) 2o (t)) S (nhi) ™2 (Sup [ Ens (Y1) = enj(v*,t)!> < (nhy)™% = 0(1),

where condition 7 and the fact that |A(M(t))| = O(h;!) are used. Next, we calculate the

predictable quadratic variation of (nh2)'/2.Jy,, denoted by ((nh2)'/2.Jy,),

(B2)V2 T () = 2 / (B (Lo 1) — ey (7' w) (VT ()

<h, [SUP {Eij (i, u) — en (77, U)}] /O S (B, u)dAo(u)

te[0,7]

= 0(1),



where the last equality follows from (S.2), condition 1 and the fact that sup;c(g . ]S,(LO) (B*,t)| <

~Y

h.'. Then, it follows from Lemma 2.1 of van de Geer (1995) that

P{|(nhi)1/2J2n| > x|A} < Csexp(—Cyz). (S.3)

(S.1), (S.3) and Lemma S2 in Section S4 together imply that

P{|L,| < D(nh?)~Y%z} > 1 — P{|(nh2)"2J1,| > 0.5Dx} — P{|(nh2)"*Jy,| > 0.5Dz|A}
— P(A°)

> 1 — C) exp(—Car?) — Cs exp(—Cyz).

This result together with Lemma S1 prove the result after dropping high order terms.

S3 Proof of Theorem 1

We prove the following two results:

{79 #0y ={j:~] # 0}

2] maxjea |9y, — 75| < Mvn/gn.

Then, [1] implies [a]. [2] together with condition 6 imply [b].

By optimization theory (Boyd and Vandenberghe, 2004), any vector = satisfies the fol-



lowing KKT conditions is a solution to (5):

Uni(Y) = va/@ud (I17;ll2) 1751350 if 5 # 0, (5.4)
)‘min(In,AA('Y)) > vnk(p, ), (S.6)

where A = {ji:v; #0and 1 <1 < gy}

We define the event A as

A= (£ MO0 < v O4)/2) 0 { inf A (Faaa) > Con2

p'(0+) }
p(dn/2) )

1
1 {5 A Eatal) e < 5= 0

Y€Bo
By Lemmas 1, S5 in Section S4, and the union bound,

P(A) > 1—¢€—Cipngn exp{—C’gthi(l/n\/q_n — 7rn)2}

- C3ann exp{—C4(nhi)1/2(Vn\/q_n - ﬂ-n)} - C5pnrnq72L exp{_cﬁnhi(rnQn)_l}'

Next, we show that conditioning on event A, statements [1] and [2] hold.
[1] Let N denote the hypercube {v4 € R™" : [y 4 — Yilloo < Mvy\/qn}, where M is a
sufficiently large constant. We show that within N, there exists a solution 4 4 to equation

(S.4). We define a function f : R™¥ — R as

Fva) =74+ 200 an(v) " HUpa(Y) = Vapu, (1)}, (S.7)



where € R# such that ¥ 4 = 0, V.apu, () = vy/Gup/(1,112)[7; 13 ;- By the Taylor

expansion,

* 1 N *
Una(7) =Una(y") — §In,AA<7)(7A — %)

where 4 lies on the line segment connecting - and ~v*. Substituting it into (S.7) gives

f(’YA) - ’lel = {Irnqn - In,AA(’y*)_lIn,AA(:Y)}(VA - 7?4)

+ 20 aa(Y) MU na(Y5) — Vapu, ()},

where Z,, .. is a 7,q, X 7,q, identity matrix. Without loss of generality, we assume

||I7’nQn - In7AA(7*)_lIn,AA('7)HOO < 1/2- (S~8)

Moreover, since d,, > 2[|7v; — ¥} ||, it follows that

1v; = Yillz < Vanllv; — ¥illo < dnf2.

Hence,

[v;llz = 1vill2 = llv; = ¥ill2 = dn/2.

By the concavity assumption of p(t), we have p'(||v,|l2) < p'(dn/2). Therefore,

IV 4w (V) loo < Vn/Gnp' (dn/2).



Then, we obtain

1F(7) = Yialloo < 1/2017 = Yidlloo + 20 Tnaa(Y) ool N Una(Y) oo + VD, (V) |00 }

1 4 '(0+ ,
g Mvnv/n + 75— {p (2 v/ + VT (dn/2>}

i) (M 6p(0+
2 (55 v

< Mp'(0+)vn/Gn)

IN

—~

where in (i), we use the fact that p'(d,/2) < p'(0+) due to the concavity assumption in
condition 11.

Therefore, f(N) C N. It follows from the definition of d,, that sign(y,) = sign(v%)
for any v, € N. Therefore, f(v,) is a continuous function on the convex and compact
set A/. By Brouwer’s fixed point theorem, there exists a solution 44, € N to the problem
f(v4) =4, which also solves (S.4).

[2] We expand 4 4 to be 4 € RP»4 such that 4 4 = 0. We further show that 4 satisfies

(S.5). Again, by the Taylor expansion of U, 4c(%) around v*, we have

1

Upa(7) =Upa(v") — §In,ACA(:Y)ﬁ’A — %) (S.9)

where 4 lies on the line segment connecting 4 and v*. Since f(94) = 0, it holds that

Aa— =20 aa(Y) H{UnA(Y) = Vap, (A)}



Substituting it into (S.11) gives

Upac(7) =Unac(v) = Inaca(3)Inaa(v) " H{Una(%) — Vapu, (9)}
=U,4(¥) = LnacaA(Y) Loaa(Y) " H{Una(¥) = Vap, (3)}

+ T aea(¥) = Tnopea(Y ) Hnaa(V) " H{Upa(¥) = Voap, (9)}-

Therefore,

. 1 . - . .
1Unac(F)loe < mHIn,ACA(’Y o aa(Y) " ool 10 na() oo + IV 420, ()l }

FUnae(7) oo

1 / p/(0+) / /
< SVn/@ap (0+) + W{%Jq_np (dn/2) + Vnr/Gnp'(dn/2)}

1 1
< §Vn\/q_np'(0+) + §Vn\/q_np/(0+)

= Vn\/q_npl(0+)'

Therefore, (S.5) holds.
Finally, as we have shown, 4 € By and A = A. Then, by condition 11 and Lemma S5,

conditioning on event A, (S.6) also holds.

10



S4 Additional lemmas and their proofs

Lemma S1. Under conditions 1 to 8, there exist positive constants Cy, Co and D such that

or any x > 0, with provability less than Cy exp(—Caonh,x), 1t holds that
0, with bability 1 han C Conh8x?), it holds th

53 / Ti:Kh = ta){Zig(tins ) = Eng(y D} ()

>D [{(rnqncndiﬂ/n)m}(l + ) + hi + g, ]

Proof of Lemma S1. Let SP (8%, 1) = n= L 21, Yi(£){ Z:(t, ) Y2 exp[{B*(t)}T X (1)), for | =
0,1,2, E.(8",t) = 1)( )/S ( ,t) and E,;(v*,t) be the j-th element of E,(B8%1).
Note that,

> [ MO0 = Bl )i =0

Then,

. Z /OT Z Ky, (t —ti){Zij(tin, t) — Enj (7", t) JdA;(2)

N3 v=1
1 n T
“n Z/ Z K, (t = tiw) Zij(tiv, t) — No(t) Zis(t, 1) dAi(t)
i=1 70 u=1
1 " T N . y )
+= Z/ > K, (= ti) Enj (7", 1) = Xo(t) Enj (87, £)dA (t)
i=1 Y0 u=1
=L+ 1

For ]1, let ‘/z = fOT ZZ;I Khn(t — tw)Zm(tw,t> — )\U(t)ZZ]<t,t)dAz(t> Denote Zij(S,t) =

11



E{Z;;(s,t)}. We first bound E(V;).

E{ ZKhnt—t i(t, t)dA()}
_ E{ 0 { K, (t — )245(5, )Mo (s )ds}dAi(t)}
- E{ 0 { W) zis (¢ + whn, )Ny (t+uhn)du} dAi(t)]
-e{['( / () [0 0+ Lo OOy + G OM) (ka2 o02)]au) ans(0)}
:E{ 2,0 }+ch2+o(h2)

(S.10)

where c is a constant. Hence, E[V;] = O(h2). Since V; = O(h,,'), by the Hoeffding inequality,
P{|I| > DR2(1 4+ )} < P{|V — E(V)| > Dh2x} < 2exp(—CnhSz?). (S.11)

For 15, we have

= %Z /OT {Z K, (t —ti) — )\v(t)} Enj(v", t)dAi(t)
w23 [ @ (Bt = Bys 0 }and)

= Jl + JQ.
Similarly as (S.11), it can be shown that
P{|J1| > DhZ(1 + z)} < 2exp(—Cnhya?). (S.12)

12



Next, we bound J; by
2| S sup |Eny (Y1) = Eng (B, 1))

te[0,7

Recall that E,;(v*,t) = S (v*, 1) /5% (v*, 1) and E,;(8*,t) = S (8%, 1) /5 (8, ), where

S () =n"t Z Z K, (t = ti0)Yi(t){ Zi(tio, 1)} exp{(v")" Zi(tiv, 1)}

SP(B* 1) =n"" Z Yi(){Zi(t, 1)} exp[{B (1)} X (t)).
In addition, we define E(v*,t) = 57(11)(7*, t)/gfzo) (v*,t), where
SO(y*,t) :=n"" Z Yi(t){Z(t, 1)} exp{(v")" Zi(t, 1) }.

Let sy (v*,t) = E{SY (v, 1)}, 30(8",t) = E{SV(8",1)} and 5O (y*,t) = E{SY(v*,1)}.

We have
() (% (1) 3%
Sn (7 7t) 85 (,8 at) -
En'7*7t _En' /8*7t :En '7*7t - ] +~] * En ﬁ*>t
00 = BylB76) = Bus('.0) = 55— 5 )

+853,§-(7*,t) 308", 1)
Oy 1y 50(8 1)
Ls
For L, we have
(1) /%
1 1) (1) $n i (Y5 1) 0 0
L = (SO (v 1) — st (v 1)) - d {SO(y*,1) — s (", 1)}
SO (1) ’ SO (v, ) (v, 1)

13



By Lemma S2, with probability no less than 1 — eXp(—Crnqncnd}/ *h222), we have

sup |Li| < (rpgneady?/n)Y2(1 + z). (S.13)
te(0,7]

Similarly, by Lemma S3, with probability no less than 1 — exp(—Cr,z?), we have

sup |La| < (rn/n)l/Q(l + ). (S.14)
te(0,7]
For L3, we have
1

Ly = W (4% 1) — A (D)3 (4, 8

= e )~ M ()
8(1)(7* . (S.15)

- A {s(v, 1) = M5 (v 1)}

Ao(D)3O(8%, 1) (v, 1)

By the same calculation as in (S.10), we have

SOy, 1) = A (1)5O (v, 1) = O(h2), (S.16)
s (v, 1) = A ()5 (v, 1) = O(h2). (S.17)

14



Moreover,

5O (v, 1) = 398", 1)
< |E{Yi(t) exp[(v)" Za(t, 8) — {B* ()} X ()]}
(4)
SE[()Zit,t) — {B" (1)} Xi(1)] (S.18)

=E

S0 {50 — ()00} Xy 1)

(i7)

—
5 rnqn Y

S

S {550~ () "ot}

where (i) follows from condition 2 and (ii) follows from condition 6. Similarly, \§§-1)(7*, t) —

§§1)(,3*,t)| < g, ®. Therefore,

Then, it follows from (S.15) that

sup |Ls| < h2 +rpq, . (S.19)
t€[0,7]

Equations (S.13), (S.14) and (S.19) together imply that

P (2] > D{(ragncady? /) (14 2) 4+ h2 + 100,°}) < Ot exp(—Carngncady*h22?).
(S.20)

Finally, the result follows from (S.11), (S.12) and (S.20). O

15



Lemma S2. Under conditions 1 to 8, there exist positive constants C' and D such that, for

any r > 0,

P { sup ‘57(10) (v, t) - 37(10) (v, t)‘ > D(Tnanndi/Q/n)l/z(l + x)} < eXp(_Crnannd}z/zhi$2)>

~€By,tel0,7]
P{ sup \Sﬁ}(mt)—s&;w,arzD(rnqncndw/n)“?um)}Sexp<—0mqncnd;/2hiw2>,

~Y€EBoy,t€[0,7]

P{ sup S (v, 1) — sf,zm,mzquncnd;/?/n)l”(lw)}Sexp<—crnqncnd;/2hix2>,
~y€Boy,t€[0,7]

where ¢, = rpq2h,tV b2,

Proof of Lemma S2. Let

W, = sSup ‘57(10) (77 t) - 87(10) (77 t)‘

~YEBo,t€[0,7]

We prove the upper bound for W,,. The other two cases can be shown similarly. First, we
bound E(W,,). Let F = {>_0i, Ky, (t — tiw)Y (t) exp{¥" Z (tin,t)} : v € Bo,t € [0,7]}. We

calculate the bracketing number of the function class F.
Z Kh (tl) eXp{’Yl 21)7 } Z Kh (tQ) eXp{72 ( v t2)}
< ZKhn(tl — i) [Y(t1) exp{v] Z (tiw, 1)} — Y (t2) exp{73 Z (tiv, 12) }|

v=1

+Z|Khn — ti) = Ko, (t2 — tio)| |V (t2) exp{3 Z (tiv, t2) }

= [1 -+ [2.

16



For I, let dij = 71 ;(t) and dy; = v ;¢(t), we have

Y (t1) exp{y1 Z (tiw, t1)} — Y (t2) exp{v3 Z (ti, t2)}]
SV Z (v t1) — ¥3 Z(tiw, t2)] + Y (81) — Y (22)]
< (1 = ¥2) Z(tiw, )| + 175 {Z (tiv, 11) — Z(tin, )} + Y (81) — Y (£2))]

Tn

> (dij — doj) X;(tn)

j=1

< + 12 [X (t) @ {o(t1) — d(t2) I + [V (t1) = Y(t2))|

S v — Yalloo + @t — o] + [V (t1) — Y (t2)]|

Since Kj,,(t — ty) = O(h;') and n; = O(1), we have I} < 7,20 (|71 — Yalloo + [t —

ta]) + 1YY (1) — Y (t2)|. For I, by conditions 2 and 4, we have I, < h,%|t; — t5]. Denote

~J

0, = (v1,t1)" and @5 = (7,,t2)". Then, we have
L+ I S enfl|601 = B2l + [Y (1) — Y (22)[},
where ¢, = r,q2h; ' V h,;2. When [|0; — 05| < €2/c2,
|for = foul < € /cn+culY (1) = Y(t2)],

where fg, := >0 Ky, (t; —tiw)Y (t;) exp{~Y] Z(tiw,t;)}. The Ly(P)-size of the above bracket

18

to 1/2
262 /¢y + 2c,{E|Y (t1) — Y (t2)*}/% = 2% /e, + 2¢, {/ de(t)} <2e/c, +2¢ S e
t1

17



Then, to cover F, we need as many brackets as we need balls of radius €?/(2¢2) to cover ©,
where ® = By ® [0, 7]. Hence, the bracketing entropy of F (see Example 19.7 of Van der
Vaart (2000)) is

log N[](E’ F, LQ(P)) S TnGn log(cidn/ez).

The class F has an envelope function F with ||F||p2 = O(h,!). Therefore, by the maximal

inequality (Corollary 19.35 of Van der Vaart (2000)), we have

[1Fllp,2
EW,) < n_l/z/ \/ann log(c2d,,/€?)de < (rnqncndiﬂ/n)lﬂ.
0

Then, by the functional Hoeffding inequality (Massart and Picard, 2007), for any x > 0, we

have

P{W, > D(ragucad’/?/n)Y?(1 4+ 2)} < P{W, — BE(W,) > D(rogucady/?/n)"a}

< eXp(_Crnannd}z/2h721x2> :

O

Lemma S3. Under conditions 1 to 8, there exist positive constants C' and D such that for

18



any x > 0,

P { sup [S(8",) = 39(8", )| = D(r,/n)'*(1 + x)

te[0,7]

P{sup 1S(8°,1) = 557(87, 1) = D(ra/n) /(1 + x)

te[0,7]

te[0,7]

i { sup [S(v",t) — 59 (y*, )| = D(rugn/n)"*(1 + x)

te[0,7]

P { sup [S(v*, 1) — 80 (%, 8)] > D(rngn/n)/*(1 + x)

te[0,7]

te(0,7]

P{ sup [§°(8",1) = 5 (87, £) = D(ra/n)"*(1 +ﬂf)} < exp(—Crya?).

P{ sup |5 (v, 1) — 52 (v, 6)| = D(rngn/n)*(1 + )

Proof of Lemma S3. We prove the result for S0 (B*,t). The other cases can be shown

similarly. Let

W, = sup S8, 1) — 5°(8",1)].

te[0,7]
Denote F = {Y(t)exp[{B8*(t)}* X (t)] : t € [0,7]}. We calculate the bracketing number of

the function class F.

¥ (1) expl {8 (1)) X (1)) — ¥ (1) xp {8 (1)} X (1)
< V(1) = ¥(ta)| + | expl{B° ()} X ()] — expl{8" () X (12)]
< V(1) = Yita) + {87 ()Y X (0) — {5 ()} X (1)
<Y () - V(e !+ZIB h)— B0 +§;\Xj<t1> - X0l

We use brackets of the form {1, o), It; 1 ,00)] With Fi(t;—)—Fp(tio1—) < € to cover {Y (¢),t €

19



[0, 7]}, which forms a grid of points 0 =ty < t; < --- < t;, = 7. The Lo-size of these brackets
is €. By the continuity assumption of 87(¢) in condition 6, to cover {#;(t) : t € [0,7]},
we need as many e-brackets as we need balls of radius €/2 to cover [0,7]. In addition, by
continuity assumption in condition 5, to cover {X;(¢) : t € [0,7]}, we also need as many
brackets as we need balls of radius €/2 to cover [0, 7]. Then, the bracketing entropy of F is
given by

log Ny(e, F, La(p)) < rnlog(e™?).

Moreover, the envelop function F' of F has || F||p2 = O(1). Then, by the maximal inequality

1
E(W,) < n/2 / VraTog(e ) de = Of(rafn)"/2).
0
Then, it follows from the functional Hoeffding inequality that for any z > 0,
P {Wn > D(rn/n)l/Q(l + a:)} <P {Wn — E[W,] > D(fr‘n/n)l/2x} < exp(—Cr,z?).

]

Lemma S4. Under conditions 1 to 8, there exist positive constants Cy, Cy and D, such that

for any x > 0,

P (sup | L (v) — Zii(y)| > D{(rnqncnd}lﬂ/n)lﬂ(l + )+ hi}) <y exp(—Cgrnqncnd}/thf).

Y€Bo

20



Proof of Lemma S4. Note that

nl](77 )_ EZ](77 )

= [ 82 ) = A0 (ol
g {S*“;;iiij;” iy o e
=50 = [ (. t)da(e).
For the term .J; (), we have
)] < sup S (v, 1) = M(B)55 (7, )] - Ao(7). (S:21)

t€[0,7]

Similar as in (S.16) and (S.17), we have

This together with Lemma S2 imply that

~v€Bo,te(0,7]

P( sup S (7. t) — A (8)3) (v, t >|>DQ{<rnqncndl/2/n>1/2<1+x>+h2}>
(S.22)

< exp(—Ch7pncad/*h2 2%).

Then, by (S.21), we have

P <sup |J1(Y)| > Di{(rpgnend?/n)Y?(1 + z) + hi}) < exp(=C1ncad*h22%). (S.23)

Y€EBo

21



For the second term, we write ja,(,t) as

j2 n(7a t)

Since A, (t), S,(LIZ) (v, 1), §§1)(7,t) are all bounded and 57(10)< v,t) and 5@ (v,t) are bounded

away from zero, it follows that

sup |J>(7)]

Y€Bo

Sosup |2a(ys 1)
~y€Bo,te[0,7]

< swp o [SU( ) =AY+ sup SO, 1) = A ()50 (v, 1)].

~y€Bop,te[0,7] ~y€EBo,te[0,7]

Similar as (S.22), we have

P (Sup | Jo(y)| > Dg{(rnqncnd;/z/n)lﬂ(l +x)+ hi}) < exp(—Cgrnqncnd}/thxQ). (S.24)

Y€Bo

(S.23) and (S.24) together complete the proof. O

Lemma S5. Under conditions 1 to 11, there exist positive constants Cy, Cy, C3, Cy and

Chin such that,

P{ inf )\min(In,AA(’YD < Clnin

< _ 2 '
BeBy 9 } ClrnqneXp{ C2nhn}7 (S 25)



and

; { sup L aea( Eaa(y) e > 51— O L) }
- ’ (S.26)

< Cspurngs exp{—Cynh’(r,q,) "'}

Proof of Lemma S5. By Weyl’s inequality,

| Amin (Ln,44(7)) = Amin(Baa(¥))| < [T a4(y) = Baa¥)ll2 < [Tnaa(y) = Baa¥)h-

By condition 9,

inf Amin(344(7)) = 1/150 Amax(Baa())} 2 1/ (sup [Zaa(3)llee) 2 1/M. - (8.27)

veB ~€eBy ~€EBy

We denote Ciyiy := 1/M. Then, it follows from Lemma S4 that

Cmin
P { 1P e (L aa()) = Ain(Eaa(7)] }
v€Bo 2

C(min
<P { sup || L, 44(7) — Baa(¥)|loe = }

~v€Bo 2
C’min
sup max Lnii(y) = % >
{ e ) =012 } .

v

C11rnin
< ragaP < sup |15(y) — S ()]
~EBo 2

< 112 g2 exp{—Ca(nh> V ragnend/?h2)}

= C172q2 exp{—Conh?}.

This result together with (S.27) imply (S.25).
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To prove (S.26), observe that

-1

Iy aea(Y) Inaa(7) ™ = Baca(v)Zaaly)
= {T aca(v) = Zaea(y)Hnaa(v) ™
(S.29)
— S 4ea(V)Zaa(Y) I aa(y) = Taa(¥)H o aa(y)

= N(y) + (7).
For Ji(7y), it follows from Lemma S4 that

(1 — C)Cmin}
P su In c — X ge 00 Z s —
{supllr, acatn) = Baatml =

(1 - C)Cmin
Sup max Lii(y) — % >
{%g} 2 ) =St = 50

(1 - C)Cmin
< P{Sup i (v) — BV =2 ——F—
ie;e/l B J J 81/rnQn

(S.30)

< CS (pn - Tn)ranz exp{_04nh721(rn(.In)_l}'

By definition, ||1, 44(¥) oo < v/7nGnllLnaa(¥) " 2. Then, we have

2 TnQn Cmin
P{supurn,AA(v) o2 2 } {mf Nn(Tnaa(7) < }

~y€EBy Chin v€Bo 2

(S.31)
< Cyriql exp{—Conh2}.

Therefore, by the union bound, (S.30) and (S.31) together imply that

Iy

(1—Q)p'(0+) Lo
p {3&% ()] > W} <P {32}3)0 |Ji(y)| > } (5.32)

< O 2 g2 exp{—Conh2} + Cs(py — 10)rnq? exp{—Cinh? (rng,) "'},

"h ‘
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since p'(0+)/p'(d,/2) > 1 by the concavity assumption in condition 11.

Similar as (S.30), we have

Cmin _
PLspllasr) = Baalle > g2 | < Curtadexp-Canti () )

~EBo T'ndn
This together with (S.31) imply that

(1 Op(04)
d {3251 == =) }

(S.33)
< Cirpgy exp{—Conhi} + Cyrigy exp{—Cunh’(rng,) "' }.
Finally, it follows from (S.29), (S.32) and (S.33) that
_ _ 1—¢)p'(0+)
PN, 4ea(), L Y )y 1oo><—
{|| AcA(Y) L, aa(7) AeA(V)Baa(Y) oo = 27 (40 ]2)
S CSPnTnQi eXp{_Cllnh’i(rnqn)_l}‘

This together with condition 10 complete the proof. O

S5 Additional simulation results

Figure S1 shows the running time of the proposed method with /y-regularization penalty
based on A with length of 10 and fixed a and h. Overall, the computation time increased
linearly with the number of covariates. When p,, = 1000 and n = 200, the running time is
634 seconds, with a total of p,q, = 5000 parameters.

Table S1 summarizes the comparison results by using different kernel functions for both
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Figure S1: Running time in seconds of the proposed ¢yNet for various sample sizes and number of
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settings of B(t). Epanechnikov and Gaussian kernels were considered. The simulation results
are very similar between these two kernels. Both show our proposed approach has a smaller

SSE, much better FP and comparable TP to either group LASSO or network regularization.

Table S1: Comparison of estimation and selection performance of the proposed DB-hazard
using different kernel functions under various penalty functions.

Epanechnikov Gaussian
gLasso!  gNett (yNet* glasso  gNet loNet

Setting (a)

n =100, p, = 1000

SSE! 834 625 457 823  6.13 4.26

TP? 7.7 8.0 8.0 7.7 8.0 8.0

FP? 332  127.2 1.6 384 1255 1.7
n =200, p, = 1000

SSE 504 417 2.83 501 4.04 2.68

TP 8.0 8.0 8.0 8.0 8.0 8.0

FP 571 149.0 1.7 61.1  151.8 1.0

Setting (b)
n = 100, p, = 1000
SSE 14.14 13.91 12.59 14.00 13.78 12.42

TP 2.1 3.3 3.5 2.4 3.5 3.6

FP 148 389 5.2 168  44.0 5.0
n =200, p, = 1000

SSE 1043  10.02  8.06 10.50  9.79 7.74

TP 5.9 7.1 7.4 5.9 7.3 7.4

FP 482 133.6 1.0 441 142.8 0.9

f: group Lasso; ¥: group Lasso with a Laplacian penalty; *: £o-regularization penalty (10)

[1] :sum of squared error; 2] (3]

‘number of true positive, ‘number of false positive.

Table S2 summarizes the performance of bandwidth selection. It can be seen from the ta-
ble that the two kernel functions had similar performance. Our selected bandwidths by both
kernel functions are very close to the “Best” bandwidth, indicating satisfactory performance
of our data-driven procedure.

Table S3 summarizes the impact of various numbers of basis functions. Quadratic B-
splines with 5, 7 and 10 interior knots, corresponding to ¢, = 8, 10, 13, respectively, were
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Table S2: Performance of the bandwidth selection procedure for DB-hazard using different
kernel functions.

Epanechnikov Gaussian
Selected  Best! Selected Best

Setting (a)
n =100, p, = 1000

Bandwidth 0.056 0.085 0.061 0.066
SSE? 4.57 3.89 4.26 3.91
n = 200, p, = 1000
Bandwidth 0.059 0.086 0.065 0.077
SSE 2.83 2.19 2.68 2.29

Setting (b)
n = 100, p, = 1000

Bandwidth ~ 0.055  0.113 0.057 0.110
SSE 1259  11.31 12.42 11.36
n =200, p, = 1000
Bandwidth  0.061  0.104 0.062 0.085
SSE 8.06 6.90 7.74 6.91

[1]: defined as the bandwidth leading to the smallest SSE;] [2}3 sum of squared errors.

considered. We observed an increase in SSE and the number of identified variables as the
number of basis functions increased. Note that 3;(t) is a linear combination of basis functions.
To obtain ;(t) = 0, all the elements in the coefficient vector v; = (Vi1 ,7jq.)" have to
be zero. Thus, the trend is expected that it is more likely to obtain non-zero estimates with
more basis functions. After increasing n = 100 to 200, the performance improved, which
may suggest we need more sample sizes when describing a more complicated function (;(t)

with more basis functions.

S6 Additional information for real data analysis

Table S4 summarizes the area under the ROC curve (AUC), time-dependent sensitivity

(SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value
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Table S3: Comparison of estimation and selection performance of the proposed DB-hazard
using various numbers of knots under various penalty functions.

Setting (a) Setting (b)

gLasso!  gNett (yNet* glasso  gNet loNet
n = 100, p, = 1000, ¢, =8
SSE! 9.83 8.07 6.69 14.47 14.38 13.85
TP? 7.8 8.0 8.0 2.0 3.0 2.7
FP3 98.9 327.9 14.9 48.1 115.6 34.5
n = 100, p, = 1000, ¢, = 10
SSE 10.43 8.94 7.88 14.59 14.55 14.25
TP 7.9 8.0 8.0 1.9 3.3 2.4
FP 93.7 339.8 23.2 50.2 160.8 39.7
n =100, p, = 1000, ¢, = 13
SSE 11.04 10.41 9.69 14.73 14.73 14.50
TP 7.9 8.0 8.0 2.6 3.8 2.8
FP 169.7 900.8 52.0 96.3 258.0 70.4
n = 200, p, = 1000, ¢, =8
SSE 6.61 5.43 4.12 12.07 11.49 9.91
TP 8.0 8.0 8.0 5.0 6.7 6.9
FP 149.4 416.6 6.6 125.9 329.9 10.8
n = 200, p, = 1000, ¢, = 10
SSE 7.31 6.05 5.05 12.63 12.33 11.04
TP 8.0 8.0 8.0 5.1 6.3 6.5
FP 149.9 458.3 104 103.7 311.2 22.8
n = 200, p, = 1000, ¢, = 13
SSE 8.05 7.59 6.74 13.31 13.18 12.31
TP 8.0 8.0 8.0 5.9 6.6 6.2
FP 262.2 917.8 18.4 199.8 584.3 40.4

T: group Lasso; ¥: group Lasso with a Laplacian penalty; *: £o-regularization penalty (10)

[1].

sum of squared error; [2] ‘number of true positive,

(3]

‘number of false positive.
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Table S4: Estimates of time-dependent sensitivity (SEN), specificity (SPE), positive pre-
dictive value (PPV), negative predictive value (NPV) and area under curve (AUC) using
our kernel smoothing method based on longitudinal data, the LVCF method and the model
based on baseline data.

Year SEN SPE PPV NPV AUC

DB-hazard
0.959 0.736 0.220 0.996 0.902
0.886 0.817 0.555 0.965 0.910
6 1.000 0.873 0.540 1.000 0.924
LVCF
0.499 0.873 0.234 0.957 0.708
0.658 0.832 0.502 0.904 0.736
6 0.900 0.651 0.278 0.978 0.735
Baseline
2 0.958 0.739 0.222 0.996 0.864
0.914 0.740 0.476 0971 0.878
6 0.900 0.810 0.414 0.982 0.849

=~ N

=N

S

(NPV) at a given time where the threshold is obtained by optimizing Youden’s index.

Figure S2 plots the number of subjects with available clinical measures (time-to-diagnosis
outcome) and longitudinal imaging measurements at several follow up time (allowing a win-
dow of 6 month), which shows sparse measurements of imaging biomarkers at times (e.g., 18
month after baseline).

Figure S3 shows the heatmaps of the 136 features measured at the baseline and at the
last visit for 142 subjects who were diagnosed with HD during the study (converters) and
390 subjects who remained free of HD diagnosis (non-converters).

Figure S4 shows the heatmaps of the selected features, where they are seen to better

distinguish converters from non-converts than other non-selected noise features in Figure S3.

Figure S5 shows the estimated effect profiles of top 6 measures selected by DB-hazard.
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Figure S2: Number of subjects with clinical assessment of the time-to-diagnosis outcome
and neuroimaging biomarker measures at several follow up time in PREDICT-HD study.
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Figure S3: Heatmaps of all feature variables on subjects with at least two neuroimaging biomarker
measures. “Converter”: Subjects who were diagnosed of HD during the follow up; ”Non-converter”:
subjects who did not receive diagnosis during follow up.
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Figure S4: Heatmaps of feature variables selected by DB-hazard on subjects with at least two
neuroimaging biomarker measures. “Converter”: Subjects who were diagnosed of HD during the
follow up; ”Non-converter”: subjects who did not receive diagnosis during follow up.
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Figure S5: Estimated effects of six most informative markers identified by DB-hazard and
their confidence intervals.
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