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S1 Proofs

Proof of Theorem 1. It follows from Lemmas 1 and 4 that

P
(
|(σ̂cc − Σ̂

T

ScΣ̂
−1

SSΣ̂Sc)− (σcc −ΣT
ScΣ

−1
SSΣSc)| . s2

√
(log p)/n

)
≥ 1− CAp

−CB ,

where CA only depends on C1 and C4 in Lemmas 1 and 4, and CB is

an arbitrarily large constant. Since ΣS∪{c},S∪{c} is a submatrix of Σ with

row and column indices in S ∪ {c} and is positive definite, it follows from

Condition 2 and Theorem 4.3.17 of Horn and Johnson (2012) that for any
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c /∈ S,

0 < m ≤ λmin(ΣS∪{c},S∪{c}) ≤ λmax(ΣS∪{c},S∪{c}) ≤M <∞.

Since σcc − ΣT
ScΣ

−1
SSΣSc is the Schur complement of ΣS in ΣS∪{c},S∪{c}, it

follows that σcc −ΣT
ScΣ

−1
SSΣSc ≥ m > 0 for all c 6∈ S. Then we have

P
(
|(σ̂cc − Σ̂

T

ScΣ̂
−1

SSΣ̂Sc)
−1 − (σcc −ΣT

ScΣ
−1
SSΣSc)

−1| . s2
√

(log p)/n
)
≥ 1− CAp

−CB ,

(S1.1)

where CA only depends on C1 and C4, and CB is an arbitrarily large con-

stant. On the other hand, with probability at least 1 − CAp
−CB , we have

|(δ̂c − Σ̂
T

ScΣ̂
−1

SS δ̂S)2 − (δc −ΣT
ScΣ

−1
SSδS)2|

≤ |(δ̂c − Σ̂
T

ScΣ̂
−1

SS δ̂S)− (δc −ΣT
ScΣ

−1
SSδSS)|2

+ 2|(δ̂c − Σ̂
T

ScΣ̂
−1

SS δ̂S)− (δc −ΣT
ScΣ

−1
SSδS)| · |δc −ΣT

ScΣ
−1
SSδS|

. (s2
√

(log p)/n)2 + (s2
√

(log p)/n) · |δc −ΣT
ScΣ

−1
SSδS|

. (s2
√

(log p)/n) ·max(s2
√

(log p)/n,
√
θSc),

(S1.2)

where the last inequality follows from Condition 2.

Therefore, (S1.1) and (S1.2) together imply that, with probability at
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least 1− CAp
−CB , we have

|θ̂Sc − θSc|

= |(δ̂c − Σ̂
T

ScΣ̂
−1

SS δ̂S)2(σ̂cc − Σ̂
T

ScΣ̂
−1

SSΣ̂Sc)
−1 − (δc −ΣT

ScΣ
−1
SSδS)2(σcc −ΣT

ScΣ
−1
SSΣSc)

−1|

≤ |(δ̂c − Σ̂
T

ScΣ̂
−1

SS δ̂S)2 − (δc −ΣT
ScΣ

−1
SSδS)2| · |(σ̂cc − Σ̂

T

ScΣ̂
−1

SSΣ̂Sc)
−1 − (σcc −ΣT

ScΣ
−1
SSΣSc)

−1|

+ |(δ̂c − Σ̂
T

ScΣ̂
−1

SS δ̂S)2 − (δc −ΣT
ScΣ

−1
SSδS)2|(σcc −ΣT

ScΣ
−1
SSΣSc)

−1

+ |(σ̂cc − Σ̂
T

ScΣ̂
−1

SSΣ̂Sc)
−1 − (σcc −ΣT

ScΣ
−1
SSΣSc)

−1|(δc −ΣT
ScΣ

−1
SSδS)2

. s4(log p)/nmax(s2
√

(log p)/n,
√
θSc) + s2

√
(log p)/nmax(s2

√
(log p/n),

√
θSc)

+ s2
√

(log p)/nθSc

. s2
√

(log p)/nmax(s2
√

(log p)/n,
√
θSc, θSc).

Proof of Theorem 2. Let ∅ = Ŝ0 ⊂ Ŝ1 ⊂ · · · be the sequence of selected

indices given by the greedy search algorithm. The key of the proof is to show

that, with high probability, Ŝk ⊂M for all k ≤ K− 1, and M̂ = ŜK =M.

When k = 0, it follows from Corollary 1 and the union bound that

P

(
max
c≤p
|θ̂Sc − θSc| .

√
(log p)/n

)
≥ 1− CAp

−CB , for S = ∅.

Condition 4 implies that maxc∈M θSc − maxc 6∈M θSc � K2
√

(log p)/n ≥√
(log p)/n. These two results together imply that

P

(
max
c∈M

θ̂Sc > max
c 6∈M

θ̂Sc

)
≥ 1− CAp

−CB , for S = ∅.
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It further implies that P
(
Ŝ1 ⊂M

)
≥ 1− CAp

−CB .

When k = 1, we prove that

P

(
max

c∈M\Ŝ1

θ̂Ŝ1c
> max

c 6∈M
θ̂Ŝ1c

)
≥ 1− CAp

−CB . (S1.3)

This further gives P
(
Ŝ2 ⊂M

)
≥ 1− CAp

−CB , where CA is treated as a

generic postic constant. Let events

E1 =
{
Ŝ1 ⊂M

}
,

A1 =

{
max

c∈M\Ŝ1

θŜ1c
−max

c 6∈M
θŜ1c
� K2

√
(log p)/n

}
,

A2 =

{
max

c∈M\Ŝ1

|θ̂Ŝ1c
− θŜ1c

| . K2
√

(log p)/n

}
,

A3 =

{
max
c 6∈M
|θ̂Ŝ1c

− θŜ1c
| . K2

√
(log p)/n

}
.

Note that A1 ∩ A2 ∩ A3 ⊂
{

maxc∈M\Ŝ1
θ̂Ŝ1c

> maxc 6∈M θ̂Ŝ1c

}
. Therefore,

P

(
max

c∈M\Ŝ1

θ̂Ŝ1c
> max

c 6∈M
θ̂Ŝ1c

)
≥ 1− P

(
A1

)
− P

(
A2

)
− P

(
A3

)
. (S1.4)

Under Condition 4, E1 ⊂ A1, therefore, P
(
A1

)
≤ P

(
E1

)
≤ CAp

−CB . It

follows from Theorem 1, Condition 3, and the union bound that P (A2) ≤

CAp
−CB , and P (A3) ≤ C1p

−CB . These three results, together with (S1.4),

proves (S1.3). By the same argument, it holds that Ŝk ⊂M for all k ≤ K

with probability at least 1−(2k−1)CAp
−CB . SinceM contains K elements,

we further have ŜK =M.
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Next, we show that at the (K + 1)th iteration, the greedy search algo-

rithm terminates with high probability if we choose τ � K4(log p)/n. First,

we show that θMc = 0 for all c 6∈M . By definition, θMc = ∆M∪{c}−∆M =

βT
M∪{c}ΣM∪{c},M∪{c}βM∪{c}−βT

MΣMMβM = 0. Then, Theorem 1 implies

that

P

(
max
c 6∈M
|θ̂Mc| ≤ K4(log p)/n

)
≥ 1− CAp

−CB .

Hence, by choosing τ � K4(log p)/n, the greedy search program terminates

with high probability, i.e., P (M̂ = ŜK |ŜK =M) ≥ 1− CAp
−CB . Then,

P
(
M̂ =M

)
= P

(
M̂ = ŜK , ŜK = M

)
= P

(
M̂ = ŜK |ŜK =M

)
P
(
ŜK =M

)
≥ (1− CAp

−CB)(1− (2K − 1)CAp
−CB) ≥ 1− CAKp

−CB .

Proof of Theorem 3. We prove the result conditioning on the event that

{M̂ = M}, which holds with probability tending to 1. We first bound

δ̂
T

MΩ̂Mδ̂M. By Lemma 3, we have

δ̂
T

MΣ−1
MMδ̂M − δ

T
MΣ−1

MMδM = OP

(
K
√

(log p)/n
)
.

By Condition 3, K . ∆p = δTMΣ−1
MMδM. Therefore,

δ̂
T

MΣ−1
MMδ̂M − δ

T
MΣ−1

MMδM = OP

(
∆p

√
(log p)/n

)
. (S1.5)
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Then, by Lemma 4 we have

|δ̂
T

M(Ω̂M −Σ−1
MM)δ̂M| = OP

(
∆pK

√
(log p)/n

)
. (S1.6)

It follows from the triangular inequality and (S1.5) and (S1.6) that

δ̂
T

MΩ̂Mδ̂M = ∆p

{
1 +OP (K

√
(log p)/n)

}
. (S1.7)

Next, we bound δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M. It follows from Lemma 2 that ‖Ω̂M−

Σ−1
MM‖ = OP

(
K
√

(log p)/n
)

. This result, together with Condition 2,

imply that ‖Ω̂M‖ = OP (1). Then, using the same argument as in the

proof of Lemma 4, we have

δ̂
T

M(Ω̂MΣMMΩ̂M − Ω̂M)δ̂M = OP

(
∆pK

√
(log p)/n

)
.

This result, together with (S1.7), gives

δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M = ∆p

{
1 +OP (K

√
(log p)/n)

}
. (S1.8)

Then, we have

β̂
T

M(x̄1M − µ1M)√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M

=
(β̂M − βM)T (x̄1M − µ1M)√
∆p{1 +OP (K

√
(log p)/n)}

+
βT
M(x̄1M − µ1M)√

∆p{1 +OP (K
√

(log p)/n)}
.

Since the leading term ∆
−1/2
p βT

M(x̄1M − µ1M) ∼ N(0, 1/n1), we have

βT
M(x̄1M − µ1M)√

∆p{1 +OP (K
√

(log p)/n)}
=

OP (1/
√
n)√

1 +OP (K
√

(log p)/n)
.
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Since K
√

(log p)/n ≤ K2
√

(log p)/n = o(1), the leading term can be sim-

plified as

βT
M(x̄1M − µ1M)√

∆p{1 +OP (K
√

(log p)/n)}
= OP (1/

√
n)(1 +OP (K

√
(log p)/n))

= OP (1/
√
n) +OP (K

√
log p/n).

Since 1/
√
n = o(

√
K/n) and K

√
log p/n = o(

√
K/n), we have

β̂
T

M(x̄1M − µ1M)√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M

= OP

(√
K/n

)
. (S1.9)

Then, it follows from (S1.7), (S1.8), and (S1.9) that

−β̂
T

M(µ1M − x̄1M)− δ̂
T

MΩ̂Mδ̂M/2√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂MM

=
−δ̂

T

MΩ̂Mδ̂M/2√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M

− β̂
T

M(µ1M − x̄1M)√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M

=
−∆p

(
1 +OP (K

√
(log p)/n)

)
2

√
∆p

(
1 +OP (K

√
(log p)/n)

) +OP (
√
K/n)

= −

√
∆p

(
1 +OP (K

√
(log p)/n)

)
2

+OP (
√
K/n)

= −

√
∆p

(
1 +OP (K

√
(log p)/n)

)
2

,

(S1.10)

where in the second-to-last equation, we use the fact that {1+OP (K
√

(log p)/n)}−1/2

= 1+OP (K
√

(log p)/n), and in the last equation, we use
√
K/n = o(K{∆p(log p)/n}1/2).
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Using the same argument, we also have

β̂
T

M(µ0M − x̄0M)− δ̂
T

MΩ̂Mδ̂M/2√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M

= −

√
∆p

(
1 +OP (K

√
(log p)/n)

)
2

.

(S1.11)

Equations (S1.10) and (S1.11) together prove statement (a).

To prove (b), we use the fact that RBayes = Φ(−
√

∆p/2) and a well-

known result of the normal cumulative distribution function (Shao et al.,

2011): that

x

1 + x2
e−x

2/2 ≤ Φ(−x) ≤ 1

x
e−x

2/2, for all x > 0. (S1.12)

First, when ∆p <∞, by the Mean Value Theorem, we have

RGS-LDA(X) = RBayes + φ(x̃)OP

(
K
√

∆p(log p)/n

)
= RBayes + φ(x̃)Op(

√
(log p)/n),

where x̃ is a number between−
√

∆p/2 and−
√

∆p(1 +Op(K
√

(log p)/n))/2.

In the last equation, we use the fact that K � ∆p < ∞, which is implied

by Conditions 1, 2 and 4, since ∆p < ∞, RBayes is bounded away from 0.

Then, we have

RGS-LDA(X)

RBayes

= 1 +
φ(x̃)

RBayes

Op(
√

(log p)/n).

Then, the boundedness of the normal density function and RBayes implies

that

RGS-LDA(X)

RBayes

− 1 = Op(
√

(log p)/n).
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This proves statement (b).

When ∆p →∞, let an = K
√

(log p)/n. Noting that an = o(K2
√

(log p)/n) =

o(1), it follows from statement (a) and (S1.12) that

RGS-LDA(X)

RBayes

≤
1√

∆p/2(1+Op(an))
e−(

√
∆p
2

(1+Op(an)))2/2

√
∆p/2

1+(
√

∆p/2)2
e−(

√
∆p
2

)2/2

≤ 4 + ∆p

∆p{1 +Op(an)}
e−

∆p
8

(1−(1+Op(an))2)

≤ 4 + ∆p

∆p{1 +Op(an)}
eOp(∆pan).

Since ∆pan . K2
√

(log p)/n = o(1), by the Taylor expansion, we have

RGS-LDA(X)

RBayes

≤ 4 + ∆p

∆p

(1 +OP (an))(1 +OP (∆pan)) ≤ 4 + ∆p

∆p

(1 +OP (∆pan))

= (1 +
4

∆p

)(1 +OP (∆pan)) ≤ 1 +OP

(
∆−1

p

)
+OP (∆pan) .

Using a similar argument, we can show that

RGS-LDA(X)

RBayes

≥ ∆p

4 + ∆p

(1 +Op(∆pan)) = (1− 4

4 + ∆p

)(1 +Op(∆pan))

≥ 1−OP

(
∆−1

p

)
−OP (∆pan) .

Combining the lower and upper bounds for RGS-LDA(X)/RBayes, we obtain

RGS-LDA(X)

RBayes

− 1 = OP

(
max{∆−1

p ,∆pan}
)

= OP

(
max{∆−1

p , K2
√

(log p)/n}
)
.

This proves statement (c).

Proof of (2.3). We use a similar argument to the proof of Proposition 1
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given by Li and Li (2018). Letting α = (σcc −ΣT
ScΣ

−1
SSΣSc)

−1, we have

∆s+1 =

(
δTS δc

)ΣSS ΣSc

ΣT
Sc σcc


−1δS

δc



=

(
δTS δc

)(ΣSS − σ−1
cc ΣScΣ

T
Sc)
−1 −αΣ−1

SSΣSc

−αΣT
ScΣ

−1
SS α


δS
δc

 .

By the Sherman–Morrison–Woodbury formula,

(ΣSS − σ−1
cc ΣScΣ

T
Sc)
−1 = Σ−1

SS + αΣ−1
SSΣScΣ

T
ScΣ

−1
SS.

Then we have

∆s+1 =

(
δTS δc

)Σ−1
SS + αΣ−1

SSΣScΣ
T
ScΣ

−1
SS −αΣ−1

SSΣSc

−αΣT
ScΣ

−1
SS α


δS
δc


= δTSΣ−1

SSδS + αδTSΣ−1
SSΣScΣ

T
ScΣ

−1
SSδS − 2αδcΣ

T
ScΣ

−1
SSδS + αδ2

c

= ∆s + α(δc −ΣT
ScΣ

−1
SSδS)2.

Hence, we have

θSc = ∆s+1 −∆s =
(δc −ΣT

ScΩSSδS)2

σcc −ΣT
ScΩSSΣSc

,

where ΩSS = Σ−1
SS. With same argument as in the proof of Theorem 1,

σcc −ΣT
ScΩSSΣSc > 0 for any c /∈ S. Thus, θSc ≥ 0.
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S2 Supporting Lemmas and their Proofs

Lemma 1. Under Conditions 1 and 2, there exists a constant t0 such that

for all 0 < t < t0, the following results hold.

(a) P (maxi,j≤p |σ̂ij − σij| ≥ t) ≤ p2C1e
−C2nt2, where C1 and C2 are some

generic positive constants.

(b) P
(

maxj≤p |δ̂j − δj| ≥ t
)
≤ pC1e

−C2nt2, where C1 and C2 are some

generic positive constants.

Proof of Lemma 1. These are standard concentration inequalities that

follow from the normality assumption. The proof of (a) can be found in the

proof of Lemma 3 of Bickel and Levina (2008), and (b) is a result obtained

by applying the Chernoff method.

Lemma 2. Under Condition 2 and if s
√

log(p)/n = o(1), it holds that

P
(
‖Σ̂SS −ΣSS‖ . s

√
(log p)/n

)
≥ 1− C1p

−C0 ;

P
(
‖Σ̂
−1

SS −Σ−1
SS‖ . s

√
(log p)/n

)
≥ 1− C1p

−C0 ,

where C1 is some generic positive constant and C0 is a sufficiently large

constant.
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Proof of Lemma 2. We have

‖Σ̂
−1

SS −Σ−1
SS‖ = ‖Σ̂

−1

SS(Σ̂SS −ΣSS)Σ−1
SS‖ ≤ ‖Σ̂

−1

SS‖‖Σ̂SS −ΣSS‖‖Σ−1
SS‖.

(S2.1)

First, we bound ‖Σ̂SS −ΣSS‖. By definition,

‖Σ̂SS −ΣSS‖ ≤ ‖Σ̂SS −ΣSS‖1 = max
i∈S

∑
j∈S

|σ̂ij − σij|.

Then, it follows from Lemma 1 that

P
(
‖Σ̂SS −ΣSS‖ ≥ t

)
≤ P

(
max
i∈S

∑
j∈S

|σ̂ij − σij| ≥ t

)
≤ P

(
max
i,j
|σ̂ij − σij| ≥ t/s

)

≤ p2C1e
−C2nt2/s2

.

(S2.2)

Letting t = CDs
√

(log p)/n for some large generic positive constant CD and

C0 = C2CD, we have

P
(
‖Σ̂SS −ΣSS‖ ≥ CDs

√
(log p)/n

)
≤ C1p

2−C2CD≤ C1p
−C0 .

Next, we bound ‖Σ̂
−1

SS‖2. Note that ‖Σ̂
−1

SS‖2 = 1/λmin(Σ̂SS). By Weyl’s

inequality,

λmin(ΣSS) ≤ λmin(Σ̂SS) + λmax(ΣSS − Σ̂SS) ≤ λmin(Σ̂SS) + ‖Σ̂SS −ΣSS‖

Then, it follows from Condition 2 and (S2.2) that

P

(
λmax(Σ̂

−1

SS) ≤ 1

m− C0s
√

(log p)/n

)
≥ 1− C1p

2−C2CD≥ 1− C1p
−C0 .
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By Condition 2 and (S2.1), we have

P

(
‖Σ̂
−1

SS −Σ−1
SS‖ ≤

C0s
√

(log p)/n

m(m− C0s
√

(log p)/n)

)
= P

(
‖Σ̂
−1

SS −Σ−1
SS‖ . s

√
(log p)/n

)
≥ 1− C1p

2−C2CD≥ 1− C1p
−C0 ,

where in the first equality, we use the fact that as s
√

(log p)/n = o(1),

m− C0s
√

(log p)/n ≥ m/2.

Lemma 3. Under Condition 1–2, and if s
√

(log p)/n = o(1), the following

results hold.

P
(
|δ̂

T

SΣ−1
SS δ̂S − δ

T
SΣ−1

SSδS| . s
√

(log p)/n
)
≥ 1− C3p

−C0 ,

P
(
|Σ̂

T

ScΣ
−1
SSΣ̂Sc −ΣT

ScΣ
−1
SSΣSc| . s

√
(log p)/n

)
≥ 1− C3p

−C0 ,

P
(
|Σ̂

T

ScΣ
−1
SS δ̂S −ΣT

ScΣ
−1
SSδS| . s

√
(log p)/n

)
≥ 1− C3p

−C0 .

where C3 is a positive constant depending on the C1, and C0 is a sufficiently

large constant.

Proof of Lemma 3. To prove the first result, we have

δ̂
T

SΣ−1
SS δ̂S = δTSΣ−1

SSδS + 2δTSΣ−1
SS(δ̂S − δS) + (δ̂S − δS)TΣ−1

SS(δ̂S − δS).
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Then, we have

P
(
|δ̂

T

SΣ−1
SS δ̂S − δ

T
SΣ−1

SSδS| ≥ t
)

= P
(
|2δSTΣ−1

SS(δ̂S − δS) + (δ̂S − δS)TΣ−1
SS(δ̂S − δS)| ≥ t

)
≤ P

(
|2δTSΣ−1

SS(δ̂S − δS)|+ (δ̂S − δS)TΣ−1
SS(δ̂S − δS) ≥ t

)
≤ P

(
|2δTSΣ−1

SS(δ̂S − δS)| ≥ t/2
)

+ P
(

(δ̂S − δS)TΣ−1
SS(δ̂S − δS) ≥ t/2

)
.

By Cauchy-Schwarz inequality and Conditions 1 and 2, we have

|δTSΣ−1
SS(δ̂S − δS)| ≤ (δTSΣ−1

SSδS)1/2{(δ̂S − δS)TΣ−1
SS(δ̂S − δS)}1/2

≤ (1/m)(δTSδS)1/2{(δ̂S − δS)T (δ̂S − δS)}1/2

≤ (sM/m) max
i,j≤p
|δ̂ij − δij|.

We also have

(δ̂S − δS)TΣ−1
SS(δ̂S − δS) ≤ (s/m)(max

j≤p
|δ̂j − δj|)2.

Then, we have

P
(
|δ̂

T

SΣ−1
SS δ̂S − δ

T
SΣ−1

SSδS| ≥ t
)

≤ P

(
(sM/m) max

j≤p
|δ̂j − δj| ≥ t/4

)
+ P

(
(s/m)(max

j≤p
|δ̂j − δj|)2 ≥ t/2

)
.

Letting t = C0s
√

(log p)/n for some large enough constant C0, then it

follows from Lemma 1 that

P
(
|δ̂

T

SΣ−1
SS δ̂S − δ

T
SΣ−1

SSδS| . s
√

(log p)/n
)
≥ 1− C3p

−C0 ,
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where C3 is some positive constant depending on the C1.

To prove the second result, note that

Σ̂
T

ScΣ
−1
SSΣ̂Sc = ΣT

ScΣ
−1
SSΣSc+2ΣT

ScΣ
−1
SS(Σ̂Sc−ΣSc)+(Σ̂Sc−ΣSc)

TΣ−1
SS(Σ̂Sc−ΣSc).

Then, we have

P
(
|Σ̂

T

ScΣ
−1
SSΣ̂Sc −ΣT

ScΣ
−1
SSΣSc| ≥ t

)
≤ P

(
|2ΣT

ScΣ
−1
SS(Σ̂Sc −ΣSc)|+ |(Σ̂Sc −ΣSc)

TΣ−1
SS(Σ̂Sc −ΣSc)| ≥ t

)
≤ P

(
|ΣT

ScΣ
−1
SS(Σ̂Sc −ΣSc)| ≥ t/4

)
+ P

(
|(Σ̂Sc −ΣSc)

TΣ−1
SS(Σ̂Sc −ΣSc)| ≥ t/2

)
.

By Cauchy-Schwarz inequality and Condition 2,

|ΣT
ScΣ

−1
SS(Σ̂Sc −ΣSc)| ≤ (ΣT

ScΣ
−1
SSΣSc)

1/2{(Σ̂Sc −ΣSc)
TΣ−1

SS(Σ̂Sc −ΣSc)}1/2

≤ (1/m)(ΣT
ScΣSc)

1/2{(Σ̂Sc −ΣSc)
T (Σ̂Sc −ΣSc)}1/2

≤ (sM/m) max
i,j≤p
|σ̂ij − σij|,

where in the last inequality, we use the fact that |σij| ≤
√
σii
√
σjj ≤

λmax(Σ) ≤M , for all i, j ≤ p.

Also under Condition 2, we have

(Σ̂Sc −ΣSc)
TΣ−1

SS(Σ̂Sc −ΣSc) ≤ (s/m)(max
j≤p
|σ̂j − σj|)2.

Then we have

P
(
|Σ̂

T

ScΣ
−1
SSΣ̂Sc −ΣT

ScΣ
−1
SSΣSc| ≥ t

)
≤ P

(
(sM/m) max

i,j≤p
|σ̂ij − σij| ≥ t/4

)
+ P

(
(s/m)(max

i,j≤p
|σ̂ij − σij|)2 ≥ t/2

)
.
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Letting t = C0s
√

(log p)/n, for some large constant C0. Then, it follows

from Lemma 1 that

P
(
|Σ̂

T

ScΣ
−1
SSΣ̂Sc −ΣT

ScΣ
−1
SSΣSc| . s

√
(log p)/n

)
≥ 1− C3p

−C0 ,

where C3 is some positive constant depending on the C1 .

To prove the third result, note that

Σ̂
T

ScΣ
−1
SS δ̂S

= ΣT
ScΣ

−1
SSδS + δTSΣ−1

SS(Σ̂Sc −ΣSc) + ΣT
ScΣ

−1
SS(δ̂S − δS) + (Σ̂Sc −ΣSc)

TΣ−1
SS(δ̂S − δS).

Then, we have

P
(
|Σ̂

T

ScΣ
−1
SS δ̂S −ΣT

ScΣ
−1
SSδS| ≥ t

)
≤ P

(
|δTSΣ−1

SS(Σ̂Sc −ΣSc)| ≥ t/3
)

+ P
(
|ΣT

ScΣ
−1
SS(δ̂S − δS)| ≥ t/3

)
+ P

(
|(Σ̂Sc −ΣSc)

TΣ−1
SS(δ̂S − δS)| ≥ t/3

)
.

By Cauchy-Schwarz inequality and Conditions 1 and 2, we have

|δTSΣ−1
SS(Σ̂Sc −ΣSc)| ≤ (sM/m) max

i,j≤p
|σ̂ij − σij|;

|ΣT
ScΣ

−1
SS(δ̂S − δS)| ≤ (sM/m) max

j≤p
|δ̂j − δj|;

(Σ̂Sc −ΣSc)
TΣ−1

SS(δ̂S − δS) ≤ (s/m)(max
i,j≤p
|σ̂ij − σij|)(max

j≤p
|δ̂j − δj|).
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Then, we have

P
(
|Σ̂

T

ScΣ
−1
SS δ̂S −ΣT

ScΣ
−1
SSδS| ≥ t

)
≤ P

(
(sM/m) max

i,j≤p
|σ̂ij − σij| ≥ t/3

)
+ P

(
(sM/m) max

j≤p
|δ̂j − δj| ≥ t/3

)
+ P

(
(s/m)(max

i,j≤p
|σ̂ij − σij|)(max

j≤p
|δ̂j − δj|) ≥ t/3

)
≤ P

(
(sM/m) max

i,j≤p
|σ̂ij − σij| ≥ t/3

)
+ P

(
(sM/m) max

j≤p
|δ̂j − δj| ≥ t/3

)
+ P

(
max
i,j≤p
|σ̂ij − σij| ≥

√
mt/(3s)

)
+ P

(
max
j≤p
|δ̂j − δj| ≥

√
mt/(3s)

)
.

Letting t = C0s
√

(log p)/n for some large constant C0, it follows from

Lemma 1 that

P
(
|Σ̂

T

ScΣ
−1
SS δ̂S −ΣT

ScΣ
−1
SSδS| . s

√
(log p)/n

)
≥ 1− C3p

−C0 ,

where C3 is some positive constant depending on the C1.

Lemma 4. Under Condition 1–2 and if s
√

(log p)/n = o(1), the following

results hold.

P
(
|δ̂

T

SΣ̂
−1

SS δ̂S − δTSΣ−1
SSδS| . s2

√
(log p)/n

)
≥ 1− C4p

−C0 ;

P
(
|Σ̂

T

ScΣ̂
−1

SSΣ̂Sc −ΣT
ScΣ

−1
SSΣSc| . s2

√
(log p)/n

)
≥ 1− C4p

−C0 ;

P
(
|Σ̂

T

ScΣ̂
−1

SS δ̂S −ΣT
ScΣ

−1
SSδS| . s2

√
(log p)/n

)
≥ 1− C4p

−C0 ;

where C4 is some positive constant depending on the C1 and C3 and C0 is

a sufficiently large constant.
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Proof of Lemma 4. By definition,

|δ̂
T

S (Σ̂
−1

SS −Σ−1
SS)δ̂S| ≤ ‖Σ̂

−1

SS −Σ−1
SS‖δ̂

T

S δ̂S

≤ ‖Σ̂
−1

SS −Σ−1
SS‖{δ

T
SδS + 2(δ̂S − δS)TδS + (δ̂S − δS)T (δ̂S − δS)}.

By Condition 1, δTSδS = O(s). It follows from Lemma 1 that (δ̂S−δS)TδS =

oP (s) and (δ̂S − δS)T (δ̂S − δS) = oP (s). Then, it follows from Lemma 2

that

P
(
|δ̂

T

S (Σ̂
−1

SS −Σ−1
SS)δ̂S| . s2

√
(log p)/n

)
≥ 1− C4p

−C0 .

This result, together with Lemma 3 and the triangular inequality, prove

the first result. The other two results can be proved by a similar argument,

noting that ΣT
ScΣSc = O(s).
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S3 Additional Results in Cancer Subtype Analysis

Figure S1 shows the variable selection performance of the GS-LDA, ROAD

and Logistic-L1 in cancer subtype analysis.

0

25

50

75

100

212416_at205186_at209173_at219414_at218211_s_at205225_at
Variables

F
re

qu
en

cy
 (

%
)

Top Selected Variables(a)

0

25

50

75

100

205009_at206754_s_at205225_at205862_at209602_s_at209173_at
Variables

F
re

qu
en

cy
 (

%
)

Top Selected Variables(b)

0

25

50

75

100

205597_at205862_at219414_at202088_at205186_at205225_at
Variables

F
re

qu
en

cy
 (

%
)

Top Selected Variables(c)

Figure S1: Variable selection performance of the three classifiers in classifying cancer subtypes:

panel (a) for the GS-LDA; panel (b) for the ROAD; and panel (c) for the Logistic-L1.
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