Statistica Sinica: Supplement

Supplement of “An Efficient Greedy Search Algorithm

for High-dimensional Linear Discriminant Analysis”

Hannan Yang, Danyu Lin and Quefeng Li

Department of Biostatistics, University of North Carolina, Chapel Hill

Supplementary Material

The online supplementary material contains the proofs of Theorems[1H3] equation (2.3) and the

supporting lemmas.

S1 Proofs

Proof of Theorem [1]. Tt follows from Lemmas [I] and [4] that

L oaTala _ _
P (|(Ucc — Y5 XgsXse) — (0cc — Egczsézscﬂ S 5? (logp)/n> >1—Cyp s,
where C4 only depends on C; and Cy in Lemmas [I] and {4, and Cp is
an arbitrarily large constant. Since Xgyc} sufe} 18 a submatrix of ¥ with
row and column indices in S U {c} and is positive definite, it follows from

Condition 2| and Theorem 4.3.17 of [Horn and Johnson| (2012)) that for any
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0<m< >\min<ESU{c},SU{c}) < Amax(ESU{c},SU{c}) <M < oo.

Since o — 256255256 is the Schur complement of Xg in Xgyuiey suiey, it

follows that o.. — EgCEEéZSC >m >0 for all ¢ € S. Then we have

P <|(acc - ESCESSESC)_l — (Occ — EgczgéESC)_l| S s° V (logp)/n> >1- CAP_CBa
(S1.1)

where C'4 only depends on C4 and C}, and Cp is an arbitrarily large con-

stant. On the other hand, with probability at least 1 — C4p~“2, we have

—~ ~T

~—1~
|(0c — X5.85505)* — (6. — 5. X5505)°
—~ AT ~—1~
S ‘(50 - ZSCZSS(SS) - (50 - EI.STCEE;'(SSSNQ
~ AT ~—1~
+ 2|(5C - ESCESS‘sS) - (50 - Egczgéésﬂ ’ |5c - E§02551‘55| (81'2)

< (s*/(logp)/n)* + (s*v/ (log p) /n) - [dc — B5, D550
S (s*V/(logp)/n) - max(s*\/(log p) /n, \/bs).

where the last inequality follows from Condition [2]

Therefore, (S1.1)) and (S1.2) together imply that, with probability at
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least 1 — Cup~ 2, we have

’é\Sc - 6‘50‘

T -1

= |3, ~ £ 25585)2(Bec — B, BgsBse) " — (6 — BE,T5886)° (0 — B5.555860) 7
< (5, — 55, 55605)2 — (0 — BL,55505)] - |re — S5 S5 550) ™ — (00 — XL, 55k 8607
+1(5. — Bg,B5e8s)? — (6. — TLE5186) (00 — B5, 555 8s0) !
+ (G — BB gs35e) " — (0o — B5 55456 (0. — £ 25185)?
s'(log p) /n max(s*\/(log p) /n, \/0s.) + 52/ (log p) /n max(s*/(log p/n), v/0s.)
s>\/(log p) /nfs.

< s%\/(log p) /nmax(s*\/(log p) /n, v/Bsc, Ose).
0

Proof of Theorem [2. Let ) = §0 C S; C -+ be the sequence of selected
indices given by the greedy search algorithm. The key of the proof is to show
that, with high probability, S, ¢ M for all k < K — 1, and M = Sx = M.

When k£ = 0, it follows from Corollary [1| and the union bound that
P (m<ax|§sc —0Os.| < (logp)/n) >1—Cup ©e, for S =0.
cxp

Condition [{| implies that max.en 0s. — maxega 0s. > K?\/(logp)/n >

v/ (log p)/n. These two results together imply that

0. Os.) >1—CapC7, for S = 0.
P<§é%<650>r01;%<656> > Cuap=©8, for S =10
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It further implies that P <§1 C M) >1—Cup ©5.

When k£ = 1, we prove that

P | max §A >max§A >1—Cup ©5. S1.3
(CEM\§1 S1e cgM S1c> - AP ( )

This further gives P <§2 - ./\/l> > 1—Cup 98, where Cy is treated as a

generic postic constant. Let events
B, = {§1 C M} ,
Ay =14 max 05 —maxfg_ > K>\/(logp)/n ¢,
cem\8; ! cgM 71
Ay = { max (05, — 05| < KQ\/(logP)/n} :
ce M\S; ¢
Ao = {5, 05, 5 Koz}

~

Note that A; N Ay N Az C {maxceM\gl 0516 > maXegm é\?w}' Therefore,

P (gﬂ% 05, > max %c) >1-P(4) = P () = P (4). (S14)

Under Condition 4, E; C A;, therefore, P (A_l) <P (E) < Cup ©B. It
follows from Theorem [1| Condition , and the union bound that P(Ay) <
Cap~ 92, and P(A3) < O1p~©B. These three results, together with ,
proves . By the same argument, it holds that §k CMforal k< K
with probability at least 1—(2k—1)C4p~“2. Since M contains K elements,

we further have S K =M.
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Next, we show that at the (K + 1)th iteration, the greedy search algo-
rithm terminates with high probability if we choose 7 < K*(logp)/n. First,

we show that 0, = 0 for all ¢ ¢ M. By definition, Oy = Apugey — Am =

B%U{C} EMu{c},Mu{c}IBMu{c} — ,354 Y rmmB oy = 0. Then, Theorem [1{ implies

that
P (x%%c@w < K4(10gp)/n) >1—Cap™ 2.

Hence, by choosing 7 =< K*(logp)/n, the greedy search program terminates

with high probability, i.e., P(M\ = §K|§K = M) >1—Cup ©s. Then,

P(/\?:M>:P(M\:§K,§K:M):P(ﬂ:§K|§K:M>P<§K:M>

> (1—Cap “B)(1 — (2K — 1)Cap™©8) > 1 — C,Kp ©".

Proof of Theorem [3. We prove the result conditioning on the event that
{M\ = M}, which holds with probability tending to 1. We first bound

AT o~ o~
0\ QM0 0. By Lemma , we have

B nindm — 65 Sibudut = Op (K\/(ogp)/n).
By Condition , KSA = 6TME/’\/}M6M. Therefore,

~T ~
8 riZindm — 6% Sibudut = Op (Ap\/(ogp)/n) . (S1.5)
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Then, by Lemma [4] we have
T~ —~
Bae(@at — T3ia)0ul = Op (A, /Togp)/n) . (S1.6)
It follows from the triangular inequality and (S1.5)) and (S1.6) that
T o~ o~
3 Qudu = A, {1 +Op(K (logp)/n)} . (S1.7)

T~ ~ o~ —~
Next, we bound 8 \, QuZpmm 20 04. It follows from Lemmathat |20 —

Sumll = Op <K\/(10gp)/n>. This result, together with Condition ,

imply that || = Op(1). Then, using the same argument as in the

proof of Lemma [4, we have
T~ —~ —~ —~
I (QmEMm M — Qp)dm = Op (ApK\/ (10»5’;19)/") -
This result, together with (S1.7)), gives
T~ ~ o~
3 S ud o = A, {1 + Op(K+/(logp) /n)} . (S1.8)

Then, we have
BL(@M — M) (Bt — Ba)” @it — Hapg)
VoS @b A1+ 0p(K /g p)/n)}
B (@inm — o) ‘
VAL + Op(K /Tlogp) )

Since the leading term A;lﬂﬁﬂ(:ﬁl/\,{ — piaq) ~ N(0,1/ny), we have

B (@1im — 11p1) _ Op(1/v/n) '
VAL +0p(K/Togpl/m)} /14 0p(k/(ogp)/n)

_|_
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Since K+/(logp)/n < K?\/(logp)/n = o(1), the leading term can be sim-

plified as

B (Eir — pip) — 0p(1/y/n)(1+ Op(K+/(log p)/n))
VA1 + Op(K /(logp)/n)}

= Op(1/Vn) + Op(K+/logp/n).

Since 1/y/n = o(y/K/n) and K\/logp/n = o(y/K/n), we have

~T
iMA(wlM — ”’AW)A — Op <\/K/n> . (S1.9)
\/5MQM2MMQM5M

Then, it follows from (S1.7)), (S1.8]), and (S1.9)) that

~T T A
BB — Tim) = 0\ QMmO /2
T ~ PPN
O QLM MMM
~T ~ ~ ~T
=02 B — Tam)
AT A ~ ~ T~ ~ ~
\/‘5MQMZMMQM5M \/5MQMEMMQM5M

B —A, (1+op(K (1ogp)/n)) T On(VETR) (S1.10)

2\/Ap (1+OP<K <1ogp>/n)>
\/A_p<1+0p(K (1ogp)/n))

=— 5 +Op(v/K/n)
VA, (1+0p(K\/(ogp)/n))
_ : |

where in the second-to-last equation, we use the fact that {1+Op(K+/(log p)/n)} /2

= 14+0p(K+/(log p)/n), and in the last equation, we use /K /n = o( K{A,(log p)/n}'/?).
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Using the same argument, we also have
B (ttons — ont) — Bgnida/2 VB (140K /ogp)/m))

\/5/\4 QuE MmO m

(SL.11)
Equations and together prove statement (a).
To prove (b), we use the fact that Rpeyes = ®(—+/A,/2) and a well-
known result of the normal cumulative distribution function (Shao et al.
2011): that

x
1+ 22

e < O(—x) < —e /2 forall x> 0. (S1.12)

8|

First, when A, < oo, by the Mean Value Theorem, we have

RGS—LDA(X> - RBayes + Qb(:’f)OP <K Ap(logp)/n> - RBayes + Qﬁ(z)op( V (logp)/n),

where 7 is a number between —/A, /2 and —/A,(1 + O,(K+/(logp)/n))/2.
In the last equation, we use the fact that K < A, < oo, which is implied
by Conditions and [4] since A, < 00, Rpgyes is bounded away from 0.

Then, we have

RosoalX) _ ) 0@) o Misgpi/m).

RBayes RBayes

Then, the boundedness of the normal density function and Rpayes implies

that

RasioaX) _y o ( fogmf)

RBayes
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This proves statement (b).

When A, — 00, let a,, = K/(log p)/n. Noting that a,, = o(K?y/(log p)/n) =
o(1), it follows from statement (a) and (S1.12)) that

o (V2L (140 (an))? /2

1
Rgs.rpa(X) < VBp/2(140p(an))
RBayes a \VAp/2 _(@)2/2
—Y ¢ 2
1+(y/Ap/2)?

< 4+ A4, o~ FA-(140p(an))?)
Ap{l + Op(an)}

S 4 + Ap GOP(APG").
Ap{l + Op(an)}

Since Aya, < K%y/(logp)/n = o(1), by the Taylor expansion, we have

RGS—LDA(X> < 4+ AP(l + Op(an))(l + OP(Apan)) < Ehs Ap
RBayes AP A

P

(1+Op(Apan))

=(1+ Ai)(l +O0p(Ayan)) <1+ 0p (Agl) + Op (Apay) -

Using a similar argument, we can show that

Res.rpa(X) A, 4
> 1 A =(1-
RBayes —4 + Ap( * OP( pan)) ( 4 + A

)(1+ Op(Apan))

P

Z 1— OP (A;l) - Op (Apan) .

Combining the lower and upper bounds for Res.r.pa(X)/Rpayes, we obtain

Rgs. X

%A() —1=0p (max{A, ', Aya,}) = Op (max{A;l,K2\/(logp)/n}> .
Bayes

This proves statement (c). O

Proof of . We use a similar argument to the proof of Proposition 1
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given by Li and Li (2018). Letting a = (0. — 25, 25536.) ", we have

-1

Yss Yse ds
Agir=| 6% 6.
Efgc O Oc

_<5T 5) (Bss — 0, BscTe) ! —aXgiTse | [ 65
o S c

T §—1

By the Sherman—Morrison-Woodbury formula,
(Zss — 05 BseZg.) ' = Tigg + X558 X5 B

Then we have

S5 + 085585 D5.Bgs —aXgsTse | [ Os
A1 = (ag 50)
—ozE:chgé « O
= 0535505 + 05X iNg B Bolss — 200, 2% Tids + ad?

= A, + b, — 2L 2589)%

Hence, we have

(0 — 2§, 05505)>
Oce — EgcQSSESc ’

QSC = As+1 - As =

where Qg5 = Xg5. With same argument as in the proof of Theorem ,

Oee — 25 Q555 > 0 for any ¢ ¢ S. Thus, fs. > 0.
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S2 Supporting Lemmas and their Proofs

Lemma 1. Under Conditions[1] and[g, there exists a constant ty such that
for all 0 < t < ty, the following results hold.

(a) P (max; <, |5; — 0i| > 1) < p?Cre="" where Cy and Cy are some
generic positive constants.

(b) P <maxj§p\3\j — 6| > t) < pCie=C""  where Cy and Cy are some

generic positive constants.

Proof of Lemma [1]. These are standard concentration inequalities that
follow from the normality assumption. The proof of (a) can be found in the
proof of Lemma 3 of Bickel and Levina| (2008)), and (b) is a result obtained

by applying the Chernoff method. n

Lemma 2. Under Conditz’on and if sy/log(p)/n = o(1), it holds that

p <||§3ss — Xgsll S sV (logp)/n> >1—Cip
~—1
P (155 — T5dll S s/ (ogp)/n) 21— Cap~,

where C is some generic positive constant and Cy is a sufficiently large

constant.



HANNAN YANG, D. Y. LIN AND QUEFENG LI

Proof of Lemma [3. We have

o1 _ -1 _ -1 o _
IEss = Bgsll = [Zss(Xss — Bss) Bl < [18gsl1Xss — Sssll|Zgsll-
(52.1)

First, we bound Hiss — XYgs||- By definition,

|Xss — ss|| < |Xss — Zss|li = I?G%XZ |Gi; — 04l
jes

Then, it follows from Lemma [I] that
P (Hiss — Xssll = t) <P (m%x > (6 — 0] > t) <P <ma.X|3z'j — oyl = 75/5)
1€ (2%
jes

S pQCflefCQntz/s2 )
(52.2)

Letting t = Cpsy/(log p)/n for some large generic positive constant Cp and

Cy = C3Cp, we have

P <H§ss —Ygs|l > Cps (logp)/n) < Cyp>C2On< CypCo.
Next, we bound ||§3;;||2 Note that ||§];;||2 — 1/)‘min(§355). By Weyl’s
inequality,
Auin(Bss) < Amin(Es5) + Aax (S5 — B55) < Ain (Bss) + [ Sss — S|

Then, it follows from Condition [2] and (S2.2)) that

1
m — Cosy/ (logp)/n

P (Amax(igé) < ) >1— O > 1 - Cip .
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By Condition [2| and ([S2.1]), we have

Cos (logp)/n
m(m — Cys+/(log p)/n)

> 1= Cp” =1 Cp @,

a1 _ a-1 _
P(HESS_E&%'H < ) :P<HESS—2551*” Ss (10gp)/n>

where in the first equality, we use the fact that as sy/(logp)/n = o(1),

m — Cosy/ (logp)/n > m/2. O

Lemma 3. Under Condition @ and if sy/(logp)/n = o(1), the following

results hold.

~T ~
P (1855805 — 0525805l S sv/logp)/n) = 1— Cop,
~T ~
P (‘ESCEEé’ESC - Egczgéxsc‘ 5 Sv <1ng)/n> > 1 - C3p_co7

~T ~
P (12535505 — SE3580s] < sv/(logp)/n) = 1 - Cyp™@.

where C3 is a positive constant depending on the Cy, and Cy is a sufficiently

large constant.

Proof of Lemma [3. To prove the first result, we have

0:5510s = 0155155 + 207551 (85 — 05) + (Bs — 85)TE51(ds — O5).
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Then, we have
~T ~
P (|532§;55 —oTssleg) > t)

— P (1265”5485 — 8s) + (65 — 65)"T5h(3s — 65)| > ¢)

IA

P <|25£E§é(55 —35)| + (85 — 85) "S55 (05 — ds) > t)
< P (120555835 = 89)| = 1/2) + P (35 — 85) 25485 — 85) = 1/2).
By Cauchy-Schwarz inequality and Conditions [I] and [2| we have
055505 — 85)| < (5% 5885)"/*{(Js — 85)" T5§(8s — 85)}°
< (1/m)(8585)"*{(35 — 85)" (35 — 85)}'/
< (sM/m)max [3;; — 0y,
4,J<p
We also have
(85— 85)"555(8s — 85) < (s/m) (max [5; — 54])°.
Then, we have
~T ~
P (18535485 — 6555585 > ¢)
< P ((shtfmymax = 3 = t/2) + P (s/m)max 5~ 6,0 = 0/2)
sp =p

Letting ¢ = Cpsy/(logp)/n for some large enough constant Cy, then it

follows from Lemma [I] that

~T ~
P (18535805 — 655580s] S s1/(logp)/n) = 1 - Cap™@,
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where (3 is some positive constant depending on the Cf.
To prove the second result, note that
~T ~ ~ ~ PPN
35 D5 8se = B5 Vg Bset 285, 55(Bse— Do) H(Ese—Bse) " Sigs(Zse—Bse)-
Then, we have
ST $-10 T -1
P (‘ESCESSESC — Y5 Bg5Xsc| = t)
< P (1255354 (S5 - Do)l + |(Zse — ) "T54(Ese — Do) 2 ¢)
< P (IZE354 (S50 — Too)| 2 1/4) + P (I(Sse — Do) "T5h(Sse — Te)| 2 1/2)
By Cauchy-Schwarz inequality and Condition 2,
28258 (Bse — Tse)| < (B5T55350) *{(Zse — Bse) ' Tgh (Bse — Bse)}'/
< (1/m)(85:8s50) *{(Sse — Bso) (Sse — Ss)}
< (sM/m)max|o;; — 04,
4,J<p
where in the last inequality, we use the fact that |o;;| < (/0u/0;; <
Amax(2) < M, for all i, 57 < p.

Also under Condition [2| we have

(Bse — Bse) " Td(Bse — Bse) < (s/m)(max [5; — o,])".
Then we have
P (|i§cz§é‘§&: — 35 B558sc| > t)

< P ((st/m)max iy - o] 2 1/4) + P ((s/m)anas 53— g 2 1/2).
,]SPp BYASY
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Letting t = Cps+/(logp)/n, for some large constant C. Then, it follows

from Lemma [1] that

~T ~
P (|85 25585, — TE3588s.] S sv/logp)/n) 21— Cop™®,

where Cj is some positive constant depending on the Cf .

To prove the third result, note that

~T ~
-1
ESCESS(SS

= L3510 + 0535 (Bs. — Bso) + BLE5H (s — 5) + (Bse — o) 25405 — ds).
Then, we have

P (18555585 — SL55405) > 1)
< P (10555485 — Tso)| = 1/3) + P (ISEZ548s — 65)| = 1/3)

+ P (I(Sse — Bs) E5h(@s - 8s)| = 1/3).
By Cauchy-Schwarz inequality and Conditions [I] and [2| we have

855 55(Sse = Bse)| < (sM/m) max[5; — oy
S5 55585 — 85)| < (sM/m) max |0; = d1;

(Bse — Ze) " B5h(8s — 8s) < (s/m)(max 5y — 0yy]) (max [3; — 6]).
BYAS Y JI=p
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Then, we have
T ~
P (|ESCZ§é'65 - Egczgé'éxﬂ > t)
< P ((st/m)max i, — o] 2 1/3) + P ((sht/m) max B — 6 = 1/3)
i,j<p i<p
2 ((s/m) mx 3y — oD max y — 01) = 0/3)
4,J<p Ji<p
<P ((sM/m) mzix|8,~j — 04 > t/3) +P ((sM/m) max |S] — 6| > t/3)
i,j<p i<p
+ P (mix\@j — 0] > \/mt/(?)s)) + P (m<ax\;5\] —0;] > \/mt/(3s)> :
i,j<p i<p
Letting t = Cysy/(logp)/n for some large constant Cjy, it follows from

Lemma [T that

~T —~
P (18525805 — SE3540s]  5v/Togp)/n) = 1 - Cop™ @,

where (3 is some positive constant depending on the Cf. O

Lemma 4. Under Condition @ and if sy/(logp)/n = o(1), the following

results hold.
AT o~ —1~
P <|6525855 - 5£2§§55| S 32\/ (logp)/n> >1—Cup
~T ~—1~
P (|85 855%s. — TE35886.] S 5/ ogp)/n) = 1 - Cop™;
~T ~—1~
P <|ESCESS(55 - EECE§§53| N 32\/ (logp)/n> >1- 0419_00;

where Cy 1s some positive constant depending on the Cy and C5 and Cy s

a sufficiently large constant.
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Proof of Lemma [} By definition,
AT ~—1 i ~—1 AT
05 (Xg5 — Tgs)0s| < [[Xgs — Eigs/l059s
~—1 ~ ~ —~
< || Bss — Bgsl{050s +2(8s — 85)"ds + (35 — d5)" (95 — 0s)}.
By Condition 1, 6585 = O(s). It follows from Lemmathat (35—55)T55 =
op (s) and (85 — 85)T(8s — 85) = op (s). Then, it follows from Lemma
that
T ~—1 —~
P (185(Sss — B54)ds| S 5*/(ogp)/n) = 1= Cop™ .
This result, together with Lemma [3| and the triangular inequality, prove

the first result. The other two results can be proved by a similar argument,

noting that 5 Xg. = O(s).



S3. ADDITIONAL RESULTS IN CANCER SUBTYPE ANALYSIS

S3 Additional Results in Cancer Subtype Analysis

Figure [S1| shows the variable selection performance of the GS-LDA, ROAD

and Logistic-L1 in cancer subtype analysis.
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100 1004
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@ 504 @ 504
3 =}
o o
o o
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a
=]

N
a

o

Figure S1: Variable selection performance of the three classifiers in classifying cancer subtypes:

panel (a) for the GS-LDA; panel (b) for the ROAD; and panel (c) for the Logistic-L1.
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