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S1 Toy example with adaptive LASSO penalty

The advantage of joint estimation is not pertained to the choice of penalty.
If we choose other penalty functions, we can still see such an advantage.
To illustrate that, we did some further simulation experiments in the toy
example with the adaptive LASSO penalty. In particular, we plot the esti-
mation errors of the original adaptive LASSO method (“Separate LASSO”
in Figure 1) and the adaptive LASSO penalty with precision matrix as the
adjusted weight (“2-step weighted LASSO” in Figure 1). We use cross-
validation to choose the tuning parameter. The resulting estimation errors
are shown in Figure[ll It shows that the two-step weighted adaptive LASSO

may perform worse than separate adaptive LASSO, so it also has the same
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Figure 1: Plots of the estimation errors for separated adaptive LASSO and two-step

weighted adaptive LASSO when S = (; £). The left panel is for B* = (9 %) and

the right panel is for B* = ( 90 ).

problem as LASSO. Jointly estimate B* and C* with the adaptive LASSO

penalty can solve this problem.

S2 Regularity Conditions

Condition A1l. Suppose there exists two positive constants Li and Lo
such that for any u; € RP, uy € RY, and t € R, E(exp (tulTxi)) <

exp (—L%||u21“§t2> and E(exp(tuy y;)) < exp (—Lg”u;‘@ﬁ).
Condition A2. nxx > 6logp, nxy > 4log(pq) and nyy > 6logg.

Under Condition the predictor and the response vectors follow

sub-Gaussian distributions. Condition ensures that the missing pro-
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portion of the data is not too large in order to get consistent estima-
tors of B* and C*. If we further assume that (log(pq))/no = O(1), with
no = min {nyx, nxy, nyy }, Condition is satisfied when ny is sufficiently
large.

In order to prove Lemma 3.3 and 3.4, we need the following additional

assumptions.

Condition A3. B[z, < ¢}’ and [[C*]1, < & where 0 < 31,7 < 15 and

— ] nxy nxx nyy * o
co = mln{log(pq), oy Togat- B*[l2 < ¢ for some positive constant c.

Condition A4. Suppose that Xxx and C* satisfy ¢ < Apin(Bxx) <
Amax (Zxx) < C and ¢ < Apin(C*) < Aax(C*) < C for some positive

constants ¢ and C.

Condition makes a weak assumption on the upper bounds of the
norms of the true parameters, where the two upper bounds can diverge
as (log(pq))/no — 0, with ny = min{nxx,nxy,nyy}. We impose the
sub-Gaussian assumption on y; in Condition [AT We essentially assume it
has bounded variance. Since it is the response from a linear model, it is
reasonable to assume var(y;) is bounded. Since var(y;) > B*' var(z;)B*,
the boundness of var(y;) implies that ||[B*||2 is bounded, if we assume
Amax(var(z;)) < oo. Condition ensures that the eigenvalues of Xy x

and C* are bounded away from 0 and infinity.
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Condition A5. |[(C"® Txx)gs, (C* @ Sxx)ghs, | <11 holds for

a constant n € (0,1).

Condition [A5] can be viewed as a population version of the strong ir-

representable condition proposed in |Zhao and Yu| (2006]).

S3 Proof of Proposition 2.1

We use a similar argument as the proof of Proposition 1 in Yu et al.| (2020)),
we first decompose the objective function into the estimation error of intra-
modality sample covariance matrix, the estimation error of diagonal entries
and the estimation error of cross-modality sample covariance matrix. Then
we find the optimal value of each term.

By using the facts that Xyx = X; + X¢ and E(ij) = X, we can
rewrite the objective function in ([2.10) as

arg ming, , E||$3XX - 2xxll%

~ 2 ~ 2 - 2
— argmin,, {C@E Hz, - EIHF +(1—)’E Hdiag(z,) - E,HF +E Hazzc - ECHF} .
The optimal value of ap can be obtained by minimizing IEHagilc — X%

2
Thus, the optimal value is o = HZUCE”%. Then taking the derivative of the
F (e

objective function with respect to a1, we can find that the optimal value of

92

: *
aq 1S Oy :m

2p2
At the optimum, the value of the objective function is equal to % +
I
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52| Sc |2 : - .
(prl'”—E%”?w < 62+ 0%. Since E|[Xxx — Zxx||% = 62 + 6%, we have E|| X% —
Sxx| < El[Sxx - Sxx|-

By taking the derivative of the objective function of (2.11]) with respect

2
to as, the optimal value of a3 is af = %. At the optimum, the
XYllF XY

2
Gy IZxvlF

which is less than
%y +HIZxy %’

value of the objective function is equal to
0%y Since E|Zxy — Zxy ||% = 0%y, we have E[|Z%, — Sy |3 < E[|Zxy —

Exy

S4 Proof of Theorem 3.1

We first gives the large deviation bounds for the sample covariance matrices
ixx and f]Xy by a similar argument as the proof of Lemma 1 in [Yu et al.
(2020). Then we calculate the convergence rate of entries in the estimated
intra-modality sample covariance matrix, entries in the estimated cross-
modality sample covariance matrix and estaimated diagnal entries usingthe
previous bound, and then calculate the overall convergence rate of using
the union bound.

Without loss of generality, we assume oXx* =1 for 1 < j < p. Then,

under Condition [AT] we know that X is sub-Gaussian with parameter L;.

Let 6y = 86 (1 +4L3) , /2%8&. If nxx > 6logp, we have §; < 8 (1 +4L3).

Ik
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By letting vy = 8V/6 (1 4+ 4L?), it follows from Lemma that

o3
P(|a5* — o)X > 61) <4dexpl — J
(77 = o™ = ) < dexp 128 (1 + 4L2)°

{ vilogp }
=4dexpq — 5
128 (1 +4L3)

2
— Y1

— 4p 128(1+4L%)2

4
< —.
p?

Hence, under Conditions [AT] and [A2] we have

k

) ~XX _ ogp 4
max; , P (‘ajk Jk ‘ > nxx) < e

By the union bound, we have

P (ISxx = Sxxloe > my/222) < 1

Let Y; denote the jth response. Without loss of generality, we as-
sume that Y; has finite variance. Under Condition , Y;/+/var(Y;) is sub-

Gaussian with parameter Ly/+/var(Y;). Let §3 = 16(1+4 max{L?, L—Q))})

min; (var(Y;

log 9 max{max;(var(Y;)),1}. When nyy > 4log(pq), we have
j

L3
2 2 Y.
03 < 8 (1 + 4 max {Ll, i, (var(Y)) }) mjax (var(Y;),1).

L3

By choosing vo = 16(1+4 maX{L1> min, (var(Y;))

1) max{max; (var(Y;)), 1},
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it follows from Lemma [S9.2] that for any 1 < j, k < pg, we have

vilog(pg)
2
128 <1 + 4 max {Li Lig))}) max; (var(Y;),1)

min;; (var(yj

&ﬁy fajiy‘ > 53) <4exp{ —

P(

4
(pg)?

<

Hence, by Condition and nxy > 4log(pq), there exists a positive con-

stant 15 such that

, ~XY _ XY| > log(pg) | ~ _4
max;, P <‘Ujk jk | Z V2 nxY ) = (pa)?"

By the union bound, we have

P <||2XY —3xvlloo > 10 M) <4

nxy

Based on the definition of 3 xx, we have

(
XX XX e g
05" — 0 if j =t;
AXX XX . o . . .
Ot — 05 = ozlaj-XX — aj.gX if j #t,j and t are in the same modality;
\ aﬁﬁx — aﬁx if j and t are in different modalities.

Thus, if j = t, there exists a positive constant v; such that with probability

at least 1 — 4/p3, it holds that

~XX XX| _ |#XX XX P —
T *|th — Ot |§V1 logp/nx.

If j #t and j and ¢ are in the same modality, it holds with probability at
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least 1 —4/p? that

o — 0

~ XX XX| ~ XX XX ~ XX XX XX
jt gt | = }algﬁ — Ojt ‘ < ‘th — O } + (1 —a1) }th

~ XX XX
S%‘Uﬁ — 0y }—I—l—ozl

< aqry/logp/nx +1 — ay.

Similarly, if j # ¢t and j and ¢ are in different modalities, it holds with

probability at least 1 —4/p? that

~ XX XX| _ ~ XX XX ~ XX XX XX
o = oy | = Joedt — o[ < an |6 — o[+ (1 - az) oy

SQQ‘(}ﬁX—OﬁX}_'—l_O[Q
< agiy/logp/nxx +1 — as.

Therefore, by the union bound, there exists a constant ] such that

. 1 4
p (e~ mes] 20y B2) < £
p

0 Nxx
Similarly, it holds with probability at least 1 — 4/(pq)? that
XY XY XY _ XY ~XY _ XY Xy
o — o | = lasoy” — o[ S as ot — o[+ (1 - as) oy
<oy | — XY 11— ay
< asav/log(pg) /nxy + 1 — as.
Therefore, by the union bound, there exists a constant v/, such that

log(pg) | _ 4

EXY_EXYH > vpy | ——= | < —.
00 nxy pq

P
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Let (52 = 8\/_(1 -+ 4W) lo}gy max; (Var(Y)). If nyy > 610g q,

]k

we have

5y < 8 <1 + 4#31@))) max (var(}))

By choosing v4 = 8v/6(1 + 4#%)111&@(\7&1"(5@)), it follows from

Lemmalsg._.zlthat
P(AYY_ YY‘>(5)<4eX - VQIqu
jk gk | = 92) = P Ly ol
198 (1+ 402 )
4
< —.

Hence, under Conditions [AT] and [A2] we have

. FYY _ 4
max;;, P <|aj jk } > vy Y ) < &

where 1/} is a positive constant. By the union bound, we have

P (Hﬁlmf —Yyy |l > Vé\/%) < %-

S5 Proof of Lemma 3.2

We use a similar argument as the proof of Theorem 2 in |Yu et al.|(2020). By
Theorem 2 in [Yu et al | (2020), we have |B; —B||y = O,(v/55A5). In order
to prove the fo—error bound, we only need to prove ||§A3Xyﬂ- — EXXBZ-HOO <

Ap, where ) xv, and ]A32 are the ith column of 3 xy and ]3, respectively.
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Let AXX = 2XX — EXX a,nd AXY = EXY _ZXY- Let Al)(X and A;XY be

the ith column of A** and AXY, respectively. We have

- - *
Hzm _ $xB:

o0

_ ”AiXY _ AXXB:

o0

<Al =A™ 1B,

. log(pq
<(IB Hhvmg)\/ (pa)

min(”XXa nXY)

g,

~Y

Denote the ith column of By as B;. By Theorem 2 in [Yu et al.| (2020), we

have

)

oo

2 N N
= Op (SB HZXY,i - ZXXB:

F

2 log(pq)
= B:||? :
00) Op <” ‘ Hl °B IIliH(nXX, nXY)

Adding all ¢ columns together, we have
. spqlog(pq)
=O<HB ||L1\/ . )
F min(nyxx,nxy)

S6 Proof of Lemma 3.3

HBO _B

We first verify the RSC conditions of the objective function, see ((59.29)) and
(S9.30) in Theorem [S9.1] Then we use Theorem 1 of |Loh and Wainwright

(2015) to prove the convergence rate.
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A

Recall that 3y = 2yy—2ﬁ]}ygo+]§gﬁ])(xgo. Let £,(C) = tr(X,C)—
log det(C). Its Hessian matrix is V2£,(C) = (C @ C)~1.
For any A such that |A“||z < 1. By Mean Value Theorem, there
exists some t € [0, 1] such that
(VL,(C*+ A%) — VL, (C*),vec (AD))
=vec(AD)T (V2L, (C* +tAD)) vec(A)
>Amin (V2L (CF +tAD)) ||A|3
=[er At ac;
> (I, + HlA )~ A
> (|G|, + 1) A3
Thus, holds. Moreover, since £, is convex, the function f(t) :=
L,(C* 4+ tA“) is also convex. So, f'(1) — f(0) > f'(t) — f'(0) for all
€ [0, 1]. Since
F1(1) = f/(0) =(VL, (C*+ A%) ,vec (AT)) —(VL, (C*),vec (A®))
=(VL, (C*+ A%) —VL, (C*),vec (A™)),
()= f(0) =(VL, (C*+tA?) ,vec (AD)) — (VL, (C*),vec (AD))
:% (VL, (C*+tA®) — VL, (C*),tvec (AT)),
we have

<vcn (c* + ACO) — VL, (C),vec (ACO)> > % <van (c* + tACO) — VL, (C), tvec (AC°)> .
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For any |[A“||r > 1, take t = —4— € (0,1]. Since [tA°|r = 1, we

|aCo]|p

have

(VL (O 4 A%) VL, (C7), vec (A)

I ( A ©) Az
SIIAC | (v, (o + )—vcn C*) . vec (_)>
" 1A - 1A

>[| A (IC ], + 1)

Thus, (S9.30) holds. Denote AXY = B¢y — Byy, AYY = Byy — Byy
and AYY = 3y — ﬁ]yy. Theorem implies that with probability at

least 1 — = — = — = , we have
p pq q

1 1 1
I oo <ty 182 Ay, < ugy /BRIy AvYy <, [10BT,
nxx nxy nyy

Then, we have

VL, (CY)]
=[5 =
<|Be = Byy 4+ 285y B — B S kB0 + Hiw — 23y B*+ B 'S kB —

(Zyy — 235y Bo + By ZxxBo)

o0

<2|B" = Bo|lz, 12" [l + 2/IB* = Bo|lL, 1B, 12" [l + |B” = Bollz,

1B = Bollz, 2% loc + 1A [loo + 2IB* [, [A™ [loo + IBII7, A [l

. log(pq) . qlog(pq)
SJHB Hil\/mln ) + ||B ||L1SB

(nXX7 nNxy min(nXX; nXY) .

Then, the result follows from Theorem
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S7 Proof of Theorem 3.4

We first rely on verifying the RSC conditions of our loss function to express
the upper bound of |[B — B*||; as a function of |[C — C*|)y; see (S7.19).
Similarly, we show that the upper bound of ||C —C*||; can also be expressed
as a function of |B — B*||; see (S7.18). Combining these two results with
some algebra proves the theorem.

For £,(B,C) = tr[CEyy + BCB 3xx — 2CBT3xy]| — logdet(C),
we have V%L, (B, C) = 28 xx ® C and V4L,(B,C)=C '@ C™.

For £(B,C) = tr [CEZyy + BCB Exx — 2CB " Sxy| — logdet(C),
we have VEL(B,C) =2 xx ® C and VZL(B,C)=C '@ C .

Denote A” = B* — B and A® = C* — C. For any ¢ € [0, 1], denote

B = B* + tA®. For any vector v, € RP?, we have

Vi’rl V%ﬁ(Bt, C)V[l = 2VIT1 (EXX X C)V[l

>2([vr, |12 min (Zxx) Anin (€) > Amin(Zxx) Anin(C) | V1, 13-
In addition, define

% = max [ V4L(B',©) ~ V3L, (B'.O) )

t'€[0,1]

- fparsod]..
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where AXX = f)XX — X xx . Then, we have

VEV%EH(B"/, C)vy,

a3

_VALVEL(B, C)vy, Y (V3L,(B!,C) — VLL(B, C))vy,
v l13 v [I3

Sy - llvall

- Vel

where ap = Anin(Zxx) Amin(C*) = Amin(AY)).
Let 85 = vec(AP) and 8¢ = vec(A”). Then, we have
(85.vee (VpLa(B,C) - V5L,(B,0)))
- <53,Vec (/01 V3L, (B* 4B~ BY), C) ABdt>>

>(0p, apdp) — & |05}

(S7.1)

=ap|dsll; — & 1051
For any matrix B = (B;;) € RP*?, define f;(B) = (b;;), where b;; =1
it B;; >0, bj; = —1if B;; <0 and b;; = 0 if B;; = 0. Similarly, for any
matrix C = (C;;) € R?7*? define fo(C) = (¢;j), where ¢;; = 1 if Cj; > 0,
¢;j =—1if C;; < 0and ¢;; = 0if C;; = 0. Then f;(B) € Vg(||BJ1) and
£2(C) € Ve(||C|l1). Since B is a stationary point of £, + Ag||B||; and C

is a stationary point of £, + A¢||C||1, we have
(vee(VLn(B,C) + Apfi(B)),d5) > 0, (S7.2)

and

(vec(VeLyn(B,C) + Ao f2(C)), 8¢) > 0. (S7.3)
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By (S7.1) and (S7.2), we have

apldsl; — &0
<(vee(VpLn(B,C) — V5L,(B*, C)), dp)
=(vec(VLa(B,C)),d5) — (vec(VL,(B*, C)),d5) (S7.4)
§<V6C(VB()\B||B||1 + )‘CHCHI)): dp) — (vec(VpL, (B, C))7 o)

<AplB*[lr = Agl Bl + [IV5L0(B, C)loc 1651

Define

Mg = Ch(log p)? /min(niy /%, 05y *) (IB*C* ||, + |1B* ||, 8¢ ]1)

+ Oy max { \nax (CF), 1/Amin(C*)}{%}W(l +[10¢ll),

(S7.5)
where C is a constant only depending on Apax(C*), 1/ Auin(C*), L1, Lo.

Then with a large enough constant C'y, we have Ag < S\B. By Lemma ,

we have

IV5La(B", C) |l S As. (S7.6)
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By Lemma [S9.3| we have
185l = | A,

e a) ] e 3%

4| vee (A7), (ST.7)

Bll1

<4,/sp Hvec (AB)SBH
SIVET LV PR
Then by (S7.4), (S7.6) and (S7.7), it holds with probability at least

1—4_ 4 that
p pq

2

{as — 166755} (10513
<As|B* | = AslIBll + [IV5La(B", C)ll 10511
SAs|B7L = AslBlly + Az 105/

(S7.8)

SABIIB* [l = AslIBll1 + Apl| vec (A%, I

Al vee(AP)s, i — Mgl vee(B)sg |1y
SAsv55[05]l2-

Next we show that with large enough nxx and ¢, ag — 166553 is
bounded away from 0. To show ap is bounded away from 0, we first prove
that £,,(B, C) satisfies the RSC condition and with respect
to C for any B.

For any ' € [0,1], denote C* = C* + t/A°. For any vector v, € R?,
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we have

vy VZL(B,C")v,,
=v,(C) " @ (C) vy,
>(||C[l2 + | A2) 2 val3,
where we use the Weyl’s inequality that Apax(C*) =t/ Amax(AC) > /\max(ét/).
Then, for all |A°||r < 1 and any B, we have

v, V&L, (B, C')vy,

Vi3

> (IC]2 + ¢ A]2) 7 =(C7]l2 + 1) 72
Then, for any [|A%||z < 1 and any B we have
(8¢, vee(VeLn(B,C) — VL, (B, CY)))
1 A
= <6c,vec (/ ViL, (B, C*+t(C— c*)) ACdt)> (S7.9)
0
>ac||dcl3,

where ac = (||C*||; + 1)72. If ||AY||p > 1, since £, (B, C) is convex with
respect to C, the function f : [0,1] — R given by f(t) := £, (B, C*+t'A°)
is also convex, so f'(1) — f(0) > f'(t') — f'(0) for all ¢ € [0, 1]. Computing

the derivatives of f yields

(vec(VeLa(B,C) — VoL, (B, C)),dc)

> (vee(VE, (B,C" 4 /AC) ~ VL, (B,C)), 5¢c)
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Taking t' = HAé”F € (0,1], for any [|A|r > 1 and any B, we have
(vec(VeLn(B, C) — VoL, (B, CY)),8¢) > acl|dc]s. (S7.10)

Combining (S7.9) and (S7.10), we show that £, (B, C) satisfies the RSC

conditions ([S9.29)) and (S9.30]) with respect to C for any B. Next, following

the proof of Lemma from Loh and Wainwright| (2015), we can prove

l6¢c|l2 < 3(||[C*||2 + 1)?/2. For completeness, we prove it as follows.

By (S7:3) and (ST10), we have
(vee(=Acf2(C) = VeLa(B,C)),b¢) = aclldclle

By Holder’s inequality and the triangle inequality, we also have

. R 3
<vec(—)\cf2(C) - vccn(B,c*)),5C> < Shelidclh.

Combining the above two inequalities yields

38clire _ 3R

0 <
H 0”2_ 200 - 2ac¢

(S7.11)

With our choice of A\¢ and R, and large enough nxx,nxy,nyy, we have

[6cl2 < 3(][C*[l2+1)?/2. Since \/Zle IN(A) 2 < A p, where A (A7)
denotes all the ¢ eigenvalues of AY, we have )\min(Ac) < W. Thus

with large enough ¢, a5 = Ain(Exx) Amin(C*) — Amin(AY)) is bounded

away from 0 by Condition [A4]
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Denote AYY = 3yy — f]yy. Theorem implies that with probability

at least 1 — = — = — = we have
p D

q?
log p
WAXXHmeUh/nXX; (S7.12)

1
A% | < vy 2P, (5713
XY
log q
HNW%S%VMT- (S7.14)

By inequalities (S7.12), (S7.13), (S7.14) and Condition [A3] with prob-

ability at least 1 — %, it holds that

1
R 1 3772
&8 = 2 A o[l v, ( ng) .
nNxx

Thus when nxx and g are large enough, ap —16¢2sp is bounded away from

0. Then by 1) it holds with probability at least 1 — ;i; - piq that
16512 S Asv/58-
By 1) it holds with probability at least 1 — % - piq that
16511 < Vs 165l S Apss, (S7.15)

where g is as stated in (S7.5). Next, we show that the upper bound of
|C* — C||; can also be expressed as a function of |B —B*||;. By (S7.3) and

(1S7.9), we have

acldcls < AcllClh = Acl|Clh = (vee(VeLa(B, C)), dc).
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By (]87.12D, (]87.13[) and (]87.14[), it holds with probability at least 1 — % -

4 _ 1 that
pq q

ch/:n(]%, C*)

=[5 -5
<Ze = Syy + 285y B =B 'S kBl + HSYY — 23y B*+ B 'S kB —

By — 25}, B + BTS, B

o0

. log(pq)
<IB Hil\/min + 10511

(nXX ) nXY)

Then, with probability at least 1 — % — piq — 2 it holds that

q?

. . log(pq .
lbells < vaalCrI2IB Ha\/ P salct2ssl. (S7.16)

min(nxx,nxy)

By Lemma [S9.3| we have

16c|: = Hvec (AC)SCH1 + Hvec (Ac)sg .

<4 Hvec (AC)S (S7.17)

a1

Svisellécll, -

Finally, we combine (S7.15)), (S7.16) and (S7.17) to show the upper

bounds of the estimation errors of C and B.

By (S7.5)), (S7.16) and (S7.17, with large enough nxy,nxy, it holds
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with probability at least 1 — % — 4 _ 4 that

[Egetift

. . log(pq . log p
<scllCI3)1B ||%1\/mm(ni<x ny)HBscnc 13— <(1_i/3 -
) min (ny ', Nyy )

s ) \ oo [log(pg) 1 ?
(IB*C* Lo, + 1B 1, 8¢ 1) + max {Amae(C7), 1/ Amin (C >}{ ( >}

nxy

1/2

(1+ ||5c||1)>

~ 2SC Ly min <n1/2—7—1/2 n1/2—7—2/2> min(nXX’an)
XX » 1YXY

(log p)*/2||B*|| .,

. 1-11/2  1-72/2
min (nXX My

+ldclispscllC3

{log(pq) }1/ 2) .

With large enough nxx,nxy, we have sgsc|C*||3(

+ max { Amax(C*), 1/ Amin (C*) }

(logp)'/?||B*||,, +
. 1-71/2 1—79/2
m1n<nXX Ny )

max {Amax(C*), 1/ Amin (C*) HIELL}/2) — 6(1), s0 we have

[6c|l
<HC*H25 HB*”2 + ||B*C*||L1SB log(pQ)
~I 1220 Lot ( 1/2-1/2 1/2—72/2> min(nyx, nyy)
min (nyy 7, nyy ’
S)\Csc.

(S7.18)

By choosing large enough nxx,nxy and nyy, it holds with probability
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at least 1 — 2 — L — 4 that
p q

10¢ ||
- P log(pq) o2 (logp)'/2
<vsellCH5lIBYIE, R~ +s5vscl|C 2 | — ( P —
’ min (nyy '~ Ny )
(v ) \ [ log(pg)
(IB*C* (|, + IB*[|z, 10 l1) + max {Amax(C*), 1/ Amin(C*)} § ———
nxy

(1+ ||5c||1)>

B*C*||L,s log(pq)
< *12 * 12 H L.:°B
SIC2vse | 1B, + min( L2-n/2 ;{/}2/—@/2) min(nxx, nxy)

SAev/sc.

have ||V 5L, (B*, C)|le < Ap. Then by (S7.15)), it holds with probability at

least 1 — 4 — L — 2 that
p pq q

10513
<As|B* | = AslBlL + [IV5L.(B", C)ll 10511

SAs|BL — AslBlly + Az 105/

SAV581052-
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So with probability at least 1 — %‘ — piq — 4 it holds that

q’
1082 S Asv/sB,

and

108]1 < Ass.

This completes the proof.

S8 Proof of Theorem 3.5

We use a similar argument as the proof of Theorem 6 in [Yu et al.| (2020).
We first transfer the objective function. Then we show the upper bounds

. We use them to show that

o0

of (D)o and ||Fsg — g, B5,

HBSB — Bs, " lloe < minjesy, |B;] with probability close to 1. Then we show

that H’?Sg - ngSBBSB N < Ap with probability close to 1.

By properties of trace and vectorization, we can rewrite ([2.5)) as

(B.C)

=arg min {tr [Cﬁ]yy] + tr [BTEXXBC} —2tr [BTZAJXyC} + As||B|l1 + Ac||Cl]1 — logdetC}

ces‘jjq,B

=arg min {tr [Cflyy} + vec (B)T (C ® flxx> vec (B) — 2veC(B)T vec (f]XyC> + As|B|1+

CESixq,B

Ac||Cll1 —logdet C}.
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Denote 3 = vec(B), (2.5)) is equivalent to solving

(,@, C) =arg min {tr [Cﬁ]yy:| —logdetC — 28" vec(f)XyC)

p.CesL (98.20)
+87 (C & Bxx) B+ AslBl + AclClh }
For an optimal solution (B, C) to 1) 3 should satisfy
) _ o
ﬂz&rgmﬂm{—?ﬁ 5+ Fﬂ+)\3||5||1}, ($8.21)

where T' = C®Yyy and vy = Vec(flxyé). This can be proved by contradic-

tion. If,[;’ does not satisfy (S8.21)), let 3, to be a solution of ([S8.21)). Denote
£,(B,C) = tr [Cﬁ:yy] “log det C—28" vee(SxyC)+ 8" (C ® ﬁ:XX) B+

A8l + Ac|[Cllr- Then

ﬁn(B, C) - En(ﬁl? C)
= (28'4+B T8+ s1811) — (2614 + BB, + AsllBi1)

>0,

which is a contradiction. Thus ,@ should satisfy l’ Since C is the
optimal solution to (S8.20)), it is positive definite. By our construction,
Syx is also positive definite. Thus is a strictly convex problem,
which has a unique solution. Thus ﬁ is the unique solution to 1)

By the Karush-Kuhn-Tucker (KKT) conditions of (S8.21]), we know

that B is a solution to (1S8.21)) if there exists a subgradient w? € RP such
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that

5 -T8 = \pw?, (S8.22)

where w? = sign(f)) if B; # 0, and w? € [~1,1] if §; = 0.
First, we show that for j € Sp, with high probability, there exists a

solution B to (S8.21) s.t.

3, — 3 < min |3}
ﬁSB /BSB o jeSB’/BJ‘7

where B s, is the sub-vector of ,B with indices in S. Then letting B s¢c =0,
we show that B also satisfies the KKT conditions with high probability for
j & Sp. Then, by construction, sign(3) = sign(8*). Define events A, =
{HBSB — By lle < minjes,, |57]} and Ay = {||’3’sg— fsgsBBSB||w < As},
where 8% = vec(B*). We show that P(A;) and P(As) are close to 1.

Denote V = ||(Ts,s,) 1., where T := C* ® Zxx. Since

i

</ Csuse) .|

~ -1
(FSBSB> - (11SBSB)71

Lo

~ —1
(1o

<) e (15 4]

‘I‘SBSB —I's,s,

oo

Loo‘

~ —1
(FSBSB> - (]‘_‘SBSB)i

1 )
Lo

HI‘SBSB —Ts,s,

oo

Y
[e <]

~ —1 ~
=V (V + H <FSBSB) - (FSBSB)il ) “PSBSB - FSBSB
Lo
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by some algebra, we have,

1

V2 HfsBsB —I's,s,

< Loo

Lo B 1-V HFSBSB — FSBSB

~ —1
<FSBSB> - (:FSBSB)i1

oo

IS
SBV HI‘SBSB _FSBSB

[e.8]

< PN
1-— SBV HFSBSB — FSBSB

Y

[e.9]

and

)l
sV HFSBSB —I's,s,

>

~ —1
(7o)

<V + =
Lo 1_SBV“FSBSB _FSBSB

B Vv

1-— SBV HFSBSB — FSBSB

o0

By Theorem , with probability at least 1 — % — piq — 4 it holds that

q7

o-e

) S )\Csc, (8823)

where A = C||C*[3[IB*[13, +s5B*C*l1,/ min(nyx ™", 03 ™)) (log(p

¢)/min(nxx,nxy))"2 Denote A® = C — C*. By ($8.23) and Condition

logp) ERE

nxx

B, < 0107+ 1A0) [ ~ Zacale 5

Define v := vec(X xy C*). Then, with probability at least 1 — % — I;iq —4
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it holds that

H:)\/SB - f‘SBSBIBEB o S H%SB - 753”00 + H <FSBSB - fSBSB> ﬂgB

o

| [e.9]

< |17s, — ’YSBHOO + HFSBSB —Ts,s,

185,
o0

< H;Y\SB B 753H00 + SBHB*HOO HfSBSB - FSBSB

o0

By (S8.23)), with probability at least 1 — ;—i — piq — 4 it holds that

q’
15 =7l

<(IC e + 1A% 1) IZxy — Exv |l

C s

nxy

AN

Since Bs, = (Tsnsy) ' Fs, —AB(Sxxsnss) ' sign(Bs, )s 32 (EL)2 172 =

O(1), L (l8etayi—2 — (1), sV (282)32 = O(1), with probability at

A\ nxy

least 1 — 4 — 4 — 2 it holds that
P pa g

A A~ _1 A~ _1 A
HBSB - ﬁZ’B - - ) (FSBSB> Ysp — AB (FSBSB> 'Sign </65'B> - /6;3
~ -1 = . —~ -1
< ‘ (PSBSB> Ysg — ’BSB + s (FSBSB>
oo Loo
~ =~ . ~ -1
< <H’YSB —DspspBs,|| + )\B> : ’ <FSBSB)
oo Lo
< <H’AYSB ~ Y5l T 58/IB | HFSBSB ~Lspsp| + >\B>
V
1-— SBV Hf‘sBsB — FSBSB
2AgV
< b < 4\5V < min |33,
JESB

_1 — SBV Hf‘SBSB — FSBSB

o0
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for sufficiently large p, ¢, nxx,nxy and nyy. The last step holds because we

assume that A\pV/ minjeg, |3;| = o(1). Thus we have P (A;) > 1-4_4_ 4

- P pPg g

for sufficiently large p, q, nxx,nxy and nyy.

For |Tsgs, (Tspss)  — Tsgs, (Tspsy) ' llo, we have

~

~ —1
-1
Lsesy (FsBSB) —Tscs, (Fspsp)

Loo

—~ - . ~ ~ -1
S'FsgsB ((FSBSB) — (Pspsg) )L +H(FsgsB—FsgsB) (FSBSB) i
~ —~ —1
SHI‘sgsB (Tspsp) 1HLOO : HFSBSB *FSBSBHLOO : l (FSBSB) i
~ —1 ~
N
~ —1 —~ ~

BT (S Y S

255V|IT = T|oe
< 2sBVIL T (S8.26)

T1—sgV|T —Te

Since BSB = (fSBSB)*My\SB (X xx.5555) " -sign(BsB), with probability

at least 1 — 2 — 2 — 4 it holds that
p pq q

Tsg — FsgsBﬁsB

o0

- ~ -1 - N -1
<||7sg — Isgsy <FSBSB> Vsp|| +AB||Tsgs, (FSBSB)
00 Loo
~ -1 A !
< 75‘% - PYSg - + FSgSB (FSBSB) - FSgSB (FSBSB> Ysg
- - -1 R . N -1
+ | Tsg sy (FSBSB> (Vs = Asu)|| + A8 || Tsgss <FSBSB>
oo L

-1
~ -1 a - *
< H7S§ — Vs¢ - + H (Fsgsg (FSBSB) - Fsgsg (FSBSB> ) I‘SBSBﬁSB

@ (11)

o
]
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+

- - -1 . . -1
Lscs, <FSBSB> ('VSS - ’Ysg> ' + A || Tscs, <FSBSB)

] Lo
' (111)

By Condition [A3] Condition [A5] (S8.24), (S8.25) and (S8.26), with

probability at least 1 — % — piq — %, it holds that

(1) 5 () o

nxy

(11) <snl[B | |F Tl (14

—~ —~ -1
Lgesy (FSBSB) )
Lo

1 ~
logp) 2" 255V T — T
o (222)' 77 (o g 20VIE Tl ),
nxx 1 —spV|T - T

(111) < (Ap + ||rsg = Asg

~ ~ -1
s )|
1 ~
1 27 2sgV|II' = T'||
< AB+<0g(pq)) |y 2 I — T _
nxy 1= sV =T

Since 32 (222)1 1772 = O(1), L (22492 = (1), and sV (22217 =

O(1), when p, q,nxy,nxx and nyy are sufficiently large, with probability

at least 1 — % - piq — 2 it holds that

q?

un _
) )\ -

—~
|\_/
IA
e~

17
B

>3

Y

>
o)
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(II1) 1 ( _ 255V|IT = T
<— (A +H"}’c—"}’c ) 1—n+ —
g A\ S %5 oo 1—sgV|T — T
1 2sgV|T = I|s 1 N
=1 3 = + — H c — YgC 1 —n+
Ao 1= saV[T— D s 1755 sl 0
255V ||T = I'l|o
1—sgV|T =T
<1-1
=2
Thus, with probability at least 1 — % — piq — %, it holds that
\h%‘rﬁ%@wm_xn+u0+un><n+n+1 n_,
A\p B A\p 4 4 2

Therefore, P (A2) = P (1455 ~ TS5, 85l < An) 21— 4 - 4 - 1.
Since P([|Bs, —B%, |l < minjeg, |8;]) > 1-24—L -2 with probability

at least 1 — % — pﬁq - § it holds that |B] — B < |B;| for j € Sp. Thus,

1—4_4_ %, 3 satisfies (S8.22) with probability at least 1 — % —4_1

~

Thus, we have verified that sign(3) = sign(8*) with high probability. This

completes the proof.
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S9 Supporting lemmas

Lemma S9.1. (Lemma 1 from|Cai et al.| (2015)) Let &y, . .., &, be indepen-
dent random variables with mean zero. Suppose that there exists somet > 0

and B, such that Y ;._, E {1} < B2, Then uniformly for 0 < z < B,

b (Z & > am) < exp (—a?),
k=1

where C, =t +t71.

Lemma S9.2. (Lemma 1 from Ravikumar et al.| (2011)) Consider a zero-
mean random vector X = (Xy,...,X,)" with covariance ¥ = (oy;) such
that X;/./0;; is sub-Gaussian with parameter L for 1 < j <p. Let {X;}1,

be i.i.d. samples of X, the sample covariance ¥ = (6;;) satisfies the tail

bound that

né?
Pl — gl >08) < dex - ’
(1650 — 054] > 0) < p{ 128(1+4L2)2ma><j(%)2}

for all § € (0,8 max; (0;;) (1 +4L?)).
Lemma S9.3. (Lemma 1 of Negahban et al.| (2012)) Suppose that L is a

convex and differentiable function and consider any optimal solution 5,\n to

the following optimization problem

0,, € arg min {£(6; Zy) + A R(0)} ,
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where A\, > 0 s a constant and R : RP — R, s a decomposable norm. For

a given inner product (-,-), define the dual norm of R as

(u,v)
R*(v):= sup = sup (u,v).
v) ueRrr\{0} R(u) R(u)§1< )

If \y > 2R* (VL (0" Z7)) and for any pair of sets (M,/VL) over which R

18 decomposable, the error A= b\,\n — 0 belongs to the set

—-— L

S (M M56") = {A € R | R (Agyr) < 3R (Agg) + 4R (83)}

Lemma S9.4. Under assumptions of Theorem AP =B-B* belongs

to the set

Cp = {AB € RP*4

AB
’ S5

<3lAgl ). (so2)
and A = C — C* belongs to the set

Co:={ A% e R

AC
g

<3lag|,} (59.28)
Proof of Lemma[S9.4 Since Y = XB* + &, we have

Yyy = Cov(Y,Y) = Cov(XB* + E,XB* + £) = B* ' ZxxB* + Cov(&, €)
_ B*TEXXB* + C*_l,

EXY = COV(X,Y) = COV(X, XB* + 8) = EX)(B*.

Thus, by Theorem [3.1) and Condition [A3] it holds with probability at least
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|VBLL(B, C)lw
_ HQC*TB*TﬁlXX - 2C*TS}YH

_ HQC*TB*TAXX o QC*TAXYTH

o0

<2 C 2, (IB* |, 1A oo + AT ]|oc)

1 1
1 5*’}’1*’72 1 5*'}’2
< max ( ogp) | ( Og(pq)>
nNxx nxy
SABv

and

[VcLn(B*, CY)llw
_ HB*TEXXB* Sy —C o 2B*T$:XYH
_ HB*TAXXB* LAY QB*TAXYH

<IIB, 1A oo + AT oo + 20/B||2, | A |

3—2n 3—m 1
< max { (1ng) | (mg(pq)) | <1ogq> }
nxx nxy Nyy

SAce.

Since Ly penalty is decomposable, by applying Lemma [S9.3] we have

AB
H 55

CS31AG I+ 4Bl = 31 Ag, [

|ag%

 S3lAG I +4lICklh = 31 AL, |h-
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]

Theorem S9.1. (Theorem 1 of |Loh and Wainwright (2015)) Consider the

optimization problem

— in  £,(8)+ M8,
p M8 sl SRgen (B) + A8l

where ) is some convex set and the empirical loss L, satisfies the RSC

conditions

lo
EPHAH?, V[[A[l2 < 15(59.29)

ar]| A3 =

(VLo (B +A) = VL (8"),A) =

1
azlAllz =70/ ZPE AL, VI|A]]L > 1459.30)

a1, o are positive constants and 11, Ty are non-negative constants. Suppose

16 R2 max(’rl2 ,7'22)

n>——z—>logp, B[ < R and

4 . log p @2
5 <A<
Lmax{||V£n (Bl - 2 n } A= 6RL’

where L is a constant. Then for any vector B with ||B|y < R and satisfies

the first-order necessary condition

(VL.(B) + VIIBl. B~ B) >0, for all |8l <1,

it holds that

_ 6k

2 40&1

240k
< 7
1 40./1

|B-p

. and ||B-p

where k = ||8%|,-

Lemma S9.5. Let nxx/y < nyy and nxy/x < ngy with 7,7 € {—oco} U

[0,1], 8¢ = vec(C*—C), 1—ay = O(\/logp/nx), 1—ay = O(\/logp/nxx)
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and 1 — ag = O(\/log(pq)/nxy). With probability at least 1 — ;i; — piq, we

have

HvB {0{CSyy + B OB Sixx — 2CB" Sixy] — log det(@)}H
1/2

< (log p)

min <n§(_)?/ 2 n;Ym/ 2)

o 1/2
+ max {A\pnax (C*), 1/ Amin (C*) } {M} (L+|d¢]1)-

(B C* |z, + 1B, ¢ )

nxy

Proof. Denote AYY =%, — 2yy, Theorem implies that with proba-

bility at least 1 — ‘;f — 4 _ 4 we have

1
JA* || < oy /22, (59.31)
XX
1
AN | < vy 22D, (59.82
XY

1
JAYY | < vl | 224, (89.33)

Nyy

Define y;; and Z;; to be the underlying complete data without missing

entries. Define the observed-data indicator matrix as M = (mf]( ) and

MY = (m};) such that m;; = 1 when z;; is observed, m;; = 0 when z;;

is missing, m,; = 1 when y;; is observed and m}; = 0 when y;; is missing.

; =X 5 4. — Y.
Then we can write the observed data as x;; = mi; Tijy Yij = My Yij- Define
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XX

a;;* to be the adjusting weight we use to estimate (EA]XX)U, that is

(
1 ifi=j;

CVZ')]('X =9 ap ifi+# 7,4 and j are in the same modality;

| @ if 7 and j are in different modalities.

Then we have

HvB {#[CSyy + B OB Sixx — 2CB" Sixy] — log det(@)}H

_ HQCTB*TSXX — QCTﬁ:}YHOO
(59.34)

When either Y or X has missing entries, we have

(ﬁ]XXB* - XA]XY)ij

P XX ) n oY 7
_Z% DkesXX ThiThl 083 D pesxy ThiMyJ;

XX lj = XY
L] 14

A~ ~ A

=(ExxB" =X xB%)i; — (Exe)iss
where (2)()2)@']' = O3 Zkesgy xkiifkj/nfjfy, and (2){6)@']' = Q3 Zkesgy xkiekj/nf](-y.
Then by (S9.34]) we have

HvB {[CSvy + B'CB Sixx — 2CB" Sixy] — log det(C)}H

o0

=2|(Sxx — £ 0B'C - ExC

<2||[(Bxx — Xyg)B'C*

+2||(Sxx - Sy0)B(C - O

+2 (3. C*

42 “EXE(C* — C)HOO.
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We first derive an upper bound for the first term ||(Zx x —2 y £)B*C*|| .

XXY XXY _ | gXXY|
Define S5t = = {i: x;;, x4 and y; are not missing} and "o =S ki

~

XV/X # 0, for each entry in matrix Sy — Yz

When n*/Y # 0 and n;

ijl ilg
and 1 <[ < ¢, with probability at least 1 — 3, we have

A

(2XX —Yxx)ij

XXV (XX XX XY
X X 141 (aij N~ — QsNy )
CXXY E: ik gk nXX XY
ijl XXY i il
keSE;
XXnXX/Y XY/X
’L] ijl o zl]
XX/Y Z XiwX XX XY/X E: XX Xy
"ijl kes Y " "t kesy X i
XXY( XX, XX XY
1 XX — S ngi s (e ng ™ — agng )
XXY ik gk X X,ij XX XY
ijl N~ 1y
I pesXxy J
XX/Y
! > XaXj— X oy iy
+ XXV ik<\jk — 24XX.ij nX—X
il pesXXIY i
o nXY/X
2 : 3'%lj XX
_ XY/X X’Lk _EXX,ij —n‘.XY —|—2<1—O{U )—|—2(1—063)
T4 keSXY/X il
XXY (,, XX
< log p njji (nij — Ny
~ XXY XX, XY
15 TG Ty
XX/Y XY/X
(n; / )1/2 (ng); / )1/2
1 P ) e | B ey
0g p max malux <% ,mgyx v a;; Q3
(¥ n,L] (¥ n,Ll
log p)'/?
< (log p)

~Y Y
min (n;;p n;;"ﬂ)
where 11,72 € [0, 1].

A

XXV = 0, for each entry in matrix Sex— Y

il

XY/X
=0 and N, /

When n
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and 1 <[ < g, with probability at least 1 — 3, we have

~

(EXX — X5 %)ij

XXY XX XX XY
X X zgk: (alj nz] — a3y )
nXXY E: ik nXX XY
zgl kGSXXY iJ il
XY/X

D eIL
XY/X ik

it kes; /X
1/2
< (log p)

~Y 9
. 1-71/2  1-13/2
min (’n/XX TLXY

where 75 € [0,1], 7 € {—o00} U0, 1].

When n;{lx/y # 0 and nfj(lY/X = 0, for each entry in matrix Xxx — 3 ¢

and 1 <[ < ¢, with probability at least 1 — 3, we have

A

(Xxx — Bxx)ij

XXY (XX, XX XY
_ 1 Z X X Tk (aij N~ — 3Ny )
XXY ik gk nXX XY
il keSiJJ{lXY 1] il
XX/Y
1 s Xn /
T — § X, X, v
XX/Y gk XX
Zjl kesz)jl)(/y Z]
1/2
< (logp)"/
~ 1-11/2  1-12/2)’
min (nXX My
where 11 € [0,1], 72 € {—o00} U0, 1].
XX/Y XY/X
When n; Y= nji X =g an(lXY =n; % =nj". Then for each entry

in matrix Xyx — 3y and 1 < [ < ¢, with probability at least 1 — 1%’ we
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have

(Exx — Byg)ij

(X — ay)

TopxXy § : XipX

Mt keSXXY
< logp
Smax(l —ag,1 —ag, 1 — a3) XX

ijl

1/2
< (logp)

. 1-11/2 1-m/2\’
mm(nXX s Mxy

where 7,7 € {—o0} U [0, 1].

~

If we combine the above four cases, for each entry in matrix ¥xx -3 ¢

and 1 <[ < ¢, with probability at least 1 — 3, we have

. . (logp)'/?
(EXX - EXX)U S ) 1-m/2  1-1/2\’
min (nxx 'y Nxy >

where 7,79 € {—00} U0, 1].
Then by Holder’s inequality and the union bound, with probability at

least 1 — 4/p we have

(logp)l/2
1-71/2

|(Bxx = By x)BC o S — .
min (nXX ,nXY >

|IB*C*||L,. (59.35)

Similarly, for the second term H (Exx — 2, 5)B*(C*—C) H , with prob-

ability at least 1 — 4/p we have

< - * * ~ (10gp)1/2 *
(Sxx = S 0B(C = O)l 5 — BB, o]
min (nXX Mixy )

(S9.36)
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Next we focus on the third term |2 x.C*||s. Each entry of the matrix
(ﬁ]XGC*)ij can be written as ~5% >, _axv X3i(€,C*);. By Condition
ij ij
and monotone convergence theorem, for any ¢ € R, we have
X — X — 1
E exp( k’)}:]E ki — =
{ 8L7 Z < (412)' z'2l Z 2

By Condition the error vectors also follow sub-Gaussian distribution.

Assume E(exp(tu] €;)) < exp (M) Then we have

(€,C*)3
E S~ < 2.
[eXp (8L§||c;||3 =

By Young’s inequality and the simple inequality s%e® < e2* for s > 0, we

have
|sz GkC
E (X;m(ekC (8L L3 max )
[ | Xri(€xC")5
<E
=5 P <4L Lshma (C7)

[ X2 (€ C*)?
<E AN
=P (w) P (SL?)IIC*H%)}

1T X2\1* 1 (exCH2 \1°
<> |E SR Yy
=2 eXp(sHﬂ *2{ eXp(%%HC*H%)]

By Lemma 891 let B = 2\/TLX)/, t = m and xr = 21Og(pq)7

we have

max; ; P XY Z (sz ) 201{10g(pq)}1/2 < 2(pq) 2.

i kesXY
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where C| = W‘{i}((c*) + 8\/§L1L3/\maX(C*). So with probability at least

1 —2(pq)~!, we can bound the third term by

5 log(pq) | '/*
||2xeC*||oo<01{ } : (S9.38)

~Y
nxy

Similarly, for the last term Hf&(c* - C)H , we have

o0

C e o log(pg) | \/*
Sx (0 =€) s L sl (59.39)
oo XY
where Cy = W + 8\/§L1L3)\min(C*)_1.

By (]S9.35[), (IS9.36[), (]S9.38[), (]S9.39[), with probability at least 1 — % -4

pq

we have

HvB {0{CSyy + B'OB" Sixx — 2CB" Sixy] — log det(@)}H

(logp)*/2

Y
. 1-71/2 1-m3/2
min (nXX Ny

o 1/2
+max e (CF), 1/ Amin(C*)} {1 g(p‘”} (1+ [|6¢]1)-

nxy

(B C* |z, + 1B, ¢ l)

We remark that, when both X and Y are complete, we can set oy =

as = a3 = 1. Then by ([S9.34) we have

HvB {0[CSyy + B OB Sixx — 2CB" Sixy] — log det(@)}H

oo

Y
[e.9]

< H2C*T2X€

+ H2(C* -0 "2y,

where (f)Xe)ij = > | Trier;/n. By (S9.37), with probability at least 1 —
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2(pq)~!, we have

_ 1 1/2
HC*TEXeHoo S Cl { Og/fpo)} ’

and

T log(pg) |
HQ(C*—C)TEX€ 502{7} 16c]).

Hence with probability at least 1 — § — piq we also have

HVB {tr[@flyy + B OB Sxx — 20B  Sxy] — log det(é)}H

" [ log(pg)
S Qo C) 1 Auin (€} { LD L (14 o)
nxy
which is the same as stated in Lemma [S9.5]if we set 71 = 75 = —o0 as both
X and Y are complete. O

S10 Numerical study

In this section, we show some additional results of our numerical studies.
The complete results for Example 1 are shown in Table [3, The results for
Example 2 are shown in Table [l The results for Example 3 are shown in

Table Bl
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S11 Data processing details in the ADNI study

In section b} we are interested in predicting Mini-Mental State Examination
(MMSE), ADAS1 and ADAS2 in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study (Mueller et al.; 2005). These scores are commonly
used diagnotic scores of AD. We extract biomarkers from three comple-
mentary data sources: serial magnetic resonance imaging (MRI), positron
emission tomography (PET) and CerebroSpinal Fluid (CSF). Note that, as
Xue and Qul (2021) stated, our sparsity assumption of the proposed method
might not be suitable for raw imaging data or imaging data at small scales
since images have to show some visible atrophy for AD. However, the spar-
sity assumption can still be reasonable for the region of interest (ROI) level
data. Thus, we apply the Multi-DISCOM to the ROI level data in ADNI
instead of the raw data.

We process the image data following the similar procedure as [Yu et al.
(2020). For the MRI, after correction, spatial segmentation and registration
steps, we obtain the image for each subject based on the Jacob template
with 93 manually labeled ROIs. For each of the 93 ROIs in the labeled MRI,
we compute the volume of gray matter as a feature. For each PET image,
we first align the PET image to its respective MRI using affine registration.

Then, we calculate the average intensity of every ROI in the PET image as
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a feature. For the CSF modality, five biomarkers were used in this study,
namely amyloid 3(Ap42), CSF total tau (t-tau), tau hyperphosphorylated
at threonine 181 (p-tau), and two tau ratios with respective to Af42 (i.e.,

t-tau/A[42 and p-tau /AB42).
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Method IB-B*|r MSE FPR FNR
Lasso 1.51(0.06)  3.70(0.06)  0.09(0.02)  0.00(0.00)
Imputed-Lasso ~ 1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)
MBI 210(0.08)  4.26(0.09)  0.12(0.02)  0.11(0.03)
pm DISCOM 1.44(0.04)  3.56(0.06)  0.05(0.00)  0.05(0.01)
Imputed-MRCE ~ 1.53(0.05)  3.72(0.08)  0.17(0.03)  0.08(0.02)
Multi-DISCOM ~ 1.40(0.04) 3.39(0.08) 0.02(0.01)  0.09(0.02)
Lasso 1.50(0.06)  3.73(0.06)  0.10(0.02)  0.00(0.00)
Imputed-Lasso  1.71(0.06)  3.59(0.06)  0.11(0.01)  0.00(0.00)
MBI 2.15(0.08)  4.25(0.09)  0.12(0.02)  0.11(0.03)
o DISCOM 1.43(0.04)  3.52(0.06)  0.05(0.00)  0.05(0.01)
Imputed-MRCE  1.52(0.05)  3.78(0.08)  0.16(0.03)  0.07(0.02)
Multi-DISCOM ~ 1.41(0.04) 3.40(0.08) 0.02(0.01) 0.09(0.02)
Lasso 1.49(0.06)  3.67(0.06)  0.08(0.02)  0.00(0.00)
Imputed-Lasso  1.71(0.06) 3.55(0.06) 0.10(0.01) 0.00(0.00)
MBI 2.05(0.08)  4.21(0.09)  0.10(0.02)  0.09(0.03)
=0 DISCOM 1.42(0.04)  3.53(0.06)  0.04(0.00)  0.05(0.01)
Imputed-MRCE 1.51(0.05)  3.70(0.08)  0.15(0.03)  0.09(0.02)
Multi-DISCOM  1.42(0.04) 3.43(0.08) 0.03(0.01) 0.10(0.02)
Lasso 1.54(0.06)  3.75(0.06)  0.10(0.02)  0.00(0.00)
Imputed-Lasso ~ 1.74(0.06)  3.59(0.06)  0.13(0.01)  0.00(0.00)
MBI 2.10(0.08)  4.20(0.09)  0.11(0.02)  0.10(0.03)
poo DISCOM 1.43(0.04)  3.57(0.06)  0.05(0.00)  0.05(0.01)
Imputed-MRCE  1.53(0.05)  3.73(0.08)  0.19(0.03)  0.08(0.02)
Multi-DISCOM  1.41(0.04) 3.42(0.08) 0.04(0.01) 0.07(0.02)
Lasso 1.55(0.06)  3.77(0.06)  0.11(0.02)  0.00(0.00)
Imputed-Lasso ~ 1.75(0.06)  3.61(0.06)  0.13(0.01)  0.00(0.00)
MBI 2.14(0.08)  4.30(0.09)  0.13(0.02)  0.11(0.03)
pm o DISCOM 1.46(0.04)  3.59(0.06)  0.06(0.00)  0.05(0.01)
Imputed-MRCE  1.54(0.05)  3.73(0.08)  0.19(0.03)  0.09(0.02)
Multi-DISCOM ~ 1.43(0.04) 3.44(0.08) 0.04(0.01) 0.07(0.02)

Table 3: Performance comparison of different methods for Example 1 with different p’s.

The values in the parentheses are the standard errors of the measures.
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Method |B—-B*|r MSE FPR FNR
Lasso 1.33(0.08)  2.19(0.06)  0.12(0.02)  0.00(0.00)
Imputed-Lasso ~ 1.44(0.06)  2.28(0.06)  0.15(0.01)  0.00(0.00)
MBI 1.68(0.19)  3.56(0.07)  0.14(0.02)  0.13(0.03)
ot DISCOM 1.29(0.06) 1.86(0.06) 0.05(0.00)  0.05(0.01)
Imputed-MRCE ~ 1.49(0.05)  2.13(0.08)  0.18(0.03)  0.07(0.02)
Multi-DISCOM  1.26(0.04) 1.77(0.09) 0.03(0.02) 0.07(0.01)
Lasso 1.51(0.06)  3.70(0.06)  0.09(0.02)  0.00(0.00)
Imputed-Lasso  1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)
MBI 2.10(0.08)  4.26(0.09)  0.12(0.02)  0.11(0.03)
o’ DISCOM 1.44(0.04)  3.56(0.06)  0.05(0.00)  0.05(0.01)
Imputed-MRCE  1.53(0.05)  3.72(0.08)  0.17(0.03)  0.08(0.02)
Multi- DISCOM ~ 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)
Lasso 1.81(0.06)  5.70(0.06)  0.11(0.02)  0.01(0.00)
Imputed-Lasso ~ 1.89(0.06)  5.77(0.06)  0.15(0.01)  0.01(0.00)
MBI 2.37(0.10)  5.95(0.12)  0.15(0.03)  0.12(0.02)
“mr DISCOM 1.71(0.04)  5.41(0.08)  0.06(0.02)  0.07(0.01)
Imputed-MRCE ~ 1.93(0.05)  5.66(0.09)  0.18(0.03)  0.10(0.02)
Multi-DISCOM  1.64(0.05) 5.19(0.12) 0.04(0.03) 0.10(0.02)

Table 4: Performance comparison of different methods for Example 2 with different
signal-to-noise ratios. The values in the parentheses are the standard errors of the

measures.
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Lasso 1.50(0.06)  3.68(0.06)  0.09(0.02)  0.00(0.00)
Imputed-Lasso  1.72(0.06)  3.56(0.06)  0.12(0.01)  0.00(0.00)
MBI 2.11(0.08)  4.26(0.09)  0.12(0.02)  0.11(0.03)
DISCOM 1.45(0.04)  3.56(0.06)  0.05(0.00)  0.05(0.01)
Imputed-MRCE ~ 1.55(0.05)  3.74(0.08)  0.18(0.03)  0.08(0.02)

Multi-DISCOM ~ 1.41(0.04) 3.42(0.08) 0.03(0.01) 0.09(0.02)

Table 5: Performance comparison of different methods for Example 3 with heavy-tailed

error. The values in the parentheses are the standard errors of the measures.
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