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Abstract: Multi-modal data are prevalent in many scientific fields. In this study,

we consider the parameter estimation and variable selection for a multi-response

regression using block-missing multi-modal data. Our method allows the dimensions

of both the responses and the predictors to be large, and the responses to

be incomplete and correlated, a common practical problem in high-dimensional

settings. Our proposed method uses two steps to make a prediction from a multi-

response linear regression model with block-missing multi-modal predictors. In the

first step, without imputing missing data, we use all available data to estimate

the covariance matrix of the predictors and the cross-covariance matrix between

the predictors and the responses. In the second step, we use these matrices and a

penalized method to simultaneously estimate the precision matrix of the response

vector, given the predictors, and the sparse regression parameter matrix. Lastly,

we demonstrate the effectiveness of the proposed method using theoretical studies,

simulated examples, and an analysis of a multi-modal imaging data set from the

Alzheimer’s Disease Neuroimaging Initiative.

Key words and phrases: Inverse covariance matrix estimation, Lasso, missing data,

moment estimation.

1. Introduction

With the prevalence of large-scale multi-modal data in various scientific

fields, multi-response linear regression is attracting increasing attention in the

statistics and machine learning communities (Rothman, Levina and Zhu (2010);

Lee and Liu (2012); Loh and Zheng (2013)). Although linear regressions with

a scalar response are well studied, many applications may have a vector as

the response, for example, in biological problems (Kim and Xing (2012)). For

example, for multi-tissue joint expression quantitative trait loci (eQTL) mapping

(Molstad, Sun and Hsu (2020)), researchers predict gene expression values in

multiple tissues simultaneously by using a weighted sum of eQTL genotypes. A

separate prediction for each tissue is inefficient if the same genes in different

tissues are correlated because of shared genetic variants or other unmeasured

common regulators. In order to use data from all tissues simultaneously,
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Molstad, Sun and Hsu (2020) propose a joint eQTL model that considers cross-

tissue expression dependence.

To apply variable selection methods to multi-response problems, one option

is to separately fit each response using a single-response model. For example,

the lasso is a well-studied variable selection method for single-response linear re-

gression models (Tibshirani (1996)). However, although this is a straightforward

method, it neglects the dependency structure between responses. Incorporating

the dependency structure of the response vector enables us to obtain a more

efficient multi-response linear regression approach in terms of estimation and

prediction.

For multi-response regression problems, Breiman and Friedman (1997)

proposed the curds and whey method to improve the prediction performance

by using the dependencies between responses. Specifically, they first fit a single-

response regression model for each response, and then modify the predicted values

from these regressions by shrinking them using the canonical correlations between

the response variables and the predictors. Another popular approach is to use

dimension reduction. In particular, the reduced-rank regression (Izenman (1975))

minimizes the least squares criterion, subject to a constraint on the rank of the

regression parameter matrix. Yuan et al. (2007) extended this method to include

the high-dimensional settings, reducing the dimension by encouraging sparsity

among the singular values of the parameter matrix. Nevertheless, although

these methods achieve better prediction performance than when using a separate

univariate regression, they do not address the problem of variable selection.

In order to handle correlated responses together with variable selection, we

can estimate the precision matrix of the response vector, given the predictors,

and the regression parameter matrix either separately or simultaneously (Lee

and Liu (2012)). For a separate estimation, Cai et al. (2013) use a constrained

ℓ1 minimization that can be treated as a multivariate extension of the Dantzig

selector to estimate the regression parameter matrix. After removing the

regression effect using the estimated regression parameter matrix, the precision

matrix of the error terms can be estimated accordingly. A potential drawback of

this indirect method is that it ignores the relationships between the responses,

given the predictors, when estimating the regression parameter matrix. Thus,

in order to use all information more efficiently, it may be better to estimate the

precision matrix and regression parameter matrix simultaneously. Existing joint

estimation techniques include those of Rothman, Levina and Zhu (2010), Yin and

Li (2011), and Lee and Liu (2012) who formulate the multi-response regression

problem in a penalized log-likelihood framework to estimate the parameter and

precision matrices simultaneously. Using a similar idea, Chen et al. (2018)

propose an estimation procedure that estimates the parameter and precision

matrices simultaneously based on the generalized Dantzig selector.
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However, most existing multi-response linear regression methods deal only

with complete data without missing entries, even though multi-modal data are

often incomplete in practice. For instance, studies on Alzheimer’s disease (AD)

use data from different sources, including magnetic resonance imaging (MRI) of

the brain, positron emission tomography (PET), and cerebrospinal fluid (CSF).

In practice, observations of a certain modality can be missing completely, because

patients drop out or other practical issues arise, leading to a block-wise missing

data structure. Thus, it is important to integrate data from all modalities to

improve model prediction and variable selection.

One way of handling incomplete multi-modal data is to simply remove

observations with missing entries. However, this procedure may greatly reduce

the number of observations and lead to loss of information. Another approach

is to perform data imputation. However, existing imputation methods, such

as matrix completion (Johnson (1990)) algorithms, may be unstable when the

missing values occur in blocks. For such cases, Yu et al. (2020) proposed a

direct sparse regression procedure using the covariance from the block-missing

multi-modal data (DISCOM). They first use all available information to estimate

the covariance matrix of the predictors and the cross-covariance vector between

the predictors and the response variable, and then use these estimates and

an extended Lasso-type estimator to estimate the coefficients. However, the

DISCOM method considers only single-response regressions. Recently, Xue and

Qu (2021) proposed the multiple block-wise imputation (MBI) method for a

single-response regression when the data are block-wise missing. They developed

an estimating equation approach to accommodate block-wise missing patterns in

multi-modal data. The method is shown to have high selection accuracy and a

low estimation error for a single-response regression with block-wise missing data.

However, because their imputation method requires analyzing all combinations

of blocks, it can be computationally expensive when the number of modalities is

large.

Here, we consider a multi-response regression model for block-wise missing

data. The main contribution of our method is to allow missing values in both

the responses and the predictors, as well as correlations between responses. In

contrast to most traditional methods, the proposed method can also be applied

when no subject has complete observations. Our method includes two steps. The

first step estimates each element of the covariance and cross-covariance matrices

using all available observations without imputation. The second step uses a

penalized approach to simultaneously estimate the sparse regression coefficient

matrix and the precision matrix of the error terms. We show that this method

exhibits estimation and model selection consistency in a high-dimensional setting.

The results of our numerical studies and an analysis of Alzheimer’s Disease

Neuroimaging Initiative (ADNI) data confirm that the proposed method performs

competitively for block-wise missing data.
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The remainder of the paper is organized as follows. In Section 2, we

introduce the problem background and our model. In Section 3, we establish some

theoretical properties of our proposed method, and in Sections 4 and 5, we present

our simulation studies and a multi-modal ADNI data example, respectively.

2. Methodology

2.1. Problem setup and notation

Consider the following multi-response linear regression model:

Y = XB∗ + E , (2.1)

where B∗=(bjk) ∈ Rp×q is an unknown p×q parameter matrix, Y=(y1, . . . ,yn)
⊤

is the n × q response matrix, X = (x1, . . . ,xn)
⊤ is the n × p design matrix,

and E = (ϵ1, . . . , ϵn)
⊤ is an n × q error matrix. We assume that {xi}ni=1 are

independent and identically distributed (i.i.d.) realizations of a random vector

(X1, . . . , Xp)
⊤
with zero mean and covariance matrix ΣXX = (σXX

ij ) ∈ Rp×p. We

use ΣXY = (σXY
ij ) ∈ Rp×q to denote the cross-covariance matrix between xi and

yi. We assume that the predictors come from multiple modalities, and there are

pk predictors in the kth modality. In addition, X has block-missing values. That

is, for one sample, its measurements in one modality can be entirely missing. We

assume the elements of Y can also be missing. The errors ϵi = (ϵi1, . . . , ϵiq)
⊤
,

for i = 1, . . . , n, are i.i.d. realizations from a random vector ϵ with zero mean

and covariance matrix Σϵ = (σEE
ij ) ∈ Rq×q. We let C∗ = Σ−1

ϵ . Moreover,

we assume xi and ϵi are uncorrelated. Denote the support of B∗ and C∗ as

SB = {j : vec(B∗)j ̸= 0} and SC = {j : vec(C∗)j ̸= 0}, repectively, where “vec”

denotes vectorization by a column operator. For a set S, we denote |S| as its

cardinality. Denote sB = |SB|, sC = |SC |, and s = max(sB, sC).

We employ the following notation throughout. The symbol Sd×d
+ denotes

sets of d × d symmetric positive-definite matrices. For a square matrix C =

(cii′) ∈ Rp×p, we denote its trace as tr(C) =
∑

i cii and its diagonal matrix

as diag(C). For a matrix A = (aij) ∈ Rp×q, we define its entrywise ℓ1-norm

as ∥A∥1 =
∑

i,j |aij |, and its entrywise ℓ∞-norm as ∥A∥∞ = maxi,j |aij | . In

addition, we define its matrix ℓ1-norm as ∥A∥L1
= maxj

∑
i |aij | , the matrix ℓ∞-

norm as ∥A∥L∞ = maxi

∑
j |aij | , the spectral norm as ∥A∥2 = max∥x∥2=1 ∥Ax∥2,

the Frobenius norm as ∥A∥F =
√∑

i,j a
2
ij , and the number of nonzero elements

as ∥A∥0 =
∑

i,j I(aij ̸= 0). Denote the largest and smallest eigenvalues of A

by λmax(A) and λmin(A), respectively. Denote the sub-matrix of A with row

and column indices in I1 and I2 as AI1I2 . For a vector v ∈ Rp, denote vI1

as the sub-vector of v with indices in I1, ∥v∥1 =
∑

i |vi|, ∥v∥∞ = maxi |vi|,
∥v∥min = mini |vi|, and ∥v∥2 =

√∑
i v

2
i . For a function h(X), we use ∇Xh to

denote a gradient or subgradient of h with respect to X, if it exists. Finally, we
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write an ≲ bn if an ≤ cbn for some constant c, and write an ≍ bn if an ≲ bn and

bn ≲ an.

2.2. Proposed multi-DISCOM method

If we separately apply a least squares estimation with the ℓ1-norm penalty to

each response, the multi-response linear regression model (2.1) essentially solves

argmin
B

E
[
∥Y −XB∥2F

]
+ λ∥B∥1 = argmin

B
tr

(
1

2
B⊤ΣXXB−Σ⊤

XYB

)
+ λ∥B∥1,

(2.2)

where λ is a tuning parameter. We refer to this method as the separate lasso,

with the solution denoted as B̂LASSO. However, the approach fails to consider

correlations between the responses, and may lead to poor predictive performance

(see, e.g., Breiman and Friedman (1997)). To produce a better estimator, we

propose incorporating Σϵ into the estimation of B∗ and solving the following

problem:

B̂0 = argmin
B

tr
[
C∗Σ̂YY +C∗B⊤Σ̂XXB− 2C∗B⊤Σ̂XY

]
+ λ∥B∥1, (2.3)

where λ is a tuning parameter, and Σ̂Y Y , Σ̂XX , and Σ̂XY are estimators of ΣY Y ,

ΣXX , and ΣXY , respectively.

In practice, C∗ is usually unknown. In case, we first estimate C∗ using Ĉ,

and then plug this into (2.3) and solve the following problem:

B̂0 = argmin
B

tr
[
ĈΣ̂YY + ĈB⊤Σ̂XXB− 2ĈB⊤Σ̂XY

]
+ λ∥B∥1. (2.4)

We refer to this method as the two-step weighted lasso. As shown in But as

shown by the toy example in Section 2.2.1, the separate lasso may outperform

this method in some problems.

We propose estimating B∗ and C∗ simultaneously by solving the following

optimization problem:

(B̂, Ĉ) = argmin
C∈Sq×q

+ ,B

tr
[
CΣ̂YY +CB⊤Σ̂XXB− 2CB⊤Σ̂XY

]

+ λB∥B∥1 + λC∥C∥1 − log detC,

(2.5)

where λB and λC are tuning parameters. When λC is sufficiently large, Theorem

4 of Banerjee, El Ghaoui and d’Aspremont (2008) implies that all off-diagonal

entries in Ĉ become zero. Then, our proposed method (2.5) reduces to the

separate lasso (2.2). For a univariate response regression problem, our proposed

method (2.5) reduces to the DISCOM algorithm (Yu et al. (2020)). When there

are no missing entries, (2.5) reduces to the sparse conditional Gaussian graphical

model of Yin and Li (2011).
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Figure 1. Plots of the estimation errors for the separated lasso, two-step weighted lasso
and joint estimation when Σϵ =

( 1 ρ
ρ 1

)
. The left panel is for B∗ = ( 0 0

2 3.5 ), and the right

panel is for B∗ =
(

0 0
−2 3.5

)
.

In the toy example in Section 2.2.1, our joint estimation model (2.5)

outperforms the two-step weighted lasso and the separate lasso.

2.2.1. Toy example

For illustration, we consider a toy example similar to that in Lee and Liu

(2012). Assume p = q = 2, X⊤X = I, and Σϵ =
(
1 ρ
ρ 1

)
, where ρ is an unknown

constant. We perform simulation studies for this example with 200 training

samples, 300 tuning samples, and 1,000 testing samples. Set B∗ = ( 0 0
2 3.5 ) in Case

1, and ( 0 0
−2 3.5 ) in Case 2. Figure 1 shows the estimation error for the separate

lasso, two-step weighted lasso, and joint estimation model (2.5). In Case 1, the

two-step weighted lasso has a smaller estimation error than that of the separate

lasso when ρ is positive. The reverse is true when ρ is negative. In Case 2, the

separate lasso has a smaller estimation error than that of the two-step weighted

lasso when ρ is positive. The joint estimation model performs best in all cases.

The simulation results can be explained by the following calculations. With

the penalty parameter λ, the solution of the separate lasso is given by B̂LASSO
ij

= sign(B̂S
ij)[B̂

S
ij − λ/2]+, where [u]+ = u if u ≥ 0, [u]+ = 0 if u < 0, and

B̂S = (X⊤X)−1X⊤Y.

We can show that the two-step weighted lasso (2.4) is equivalent to

B̂2step=argmin
B

[
(vec(B)−vec(BS))⊤(I2 ⊗ Ĉ)(vec(B)−vec(BS))+∥ vec(B)∥1

]
.

(2.6)

When the estimate Ĉ is accurate, B̂2step should be very close to the solution of

(2.3), where we use Σ−1
ϵ as the weight. After we plug Ĉ = Σ−1

ϵ into (2.6), the

solution is given by B̂2step
ij = sign(B̂S

ij)[|B̂S
ij|−λ(1+ρ)/2]+ when sign(B̂S

i1B̂
S
i2) = 1,

and B̂2step
ij = sign(B̂S

ij)[|B̂S
ij | −λ(1 − ρ)/2]+ when sign(B̂S

i1B̂
S
i2) = −1. Compared

with B̂LASSO
ij = sign(B̂S

ij)[B̂
S
ij −λ/2]+, B̂

2step
ij differs only in the shrinkage amount

for each entry. The shrinkage amounts for all entries of the separate lasso are
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the same, and depend only on the tuning parameter λ. The shrinkage amounts

for all entries of the two-step weighted lasso depend on ρ, λ, and the sign of B̂S.

Each entry of the two-step weighted lasso may have different shrinkage amounts.

We consider two cases of ρ in Case 1, where B∗ = ( 0 0
2 3.5 ). Because B∗

21 and

B∗
22 are far from zero, for simplicity, we assume that sign(B̂S

21) = sign(B̂S
22) = 1.

1. Consider ρ = −0.4. When sign(B̂S
11B̂

S
12) = −1, the shrinkage amounts for

B̂2step
21 and B̂2step

22 are 0.7λ, and those for B̂2step
11 and B̂2step

12 are 0.3λ. Thus,

the shrinkage amounts for B̂2step
21 and B̂2step

22 are smaller than those for B̂2step
11

and B̂2step
12 . Therefore, with the tuning parameter λ that shrinks B̂2step

11 and

B̂2step
12 to zero, the shrinkage amounts for B̂2step

21 and B̂2step
22 are also smaller

than those for B̂LASSO
21 and B̂LASSO

22 . Thus, the two-step weighted lasso has

a smaller estimation error than that of the separate lasso in this scenario.

When sign(B̂S
11B̂

S
12) = 1, the shrinkage amounts for all entries in B̂2step are

equal.

2. Consider ρ = 0.4. When sign(B̂S
11B̂

S
12) = −1, the shrinkage amounts

for B̂2step
21 and B̂2step

22 are 0.3λ, and those for B̂2step
11 and B̂2step

12 are 0.7λ.

Therefore, with the tuning parameter λ that shrinks B̂2step
11 and B̂2step

12 to

zero, the shrinkage amounts for B̂2step
21 and B̂2step

22 are larger than those for

B̂LASSO
21 and B̂LASSO

22 . Thus, the separate lasso is preferred to the two-step

weighted lasso in this scenario. When sign(B̂S
11B̂

S
12) = 1, all entries in B̂2step

have the same shrinkage amount.

In Case 2, where B∗ = ( 0 0
−2 3.5 ), the two-step weighted lasso is preferred to

the separate lasso only when ρ is negative. In conclusion, the performance of

the two-step weighted lasso compared with that of the separate lasso depends on

the sign of B∗ and the covariance matrix Σϵ. In contrast, the joint estimation

model (2.5) is more flexible. When Σϵ and B∗ favor the separate lasso, the joint

estimation model (2.5) performs better by choosing a large λC . Otherwise, it can

perform better by choosing a relatively small λC , and thus performs competitively

in all cases.

2.2.2. Covariance estimation

Now, we show how to obtain Σ̂XX , Σ̂XY , and Σ̂Y Y when the data exhibit

block-missing values. The following notation is used throughout. For the jth

predictor, define SX
j = {i : xij is not missing}. For the jth response, define

SY
j = {i : yij is not missing}. Define SXX

jk = {i : xij and xik are not missing},
SXY
jk = {i : xij and yik are not missing}, SXX/Y

jkl = {i : xij , xik are not missing,

but yil is missing}, SXY/X
jkl = {i : xij , yik are not missing but xil is missing}, and

SY Y
jk = {i : yij and yik are not missing}. Denote the cardinality of SX

j , SY
j , S

XX
jk ,

SXY
jk , S

XX/Y
jkl , S

XY/X
jkl , and SY Y

jk as nX
j , n

Y
j nXX

jk , nXY
jk , n

XX/Y
jkl , n

XY/X
jkl , and nY Y

jk ,

respectively. Denote nX = minj |SX
j |, nXX = minj,k |SXX

jk |, nXY = minj,k |SXY
jk |,
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nY Y = minj,k |SY Y
jk |, nXX/Y = maxj,k,l |SXX/Y

jkl |, and nXY/X = maxj,k,l |SXY/X
jkl |.

We propose using the initial estimators ofΣXX , ΣXY , andΣY Y as the sample

covariance matrices from all available data, that is, Σ̃XX = (σ̃XX
jt ), Σ̃XY =

(σ̃XY
jt ), Σ̂Y Y = (σ̂Y Y

jt ), where σ̃XX
jt =


i∈SXX

jt
xijxit/n

XX
jt , σ̃XY

jt =


i∈SXY
jt

xijyit/n
XY
jt , and

σ̂Y Y
jt =

1

nY Y
jt


i∈SY Y

jt

yijyit. (2.7)

Note that our method requires that Σ̃XX , Σ̃XY , and Σ̂Y Y be unbiased estimators

of their counterparts. When the missingness in X and Y is completely at random,

the unbiasedness assumption is satisfied. However, this assumption may also hold

under other missing mechanisms. For our theory, we do not specify any particular

missing mechanism, and the unbiasedness assumption suffices.

For block-missing data X, the estimate Σ̃XX can be ill-conditioned and have

negative eigenvalues. Therefore, it may not be a good estimate of ΣXX , and

cannot be used in (2.5) directly. Next, we introduce an estimator that is both

well conditioned and more accurate than the initial estimate Σ̃XX . According to

the partition of the predictors into K modalities, Σ̃XX can be partitioned into K2

blocks, denoted by Σ̃k1k2 , for 1 ≤ k1, k2 ≤ K, where Σ̃k1k2 is a pk1
× pk2

matrix.

We denote

Σ̃I =




Σ̃11

Σ̃22

. . .

Σ̃KK




and Σ̃C =




0 Σ̃12 . . . Σ̃1K

Σ̃21 0 . . . Σ̃2K

...
...

. . .
...

Σ̃K1 Σ̃K2 . . . 0




,

where Σ̃I is called the intra-modality sample covariance matrix and is a p × p

block-diagonal matrix containing K diagonal blocks of Σ̃XX , and Σ̃C = Σ̃− Σ̃I

is called the cross-modality sample covariance matrix containing all off-diagonal

blocks of Σ̃XX . Let ΣI and ΣC be the true intra-modality and cross-modality

covariance matrices, respectively. For block-missing multi-modal data, the

imbalanced sample sizes mean that the estimate Σ̃I can be relatively accurate,

while the estimate Σ̃C can be inaccurate. In that case, we estimate ΣXX using a

linear combination of Σ̃I and Σ̃C with different weights. In addition, to ensure the

positive definiteness of our estimation, we adopt the idea of a shrinkage estimation

of the covariance matrix (Fisher and Sun (2011)) and add the diagonal matrix

diag(Σ̃I) to our estimator,

Σ̂XX = α1Σ̃I + (1− α1) diag(Σ̃I) + α2Σ̃C , (2.8)

where α1, α2 ∈ [0, 1] are two shrinkage weights. We add the diagonal matrix

diag(Σ̃I) to ensure the diagonal entries of our estimator are not shrunk.
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By Weyl’s theorem, the eigenvalues of our estimator are greater than or

equal to α1λmin(Σ̃I)+(1−α1)λmin(diag(Σ̃I))+α2λmin(Σ̃C). Because diag(Σ̃I) is

a positive-definite matrix, we can guarantee that the eigenvalues of our estimator

are positive by carefully selecting the tuning parameters α1 and α2.

As dicussed previously, our estimator Σ̂XX is a shrinkage estimator. Using a

similar idea, we use a shrinkage estimator to estimate ΣXY . That is, we propose

estimating ΣXY by

Σ̂XY = α3Σ̃XY , (2.9)

where α3 ∈ [0, 1] is the shrinkage weight. Here, we want to find the optimal

linear combination Σ̂∗
XY = α∗

3Σ̃XY that minimizes the expected quadratic loss

E∥Σ̂∗
XY −ΣXY ∥F .
Here, we consider only a relative low dimension of Y , with not too many

incomplete observations, so we use Σ̂Y Y defined in (2.7) directly. However, when

the dimension of Y is very high or there are many incomplete observations of Y ,

a shrinkage estimator of ΣY Y is recommended instead.

Denote γ∗ = (γ∗
1 , . . . , γ

∗
K)

⊤
= (tr(Σ11)/p1, . . . , tr(Σ

KK)/pK)
⊤, δI =√

E∥Σ̃I −ΣI∥2F , δC =
√
E∥Σ̃C −ΣC∥2F , δXY =

√
E∥Σ̃XY −ΣXY ∥2F and

θ = ∥ diag(Σ̃I)− ΣI∥F . The optimal choice for the weights of α1, α2, and α3

is stated in Proposition 1.

Proposition 1. The solutions to the two optimization problems

(α∗
1, α

∗
2) = argmin

α1,α2

E∥Σ̂XX −ΣXX∥2F (2.10)

α∗
3 = argmin

α3

E∥Σ̂XY −ΣXY ∥2F (2.11)

are

α∗
1 =

θ2

θ2 + δ2I
, α∗

2 =
∥ΣC∥2F

∥ΣC∥2F + δC
2
, and α∗

3 =
∥ΣXY ∥2F

∥ΣXY ∥2F + δXY
2
.

In addition, for Σ̂∗
XX = α∗

1Σ̃I + (1 − α∗
1) diag(Σ̃I) + α∗

2Σ̃C and Σ̂∗
XY = α∗

3Σ̃XY ,

we have

E
∥∥∥Σ̂∗

XX −ΣXX

∥∥∥
2

F
=

δ2Iθ
2

δ2I + θ2
+

δC
2 ∥ΣC∥2F

δC
2 + ∥ΣC∥2F

≤ δ2I + δC
2 = E∥Σ̃XX −ΣXX∥2F ,

E
∥∥∥Σ̂∗

XY −ΣXY

∥∥∥
2

F
=

δXY
2 ∥ΣXY ∥2F

δXY
2 + ∥ΣXY ∥2F

≤ δXY
2 = E∥Σ̃XY −ΣXY ∥2F .

Define the ℓ2-error of the estimators Σ̂XX and Σ̂XY as E∥Σ̂XX −ΣXX∥2F and

E∥Σ̂XY −ΣXY ∥2F , respectively. Proposition 1 shows that our estimator is more

accurate than the sample covariance matrix.

Proposition 1 is closely related to Proposition 1 of Yu et al. (2020). They

calculated the optimal weight and estimation error for their proposed estimator
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Σ̂∗
XX,DISCOM of ΣXX , where the estimation error is

E∥Σ̂XX,DISCOM −ΣXX∥2F =
δ2I θ̃

2

δ2I + θ̃2
+

δC
2 ∥ΣC∥2F

δC
2 + ∥ΣC∥2F

,

and θ̃2 = ∥tr(Σ)Ip/p−ΣI∥2F . Here, our estimator Σ̂XX has a smaller ℓ2-error

than that of their estimator, and our weighted estimator Σ̂XY is more accurate

than the sample covariance matrix.

2.3. Computational algorithm

In this section, we describe the computational algorithm used to solve the

optimization problem (2.5). Because (2.5) is a bi-convex problem, the standard

approach to solving it is to use the alternating minimization method. In

particular, starting with some given initial point (B̂0, Ĉ0) at the tth iteration,

we solve solving the following problems:

B̂t = argmin
B

tr
[
Ĉt−1Σ̂Y Y + Ĉt−1B

⊤Σ̂XXB− 2Ĉt−1B
⊤Σ̂XY

]

+ λB∥B∥1, (2.12)

Ĉt = argmin
C∈Sq×q

+

tr
[
CΣ̂Y Y +CB̂⊤

t−1Σ̂XXB̂t−1 − 2CB̂⊤
t−1Σ̂XY

]

+ λC∥C∥1 − log detC. (2.13)

In each iteration of our algorithm, given Ĉt−1, we first update the estimator

B̂t by solving (2.12). Because (2.12) is quadratic in B, we use the coordinate

descent algorithm to solve it. Then, we adopt the graphical lasso method of

Friedman, Hastie and Tibshirani (2008) to solve (2.13). We summarize the above

procedures in Algorithm 1.

3. Theoretical Study

We establish the following theoretical results. First, we prove in Theorem

1 that the proposed estimators Σ̂XX , Σ̂XY and Σ̂Y Y are consistent with high

probability. We then show the convergence rate of our proposed estimators B̂

and Ĉ in Theorem 2. Finally, the selection consistency of our proposed method

is shown in Theorem 3. The technical assumptions (A1) to (A5), and all proofs

are provided in the Supplementary Material. In the following analysis, we allow

p and q to diverge as nXX , nXY and nY Y increase.

In Theorem 1, we prove the large deviation bounds for our proposed

estimators Σ̂XX , Σ̂XY and Σ̂Y Y .

Theorem 1. Suppose 1 − α1 = O(
√
log p/nX), 1 − α2 = O(

√
log p/nXX), and

1 − α3 = O(
√
log(pq)/nXY ). If Conditions (A1) and (A2) hold, there exists
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Algorithm 1: Alternating minimization updating algorithm.

Input: X, Y, λC , λB

Output: B̂, Ĉ
1 Obtain Σ̂XX by (2.8), Σ̂XY by (2.9), Σ̂Y Y by (2.7).
2 Initialize with

B̂0 = argmin
B

tr

Σ̂Y Y +B⊤Σ̂XXB− 2B⊤Σ̂XY


+ λB0∥B∥1, (3.4)

Ĉ0 = argmin
∥C∥1≤R,C∈Sd×d

+

tr(CΣ̂0)− log det(C) + λC0
∥C∥1, (3.5)

where R is a large enough tuning parameter which is usually chosen to be λ−1
C0

(Loh and Wainwright (2015)) and Σ̂0 = Σ̂Y Y − 2Σ̂⊤
XY B̂0 + B̂⊤

0 Σ̂XXB̂0.

3 while max{∥B̂t − B̂t−1∥F , ∥Ĉt − Ĉt−1∥F } > threshold do

4 For a given Ĉt−1, let

B̂t = argmin
B

tr

Ĉt−1Σ̂Y Y + Ĉt−1B

⊤Σ̂XXB− 2Ĉt−1B
⊤Σ̂XY


+ λB∥B∥1;

For a given B̂t, let

Ĉt = argmin
∥C∥1≤R,C∈Sq×q

+

tr

CΣ̂Y Y +CB̂⊤

t−1Σ̂XXB̂t−1 − 2CB̂⊤
t−1Σ̂XY



+ λC∥C∥1 − log detC,

5 return Ĉt, B̂t.

positive constants v′1, v
′
2, and v′3 such that

P

Σ̂XX −ΣXX


∞

≥ v′1


log p

nXX


≤ 4

p
, (3.1)

P



Σ̂XY −ΣXY


∞

≥ v′2


log(pq)

nXY


 ≤ 4

pq
, (3.2)

P

Σ̂Y Y −ΣY Y


∞

≥ v′3


log q

nY Y


≤ 4

q
. (3.3)

If we only use samples with complete observations, sample covariance esti-

mators Σ̃XX,complete, Σ̃XX,complete and Σ̃XX,complete have the following convergence

rates

Σ̃XX,complete −ΣXX


∞

= Op


log p

ncomplete


,
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∥∥∥Σ̃XY,complete −ΣXY

∥∥∥
∞

= Op

(√
log(pq)

ncomplete

)
,

∥∥∥Σ̃Y Y,complete −ΣY Y

∥∥∥
∞

= Op

(√
log q

ncomplete

)
,

where ncomplete is the number of samples with complete observations; see Yu et al.

(2020). For block-missing data, ncomplete can be much smaller than nXX , nXY

and nY Y .

Next, we give the properties of initial estimators B̂0 and Ĉ0. The following

lemma describes estimation consistency of the initial estimator B̂0.

Lemma 1. Suppose Conditions (A1)–(A4) hold, 1 − α1 = O(
√
log p/nX),

1 − α2 = O(
√
log p/nXX), and 1 − α3 = O(

√
log(pq)/nXY ). If we choose

λB0
= C(log(pq)/min(nXY , nXX))

1/2∥B∗∥L1
for some large enough constant C,

then with probability at least 1−4/p−4/(pq), the initial estimator B̂0 = argminB

tr[Σ̂Y Y+ B⊤Σ̂XXB− 2B⊤Σ̂XY ] + λB∥B∥1 satisfies

∥∥∥B̂0 −B∗
∥∥∥
F
≲
√
qsB

∥∥∥Σ̂XY − Σ̂XXB
∗
∥∥∥
∞

≲∥B∗∥L1

√
qsB log(pq)

min(nXX , nXY )
.

Cai et al. (2013) showed that when there is no missing data and the true

coefficient B∗ is exactly sparse, their estimator B̂Cai has the convergence rate of

∥B̂Cai − B∗∥F = Op(Np

√
qsBlog(pq)/n), where n is the sample size of the data

and Np is the upper bound of ∥Σ−1
XX∥L∞ . When there is no missing data, our

initial estimator B̂0 has the convergence rate of ∥B̂0 − B∗∥F = Op(∥B∗∥L1√
qsBlog(pq)/n). If we assume ∥B∗∥L1

≍ ∥Σ−1
XX∥L∞ , the convergence rate of

B̂0 is the same as that of B̂Cai. When the data are block-wise missing, and

we only use complete samples to estimate B∗, we will have ∥B̂0 − B∗∥F =

Op(∥B∗∥L1

√
qsB log(pq)/ncomplete), which can be much slower than the rate in

Lemma 1 as ncomplete is typically much smaller than nXX and nXY for block-wise

missing data.

For the single-response regression with block-wise missing data, the result in

Lemma 1 is the same as Theorem 2 in Yu et al. (2020) and the estimator B̂0

performs well when the dimension of Y is small. But when the dimension of Y

becomes large, the estimator B̂0 may perform poorly.

The following lemma describes consistency of our initial estimator Ĉ0.

Lemma 2. Suppose Conditions (A1)–(A4) hold, 1−α1 = O(
√
log p/nX), 1−α2 =

O(
√
log p/nXX), 1 − α3 = O(

√
log(pq)/nXY ). If we choose λC0

= C∥C∗∥22
∥B∗∥L1

(
∥B∗∥L1

+ sB
√
q
)
(log(pq)/min(nXX , nXY ))

1/2 for a large enough C, it

holds with probability at least 1− 4/p− 4/(pq)− 4/q that
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Ĉ0 −C∗

F
≲
√
sC∥C∗∥22∥Σϵ − Ĉ−1

0 ∥∞

≲∥C∗∥22∥B∗∥L1
(∥B∗∥L1

+ sB
√
q)


sC log(pq)

min(nXX , nXY )
.

There are two terms in the estimation error bound of Ĉ0. The first term

∥C∗∥22∥B∗∥2L1


(sC log(pq))/min(nXX , nXY ) comes from the error induced by

using incomplete observations to estimate ΣXX and ΣXY . The second term

∥C∗∥22∥B∗∥L1
sB


(sCq log(pq))/min(nXX , nXY ) comes from the estimation error

of B̂0.

We next derive the convergence rates of B̂ and Ĉ. The convergence rates are

related to nXX/Y and nXY/X , which are fractions of nXX and nXY respectively.

Hence, we let nXX/Y ≍ nτ1
XX and nXY/X ≍ nτ2

XY with τ1, τ2 ∈ {−∞}∪ [0, 1]. When

the responses are complete while the covariates have missing entries, nXX/Y = 0

and τ1 = −∞, nXY/X > 0 and τ2 ∈ [0, 1]. When the covariates are complete

while the responses have missing entries, nXY/X = 0 and τ2 = −∞, nXX/Y > 0

and τ1 ∈ [0, 1]. When both the responses and covaraites are complete, nXX/Y =

nXY/X = 0 and τ1 = τ2 = −∞. Theorem 2 below establishes the consistency of

proposed estimators B̂ and Ĉ in (2.5).

Theorem 2. Suppose Conditions (A1)–(A4) hold, 1 − α1 = O(

log p/nX),

1− α2 = O(

log p/nXX), 1− α3 = O(


log(pq)/nXY ). If we choose λB and λC

satisfying λB = C((log p)1/2/min(n
1−τ1/2
XX , n

1−τ2/2
XY )∥B∗C∗∥L1

+ {log(pq)/nXY }1/2)
and λC = C∥C∗∥22[∥B∗∥2L1

+ sB∥B∗C∗∥L1
/min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )](log(pq)/

min(nXX , nXY ))
1/2 for a large enough C, then it holds with probability at least

1− 4/p− 4/(pq)− 4/q that

B̂−B∗

F
≲
√
sB


∥B∗C∗∥L1

(log(pq))1/2

min

n
1−τ1/2
XX , n

1−τ2/2
XY

 +


log(pq)

nXY

1/2

 ,

Ĉ−C∗

F
≲
√
sC∥C∗∥22


sB∥B∗C∗∥L1

(log(pq))1/2

min

n
1−τ1/2
XX , n

1−τ2/2
XY

 +
∥B∗∥2L1

(log(pq))1/2

min

n
1/2
XX , n

1/2
XY





B̂−B∗

1
≲sB


∥B∗C∗∥L1

(log(pq))1/2

min

n
1−τ1/2
XX , n

1−τ2/2
XY

 +


log(pq)

nXY

1/2

 ,

Ĉ−C∗

1
≲sC∥C∗∥22


sB∥B∗C∗∥L1

(log(pq))1/2

min

n
1−τ1/2
XX , n

1−τ2/2
XY

 +
∥B∗∥2L1

(log(pq))1/2

min

n
1/2
XX , n

1/2
XY



 .

Next, we discuss some direct implications of Theorem 2. First, we show that

our estimators are at least as good as the initial estimators under some conditions.

Since τ1, τ2 ≤ 1 as n
XX/Y
jkl ≤ nXX

jk and n
XY/X
jkl ≤ nXY

jk , the convergence rate of
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∥B̂−B∗∥F is no slower than Op(max(∥B∗C∗∥L1
, 1)

√
sB log(pq)/min(nXX , nXY )).

Similarly, the convergence rate of ∥Ĉ − C∗∥F is no slower than Op(
√
sC∥C∗∥22

(∥B∗∥2L1
+ sB∥B∗C∗∥L1

)
√
log(pq)/min(nXX , nXY )). Here the two slowest con-

vergence rates are achieved when τ1 = τ2 = 1. If we assume ∥B∗C∗∥L1
=

O(∥B∗∥L1

√
q), the upper bounds of ∥B̂ − B∗∥F and ∥Ĉ − C∗∥F are at least

as tight as ∥B̂0 −B∗∥F and ∥Ĉ0 −C∗∥F .
On the other hand, if ∥B∗C∗∥L1

= o(∥B∗∥L1

√
q) or max(τ1, τ2) < 1 and

∥B∗C∗∥2L1
= o(min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )), the upper bounds of ∥B̂ − B∗∥F and

∥Ĉ −C∗∥F are strictly tighter than that of ∥B̂0 −B∗∥F and ∥Ĉ0 −C∗∥F . One

example is when var(ϵj) > 1/
√
q for all j ≤ q and cov(ϵj, ϵk) = 0 for j ̸= k.

Another example is when nXX/Y = o(nXX), nXY/X = o(nXY ), and ∥B∗C∗∥2L1
=

o(min(n
1/2−τ1/2
XX , n

1/2−τ2/2
XY )).

When Y is complete while X has missing entries, τ1 = −∞ and τ2 ∈ [0, 1].

Then convergence rate of B̂ in Theorem 2 becomes

∥∥∥B̂−B∗
∥∥∥
F
≲
√
sB

(
∥B∗C∗∥L1

(log(pq))1/2

n
1−τ2/2
XY

+

{
log(pq)

nXY

}1/2
)
.

When X are complete while Y have missing entries, τ2 = −∞ and τ1 ∈ [0, 1]. In

this case, we can set α1 = α2 = 1 and have

∥∥∥B̂−B∗
∥∥∥
F
≲
√
sB

(
∥B∗C∗∥L1

(log(pq))1/2

n
1−τ1/2
XX

+

{
log(pq)

nXY

}1/2
)
.

When both X and Y are complete, τ1 = τ2 = −∞. In this case, we can set

α1 = α2 = α3 = 1 and have

∥B̂−B∗∥F ≲

√
sB log(pq)

n
, (3.6)

where n is the sample size. The error bound in (3.6) is the minimax rate of the

ℓ1-penalized estimator as shown in Raskutti, Wainwright and Yu (2011).

In Theorem 3 below, we show that our proposed method is model selection

consistent.

Theorem 3. Assume that Conditions (A1)–(A5) hold. Suppose 1 − α1 =

O(
√
log p/nX), 1 − α2 = O(

√
log p/nXX), 1 − α3 = O(

√
log(pq)/nXY ). If

(log(pq)/nXY )
1/2−γ2/λB = o(1), λB∥((C∗ ⊗ ΣXX)SBSB

)−1∥L∞/minj∈SB
|β∗

j | =

o(1), sB∥((C∗ ⊗ ΣXX)SBSB
)−1∥L∞(log p/nXX)

1/2−γ2 = o(1), and sB(log p/

nXX)
1/2−γ1−γ2/λB = o(1), then with probability at least 1 − 4/p − 4/(pq) − 4/q,

there exists a solution B̂ to (2.5) such that sign(B̂) = sign(B∗).
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4. Numerical Study

In this section, we examine the performance of our proposed method (Multi-

DISCOM) in terms of Σϵ, the signal-to-noise ratio, and the distribution of the

error ϵ using numerical studies. We compare the efficiency of our proposed

method with that of the following methods: (1) the complete lasso, which

separately applies the lasso to each response using only samples with complete

observations (both X and Y have no missing values); (2) the imputed lasso,

which separately applies the lasso to each response using all samples, where

missing data are imputed using the soft-thresholded SVD method; (3) the MBI,

which separately applies the MBI (Xue and Qu (2021)) to each response using all

samples, and the missing data are imputed using multiple block-wise imputation;

(4) DISCOM, which separately applies the DISCOM method (Yu et al. (2020))

to each response; and (5) the imputed-MRCE, which runs the MRCE (Rothman,

Levina and Zhu (2010)) using all samples, with missing data imputed using the

soft-thresholded SVD method.

In all examples, we set q = 4 and xi = (xi1, . . . , xip)
⊤ ∼ N(0,Σ), with

σjt = 0.6|j−t|. The ith row of the coefficient matrix B∗ is (1, 1.5, 1, 1.5), for i =

1, p1 + 1, p1 + p2 + 1, and zero otherwise. The response Y has entries missing

completely at random, with the missing proportion 0.01.

For each example, the data are generated from three modalities, with

dimensions p1, p2, and p3, respectively. The training data set contains n1 samples

with complete observations, n2 samples from the third modality, n3 samples from

the first and third modalities, and n4 samples from the first modality. The tuning

data set contains 75 samples with complete observations, and the testing data set

includes 300 samples with complete observations. For each method, we train our

model with different tuning parameters on the training data set. Then we choose

the optimal tuning parameter by minimizing the mean squared error (MSE) on

the tuning data set.

For each example, we repeat the simulation 50 times. To evaluate the

selection performance of the algorithm, we use the false-positive rate (FPR)

and false-negative rate (FNR) as criteria: FPR = FP/(FP + TN) and FNR =

FN/(FN + TP), where FN represents the number of coefficients wrongly detected

as zero, TN is the number of coefficients correctly detected as zero, TP are is the

number of coefficients correctly detected as nonzero and FP is the number of

coefficients wrongly detected as nonzero. Furthermore, to evaluate the accuracy

of our estimators, we use the MSE on the testing data set and the ℓ2-distance

∥B̂−B∗∥F as criteria.

In Example 1, we examine our method related to Σϵ. Let n1 = n2 = n3 =

n4 = 30 and p1 = p2 = p3 = 30. We set the error ϵi = (ϵi1, . . . , ϵiq) ∼ N(0,Σϵ),

with Σϵ = 3I2 ⊗
(
1 ρ
ρ 1

)
. We choose ρ between −0.4 and 0.4.
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Table 1. Performance comparison for the methods in Example 1 with different ρ. The
values in parentheses are the standard errors of the measures.

Method ∥B̂−B∗∥F MSE FPR FNR

ρ = −0.4

Lasso 1.51(0.06) 3.70(0.06) 0.09(0.02) 0.00(0.00)

Imputed-Lasso 1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)

MBI 2.10(0.08) 4.26(0.09) 0.12(0.02) 0.11(0.03)

DISCOM 1.44(0.04) 3.56(0.06) 0.05(0.00) 0.05(0.01)

Imputed-MRCE 1.53(0.05) 3.72(0.08) 0.17(0.03) 0.08(0.02)

Multi-DISCOM 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)

ρ = 0.4

Lasso 1.55(0.06) 3.77(0.06) 0.11(0.02) 0.00(0.00)

Imputed-Lasso 1.75(0.06) 3.61(0.06) 0.13(0.01) 0.00(0.00)

MBI 2.14(0.08) 4.30(0.09) 0.13(0.02) 0.11(0.03)

DISCOM 1.46(0.04) 3.59(0.06) 0.06(0.00) 0.05(0.01)

Imputed-MRCE 1.54(0.05) 3.73(0.08) 0.19(0.03) 0.09(0.02)

Multi-DISCOM 1.43(0.04) 3.44(0.08) 0.04(0.01) 0.07(0.02)

In Example 2, we examine the performance of our method related to the

signal-to-noise ratio. Let n1 = n2 = n3 = n4 = 30 and p1 = p2 = p3 = 30. We set

the error ϵi = (ϵi1, . . . , ϵiq) ∼ N(0,Σϵ), with Σϵ = αI2 ⊗
(

1 −0.4
−0.4 1

)
, and choose

α between one and five.

In Example 3, we examine the robustness of our method when the error

follows a heavy-tailed distribution. Let n1 = n2 = n3 = n4 = 30 and p1 =

p2 = p3 = 30. We set the error ϵi = (ϵi1, . . . , ϵiq) ∼ t10(0,Σϵ), where Σϵ =

3I2 ⊗
(

1 −0.4
−0.4 1

)
, and tν(0,Σϵ) refers to Student’s t distribution with location

vector 0 and scale matrix Σϵ.

To demonstrate the results, we focus on Example 1. We report the results of

the other examples in the Supplementary Material.

The results in Table 1 indicate that the multi-DISCOM method delivers

the best performance in all settings. Specifically, the multi-DISCOM method

produces a smaller MSE and estimation errors than those of the other methods

in all settings, especially when there are large correlations between the responses.

In addition, the lasso method with imputed data may deliver worse selection

performance, possibly because of the randomness in the imputation of the block-

missing data. The results in Table 4 in the Supplementary Material indicate that

the multi-DISCOMmethod has a greater advantage when the signal-to-noise ratio

is small. When the ratio is smaller, the noise has a stronger effect on Y, and

hence considering the precision matrix is more more helpful for our estimation.

5. Application to the ADNI Study

We apply the multi-DISCOM method to data from the ADNI study (Mueller

et al. (2005)), and compare it with several existing approaches. A primary goal of



MULTI-RESPONSE REGRESSION FOR BLOCK-MISSING DATA 543

Table 2. Performance comparison for the ADNI data.

Method Overall MSE MSEMMSE MSEADAS1 MSEADAS2 # of Selected Features

Lasso 93.37(3.82) 5.31(0.19) 29.84(1.35) 58.23(2.40) 54.20

Imputed-Lasso 80.40(1.62) 4.54(0.12) 25.80(0.51) 50.07(1.15) 165.00

MBI 91.84(3.02) 5.13(0.14) 28.43(1.17) 58.29(2.16) 59.87

DISCOM 67.47(1.33) 4.26(0.11) 21.76(0.51) 41.45(0.86) 72.87

Imputed-MRCE 67.41(2.02) 4.29(0.10) 21.61(0.65) 41.50(1.33) 218.50

Multi-DISCOM 65.82(1.21) 4.22(0.12) 21.18(0.46) 40.41(0.80) 89.67

this analysis is to identify biological markers and neuropsychological assessments

to measure the progression of mild cognitive impairment (MCI) and early AD. We

are interested in predicting the mini mental-state examination (MMSE), ADAS1,

and ADAS2, which are common diagnotic scores for AD. The data processing

steps are summarized in the Supplementary Material.

After data processing, we have 93 features from MRI, 93 features from PET,

and five features from CSF. There are 805 subjects in total, including 199 subjects

with complete MRI, PET, and CSF features, 197 subjects with MRI and PET

features only, 201 subjects with MRI and CSF features only, and 208 subjects

with MRI features only.

In our analysis, we divide the data into training, tuning, and testing sets.

The training set consists of all subjects with incomplete observations and 40

randomly selected subjects with complete features. The tuning set consists of

another 40 randomly selected subjects with complete observations. The testing

set contains the remaining 119 subjects with complete observations. We train

our model using different tuning parameters on the training set, choosing the

tuning parameter that minimizes the MSE on the tuning set. The testing set

is used to evaluate the methods. We use all methods shown in the simulation

study to predict the MMSE score. For each method, the analysis is repeated

30 times using different partitions of the data. In addition to the sum of the

MSE of all three responses, we compare the MSEs for each response (MSEMMSE,

MSEADAS1, and MSEADAS2) as criteria. We also compare the number of features

selected by each method.

As shown in Table 2, the multi-DISCOM method outperforms all other

methods. The DISCOM method has a similar overall MSE to that of the multi-

DISCOM method, but worse MSEADAS1 and MSEADAS2. One possible reason for

this is that ADAS1 and ADAS2 are highly correlated, which means considering

the precision matrix can help. Because there are 208 subjects with MRI features

only, the MBI method may not impute those 208 subjects accurately. As a result,

the MBI method may not perform well in this case.

With regard to model selection, both the DISCOM method and the multi-

DISCOM method deliver relatively simple models. Figure 2 shows the selection

frequency of the 191 features when predicting ADAS1. The selection frequency of
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Figure 2. Selection frequency of 191 features for prediction of ADAS1 score.

each feature is defined as the number of times of it is selected in the 30 replications.

As shown in Figure 2, for our method, some features are often selected, and

many other features are rarely selected. Thus our method delivers robust model

selection. However, the features selected by the imputed lasso method vary

across replications. One possible reason for the unstable performance in terms of

model selection is the randomness in the imputation of the block-missing data.

Hippocampus formation left (69th region) and amygdale right (83th feature) are

frequently selected by our method, and have been shown to be highly correlated

with AD and MCI (Jack et al. (1999); Misra, Fan and Davatzikos (2009); Zhang

and Shen (2012)); however, the DISCOM method rarely selects these features.

6. Conclusion

We have proposed a joint estimation method in a penalized framework with

an entry-wise ℓ1-regularization using block-missing multi-modal predictors. We

first estimate the covariance matrix of the predictors using a linear combination

of the estimates of the variance of each predictor, the estimates of the intra-

modality covariance matrix, and the cross-modality covariance matrix. The

proposed estimator of the covariance matrix can be positive semidefinite and

more accurate than the sample covariance matrix. In the second step, we use

the estimated covariance matrix and a penalized estimator to deliver a sparse

estimate of the coefficients in the optimal linear prediction. We also establish the

theory for the estimation and feature selection consistency. Extensive simulation

studies indicate that our method exhibits promising performance in terms of

estimation, prediction, and model selection for block-missing multi-modal data.

Finally, we apply the multi-DISCOM method to the ADNI data set, showing that

our model has good prediction power and meaningful interpretation.
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Supplementary Material

The online Supplementary Material includes additional results of our numer-

ical studies, technical conditions and proofs.
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