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High-dimensional data with censored outcomes of interest are prevalent in medical

research. To analyze such data, the regularized Buckley–James estimator has been

successfully applied to build accurate predictive models and conduct variable

selection. In this paper, we consider the problem of parameter estimation and

variable selection for the semiparametric accelerated failure time model for high-

dimensional block-missing multimodal neuroimaging data with censored outcomes.

We propose a penalized Buckley–James method that can simultaneously handle

block-wise missing covariates and censored outcomes. This method can also perform

variable selection. The proposed method is evaluated by simulations and applied to a

multimodal neuroimaging dataset and obtains meaningful results.
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1 | INTRODUCTION

Measures of neural activity such as magnetic resonance imaging (MRI) and positron emission tomography (PET) yield thousands of predictor

variables for diagnosis and prognosis in patients with diseases such as Alzheimer's disease (AD). Since not all variables contain helpful information

for the model, selecting a parsimonious subset of variables with good prediction accuracy can be very important. While linear regression with a

scalar response and complete data has been well studied (Tibshirani, 1996), data with censored outcomes and incomplete covariates present new

challenges.

AD is a progressive neurodegenerative disease characterized by overall cognitive decline as well as behavioral and functional changes that

eventually impair an individual's ability to perform the basic daily activities. People diagnosed with mild cognitive impairment (MCI), which is

generally considered as a transitional stage between healthy cognitive aging and dementia, are at significantly increased risk of clinical AD

(Gauthier et al., 2006; Knopman et al., 2003). Thus, MCI is a critical prognostic and therapeutic component in AD study, and it is helpful to

develop reliable methods to analyze the conversion time from MCI to AD. Although up to 60% of MCI patients convert to AD within 10 years,

many return to the normal cognitive function (Manly et al., 2008; Mitchell & Shiri-Feshki, 2009). The AD conversion time of those participants

who did not progress to AD during their follow-up period was censored at their last visit time.

Received: 6 July 2022 Revised: 7 October 2022 Accepted: 10 October 2022

DOI: 10.1002/sta4.515

Stat. 2022;11:e515. wileyonlinelibrary.com/journal/sta4 © 2022 John Wiley & Sons Ltd. 1 of 11

https://doi.org/10.1002/sta4.515

https://orcid.org/0000-0002-1686-0545
mailto:yfliu@email.unc.edu
https://doi.org/10.1002/sta4.515
http://wileyonlinelibrary.com/journal/sta4
https://doi.org/10.1002/sta4.515


Increasing efforts have focused on building predictive models of the AD conversion based on the proportional hazard (PH) model or the

accelerated failure time (AFT) model. For example, to examine the usage of MRI and cerebrospinal fluid (CSF) biomarkers to predict the

conversion from MCI to AD, Vemuri et al. (2009) used a single-predictor Cox PH model to predict the hazard ratio of the conversion from MCI to

AD. They showed that MRI and CSF provide complimentary predictive information about the conversion from MCI to AD. They also showed that

combining MRI and CSF can predict better than using either source alone. Liu et al. (2017) used independent component analysis (ICA) and the

multivariate Cox PH regression model to identify promising risk factors associated with MCI conversion.

In the literature, many papers also used the AFT model (Cox & Oakes, 2018; Kalbfleisch & Prentice, 2011) to analyze the conversion time of

AD, where the response refers to the logarithm of a failure time. The AFT model is based on the linear model and the estimated regression

coefficients can help provide useful interpretation (Reid, 1994). It is well known that the linear model and the PH model cannot hold

simultaneously except in the case of the extreme value error distribution. Two general estimation strategies to handle censored responses in the

AFT model include extensions of least-squares estimators through missing data techniques (Buckley & James, 1979; Koul et al., 1981; Lai &

Ying, 1991; Miller & Halpern, 1982) and rank-based methods (Lai & Ying, 1991; Prentice, 1978; Tsiatis, 1990). For example, Oulhaj et al. (2009)

used the smoothing AFT procedure with G-splines to predict the period of time before cognitive impairment occurs in community-dwelling

elderly. Ning et al. (2011) proposed a generalized Buckley–James type of estimator using right-censored and length-biased data under

semiparametric transformation and AFT models. Their proposed method was applied to assess the effect of different diagnostic categories of AD

using survival data.

Several authors have also extended the PH and AFT models for variable selection and explored their properties. Tibshirani (1997) and Gui

and Li (2005) developed regularized Cox regression methods by adding an ℓ1 penalization term to the partial likelihood function of the Cox model.

Similarly, Datta et al. (2007) and Johnson (2009) added an ℓ1 penalization term to the Buckley–James estimators for the AFT model. Wang et al.

(2008) added the elastic-net penalty in the Buckley–James method for the AFT model to relate high-dimensional genomic data to censored

survival outcomes. Johnson (2009) proved that, under suitable regularity conditions, an ℓ1-penalized Buckley–James estimator with only one

iteration yields a root-n consistent solution. Wang and Wang (2010) proposed the Buckley–James boosting method for the semiparametric AFT

models with right-censored survival data, which can be used for prediction and variable selection.

In the past few years, there has been extensive research on using neuroimaging data for MCI and AD prediction (Eskildsen et al., 2013;

Park & Moon, 2016). However, data in Alzheimer's Disease Neuroimaging Initiative (ADNI) study were collected from different sources, which

include MRI, PET, and CSF. Data from a specific modality can be entirely missing due to patient dropouts or other practical issues. This leads to a

block-wise missing data structure. Due to the block-wise missing structure with high dimensionality and censored response, it is challenging to

identify the patients likely to convert from MCI to AD. It is also interesting to further predict the conversion time for an effective risk estimate,

which could lead to an efficient intervention of pharmacological treatments for early AD (Jack Jr, 2012).

Most of the AFT and PH models can only work with complete covariates. To handle incomplete multimodal data in the ADNI study, one may

use traditional AFT or PH models by simply removing those observations with missing entries. However, such a procedure may greatly reduce the

number of observations and lead to loss of information. Another approach is to perform data imputation, where missing data are replaced by data

generated from an imputation model. Imputation methods have been used in both AFT models (Qi et al., 2018) and PH models (Hsu & Yu, 2019;

Paik & Tsai, 1997; White & Royston, 2009) to deal with incomplete covariates. Another approach is to use weighted estimating equations for AFT

models (Nan et al., 2009; Steingrimsson & Strawderman, 2017) and PH models (Luo et al., 2009; Qi et al., 2005; Steingrimsson &

Strawderman, 2017; Wang & Chen, 2001; Xu et al., 2009). They applied the inverse probability weighted (IPW) technique to the existing

estimation procedures for the complete covariate cases. In particular, Yu (2011) proposed a revised Buckley–James estimator for data missing by

design. In order to deal with multimodal block-wise missing data, Yu et al. (2020) proposed a new direct sparse regression procedure using the

estimated covariance matrix from block-missing multimodal data (DISCOM). They first used all available information to estimate the covariance

matrix of the predictors and the cross-covariance vector between the predictors and the response variable. Then they used an extended LASSO-

type estimator to estimate the coefficients based on the estimated covariance matrix and the cross-covariance vector. Despite its usefulness,

however, the DISCOM only considers the linear regression model for uncensored data.

In this paper, we propose a regularized Buckley–James method for variable selection, parameter estimation, and prediction for right-censored

outcomes with block-wise missing data. It extends the DISCOM method (Yu et al., 2020) to right-censored survival data. Our proposed method

has several attractive properties. First, our approach can handle high-dimensional data and perform variable selection. Second, it works with data

with block-wise missing covariates and censored outcomes. Third, our method can still deliver reliable results even if our training data have no

observation with complete covariates. Our proposed method includes two steps. The first step is to estimate each element of the covariance and

cross-covariance matrices using all available observations. The second step is to use a penalized approach to estimate the sparse regression

coefficient vector by the Buckley–James method. Numerical studies and the ADNI data application confirm that the proposed method performs

competitively for block-wise missing data.

The remainder of this paper is organized as follows. In Section 2, we introduce the problem background and our model. Simulation studies

and a multimodal ADNI data example are presented in Sections 3 and 4. A brief summary of the paper is provided in Section 5.
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2 | METHODOLOGY

2.1 | Problem setup and notations

Consider the following semiparametric AFT model,

T¼Xβ ∗ þϵ, ð1Þ

where β ∗ ¼ b1, …, bpð Þ > �ℝp is an unknown p-dimensional vector, T¼ t1, …, tnð Þ > �ℝn is the response vector, X¼ðx1,…,xnÞ > is the n�p design

matrix, and ϵ¼ðϵ1,…,ϵnÞ > is the the error vector. Assume that fxigni¼1 are i.i.d. realizations of a random vector X¼ X1, …, Xpð Þ > with zero mean

and a covariance matrix ΣXX ¼ðσXXij Þ�ℝp�p. Denote ΣXT ¼ðσXTi Þ�ℝp as the cross-covariance vector between xi and ti for 1≤ i≤ n. Assume that the

predictors come from multiple modalities and there are pk predictors in the kth modality. In addition, assume that X has block-wise missing values.

That is, for each sample, its measurements in one modality can be entirely missing. Let ~X¼ð~x1,…,~xnÞ > be the imputed design matrix, where the

missing values in X are imputed by some imputation methods such as multiple imputation (Rubin, 2004) or the soft-impute algorithm (Mazumder

et al., 2010). For simplicity, we use the soft-impute algorithm to calculate ~X in our numerical and case studies. The errors ϵi for 1≤ i≤ n are

i.i.d. realizations from a random variable ϵ with zero mean and covariance σϵ. Moreover, we further assume that xi and ϵi are uncorrelated for

1≤ i≤ n.

Let T denote the transformed failure time, for example, the logarithm of the conversion time from MCI to AD. Suppose that C¼
ðc1,…,cnÞ > �ℝn is the transformed censoring time which is transformed in the same way as T, with ci being independent of ti given xi. When T is

right censored, we can only observe yi , δi, xið Þ for 1≤ i≤ n, where yi ¼ min ti , cið Þ, and δi ¼ 1 ti ≤ cif g is the censoring indicator for the ith observation.

We employ the following notation throughout this article. For a square matrix C¼ cii0ð Þ�ℝp�p, we denote its diagonal matrix as diagðCÞ. For a
matrix A¼ aij

� �
�ℝp�q, we define the largest and smallest eigenvalues of A as λmax ðAÞ and λmin ðAÞ, respectively. For a vector v�ℝp, let

kvk1 ¼
P

ijvij, and kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

iv
2
i

q
.

2.2 | Regularized Buckley–James regression for complete observations

If there is no response censored and no covariate missing, then ti ¼ yi for 1≤ i≤ n and X are fully observed. Then the least-squares method can be

applied to estimate the parameters in model (1) by solving the following optimization problem:

β̂¼ arg min
β

1
2
ðY�XβÞ > ðY�XβÞ,

where Y¼ðy1,…,ynÞ > �ℝn. For a censored response with complete covariates, the key idea of the Buckley–James method is to replace the

censored ti by its expectation conditional on δi and xi. Define the pseudo failure time y ∗
i as

y ∗
i ¼

yi δi ¼1;

E tijti > yi , xið Þ δi ¼0:

(

It can be shown that Eðy ∗
i Þ¼EðtiÞ for 1≤ i≤ n; for details, see Smith (2017). With the true β ∗ , E tijti > yi, xið Þ has the form of

E tijti > yi, xið Þ ¼ x >
i β ∗ þE ϵijϵi > yi�x >

i β ∗� �
¼ x >

i β ∗ þ ð

∞

yi�x >
i

β ∗

tdFðtÞ
1�F yi�x >

i β ∗� � , ð2Þ

where F is the distribution function of residual ϵiðβ ∗ Þ¼ ti �x >
i β ∗ for 1≤ i≤ n. The distribution of ϵiðβ ∗ Þ can be estimated nonparametrically by

the Kaplan–Meier estimator (Kaplan & Meier, 1958)

F̂ðtÞ¼1�
Y
i:ϵi < t

1�di
ni

� �
, ð3Þ

where di ¼
Pn

j¼1Iðϵj ¼ ϵiand δj ¼1Þ and ni ¼
Pn

j¼1Iðϵj > ϵiÞ. After substituting F with F̂ in (2), the ~y ∗
i can be simplified as
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~y ∗
i ¼ δiyiþð1�δiÞ x >

i β ∗ þ ð

∞

yi�x >
i

β ∗

tdF̂ðtÞ
1� F̂ yi�x >

i β ∗� �
0
B@

1
CA: ð4Þ

Then the least-squares method can be applied to the following regression model:

~y ∗
i ¼ x >

i β ∗ þϵ ∗
i , ð5Þ

where ϵ ∗
i ¼ ~y ∗

i �x >
i β ∗ . In (5), we replace the censored yi by an estimate of Eðtijti > yi ,xiÞ and treat ~y ∗

i as a pseudo response. Then, estimating β ∗

in (5) becomes a standard least squares problem. Let ~Y
∗ ¼ð~y ∗

1 ,…,~y ∗
n Þ > . The least-squares estimator of β ∗ in model (5) is

β̂¼ argminβ
1
2
ð~Y ∗ �XβÞ > ð~Y ∗ �XβÞ¼ X > X

� ��1
X > ~Y

∗
:

The final estimate of β ∗ requires an iterative procedure since values of ~y ∗
i defined in (4) contain β.

In many areas such as genomic, medicine, and bioinformatics, the number of features p is usually much larger than the sample size n and the

classical Buckley–James method fails. Regularization is needed to obtain a stable estimator of β with small prediction error. In this case, a modified

Buckley–James approach by using penalized least-squares with the penalty term PλðβÞ can be used, where λ is the tuning parameter. To be

specific, we consider the following minimization problem:

β̂¼ arg min
β

1
2
ðY ∗ �XβÞ > ðY ∗ �XβÞþPλðβÞ, ð6Þ

where λ is the tuning parameters and can be determined by cross validation. Given an initial value βð0Þ, the final estimator of β can be

calculated (3), (4), and (6) iteratively.

2.3 | Regularized Buckley–James regression for block-wise missing multimodal observations

Next, we extend the regularized Buckley–James regression to block-wise missing multimodal observations. We assume that the predictors are

collected from K modalities, and the kth modality has pk predictors for 1≤ k ≤K.

Recall that the regularized Buckley–James regression for complete observations iteratively estimates y ∗
i by (4) and then solves the minimiza-

tion problem (6). In order to handle block-wise missing data, given ~y ∗
i , we consider the population version of the ℓ1 penalized least-square

estimator

β0 ¼ β01, β
0
2, …, β0p

� �T

¼ arg minβE
1
2

Xn

i¼1
~y ∗
i �x >

i β
� �2	 


þλkβk1:

If both ΣXX and ΣX ~Y
∗ are known, β0 can be equivalently obtained by solving the following optimization problem:

β0 ¼ arg min
β

1
2
β > ΣXXβ�Σ >

X ~Y
∗ βþλkβk1:

Therefore, we can obtain the estimator β̂ if estimators for ΣXX and ΣX~Y
∗ are available. Denote Σ̂XX as the estimator of ΣXX . Next, we explain how

to calculate Σ̂XX when data are block-wise missing. Define SXXjk ¼ i : xij
�

and xik are not missingg, and nXXjt the cardinality of SXXjk . Let ~ΣXX be the

sample covariance matrix derived from all observed data, that is, ~ΣXX ¼ð~σXXjt Þ, where ~σXXjt ¼P
i � SXXjt

ðxijxit=nXXjt Þ. Note that ~ΣXX is required to be an

unbiased estimator of ΣXX . When the elements in X are missing completely at random, the unbiasedness assumption is satisfied. However, the

unbiasedness assumption can also hold under some other missing mechanisms.

Since the data X are block-wise missing, the estimator ~ΣXX defined above can be ill-conditioned. As a result, ~ΣXX is not a good estimator of

ΣXX . Thus, it cannot be used directly in our optimization problem. To resolve this problem, we partition ~ΣXX into K2 blocks, denoted as

~Σ
k1k2 �ℝpk1�pk2 for 1≤ k1,k2 ≤K. We let
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~ΣI ¼

~Σ
11

~Σ
22

. .
.

~Σ
KK

0
BBBB@

1
CCCCA and ~ΣC ¼

0 ~Σ
12

… ~Σ
1K

~Σ
21

0 … ~Σ
2K

..

. ..
. . .

. ..
.

~Σ
K1 ~Σ

K2
… 0

0
BBBB@

1
CCCCA,

where ~ΣI is a p�p block-diagonal matrix containing K diagonal blocks of ~ΣXX , and ~ΣC ¼ ~ΣXX � ~ΣI is a p�p matrix containing all off-diagonal blocks

of ~ΣXX . Here, ~ΣI and ~ΣC are called the intramodality and cross-modality sample covariance matrices, respectively. Since data are block-wise

missing, we use more data to estimate the entries in ~ΣI than those in the ~ΣC . Thus, the estimator ~ΣI can be relatively more accurate than ~ΣC . We

linearly combine ~ΣI and ~ΣC with different weights to estimate ΣXX . In addition, as in Yu et al. (2020), we adopt the idea of shrinkage estimation of

the covariance matrix (Fisher & Sun, 2011) and add the diagonal matrix diagð~ΣIÞ to our estimator to ensure the resulting estimator to be positive

definite. We let

Σ̂XX ¼ α1 ~ΣIþð1�α1Þdiagð~ΣIÞþα2 ~ΣC , ð7Þ

where α1,α2 � ½0,1� are two shrinkage weights. The diagonal matrix ð1�α1Þdiagð~ΣIÞ in (7) ensures that the diagonal entries of our

estimator are not shrunk. The eigenvalues of Σ̂XX are larger than or equal to α1λmin ð~ΣIÞþð1�α1Þλmin ðdiagð~ΣIÞÞþα2λmin ð~ΣCÞ by Weyl's theorem,

where ð1�α1Þλmin ðdiagð~ΣIÞÞ>0 since diagð~ΣIÞ is a positive-definite matrix. Thus, Σ̂XX is guaranteed to be positive definite by carefully selecting

the tuning parameters α1 and α2. In practice, α1 and α2 can be chosen from the set fðα1,α2Þ : α1 � ½0,1�,α2 � ½0,1�,Σ̂XX is positive semidefiniteg by

cross-validation or using an additional tuning dataset.

Let ~y ∗ ðmÞ
i be the ith failure time calculated in the mth step of the Buckley–James method, ~Y

∗ ðmÞ
i ¼ð~y ∗ ðmÞ

1 ,…,~y ∗ ðmÞ
n Þ > , ΣðmÞ

X~Y
∗ be the covariance

vector between X and ~Y
∗ ðmÞ

, and Σ̂
ðmÞ
X~Y

∗ be an estimator of ΣðmÞ
X~Y

∗ . Next, we discuss how to calculate Σ̂
ðmÞ
X~Y

∗ when X is block-wise missing. Let βðm�1Þ

be the coefficient vector derived in the ðm�1Þth step. In the mth step, ~y ∗ ðmÞ is defined as

~y ∗ ðmÞ
i ¼ δiyiþð1�δiÞ x >

i βðm�1Þ þ ð
∞

yi�x >
i

βðm�1Þ

td~F
ðmÞðtÞ

1� ~F
ðmÞ

yi�x >
i βðm�1Þ

� �
0
BB@

1
CCA,

where ~F
ðmÞ

is the estimated distribution function of ti�x >
i βðm�1Þ. However, since X is block-wise missing, ~y ∗ ðmÞ

i cannot be calculated directly.

In order to estimate Σðm�1Þ
X~Y

∗ , we decompose it as

Σðm�1Þ
X~Y

∗ ¼EðX > ~Y
∗ ðmÞÞ

¼EðX > ðXðβðm�1ÞÞþ ~E
∗ ðmÞÞÞ

¼EðX > XÞβðm�1Þ þEðX~E ∗ ðmÞÞ,

where ~E
∗ ðmÞ ¼ ð~e ∗

1 ðβðm�1ÞÞ,…,~e ∗
n ðβðm�1ÞÞÞ > and

~e ∗
i ðβðm�1ÞÞ¼

yi�x >
i βðm�1Þ δi ¼1;

ð

∞

yi�x >
i

βðm�1Þ

td~F
ðmÞðtÞ

1� ~F
ðmÞ

yi�x >
i βðm�1Þ

� � δi ¼0:

8>>><
>>>:

Let ΣðmÞ
X~E

∗ be the covariance vector between X and ~E
∗ ðmÞ

, and Σ̂
ðmÞ
X~E

∗ be an estimator of ΣðmÞ
X~E

∗ . Then we can estimate ΣðmÞ
X~Y

∗ as

Σ̂
ðmÞ
X~Y

∗ ¼ Σ̂XXβ
ðm�1Þ þ Σ̂

ðmÞ
X~E

∗ : ð8Þ

Define SXj ¼ i : xij
�

is not missingg and let nXj as the cardinality of SXj . In order to estimate ΣðmÞ
X~E

∗ , let Ê
∗ ðmÞ ¼ ðê ∗

1 ðβðm�1ÞÞ,…,ê ∗
n ðβðm�1ÞÞÞ and

ê ∗
i ðβðm�1ÞÞ¼

yi� ~x >
i βðm�1Þ δi ¼1;

ð

∞

yi�~x >
i βðm�1Þ

tdF̂
ðmÞðtÞ

1� F̂
ðmÞ

yi� ~x >
i βðm�1Þ

� � δi ¼0:

8>>><
>>>:
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Here, ~xi are the imputed predictors and F̂
ðmÞ

is the estimated distribution function of ti� ~x >
i βðm�1Þ. Define ~Σ

ðmÞ
X~E

∗ as the sample covariance matrix

using all available data, that is, ~Σ
ðmÞ
X~E

∗ ¼ð~σX~E
∗
,ðmÞ

j Þ, where ~σX
~E
∗
,ðmÞ

j ¼P
i � SXj

xijê
∗
i =n

X
j . Since our estimator Σ̂XX in (7) is a shrinkage estimator, we also

use a shrinkage estimator to estimate ΣðmÞ
X~E

∗ by

Σ̂
ðmÞ
X~E

∗ ¼ α3 ~Σ
ðmÞ
X~E

∗ , ð9Þ

where α3 � ½0,1� is the shrinkage weight. In practice, α3 can also be chosen by cross-validation or using an additional tuning dataset.

In summary, given Σ̂XX and Σ̂
ðmÞ
X~E

∗ as defined in (7) and (9), in the mth iteration of the regularized Buckley–James method, we solve the

optimization problem

βðmÞ ¼ argmin
β

1
2
β > Σ̂XXβ�βðm�1Þ > Σ̂

>
XXβþ Σ̂

ðmÞ >
X~E

∗ βþλkβk1 ð10Þ

by the proximal gradient descent algorithm (Parikh et al., 2014).

In Algorithm 1, we summarized the major steps for our proposed method, DISCOM-BJ, given a set of tuning parameters ðα1,α2,α3,λÞ.

We make two important remarks about the proposed procedure. First, our method applies to any penalty for linear models, including LASSO

and elastic net (Zou & Hastie, 2005). Second, to be numerically effective, the starting values βð0Þ may be obtained by using the least-squares

estimator treating all observations as uncensored (Buckley & James, 1979). Other choices, for example, using only uncensored observations, are

also feasible.

3 | NUMERICAL STUDY

We perform some numerical studies to compare our proposed method (DISCOM-BJ) with some other methods, which include

1. ℓ2-BJ, which applies the regularized Buckley–James regression to samples with complete observations and uses PλðβÞ¼ λkβk2;
2. Imputed-ℓ2-BJ, which applies the regularized Buckley–James regression to all samples with missing values being imputed by the

soft-thresholded SVD method and uses PλðβÞ¼ λkβk2;
3. ℓ1-BJ, which applies the regularized Buckley–James regression to samples with complete observations and uses PλðβÞ¼ λkβk1;
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4. Imputed-ℓ1-BJ, which applies the regularized Buckley–James regression to all samples with missing values being imputed by the soft-

thresholded SVD method and uses PλðβÞ¼ λkβk1;
5. Boosting-BJ, which applies the Buckley–James boosting method with linear least-squares (Wang & Wang, 2010) to samples with complete

observations;

6. Imputed-Boosting-BJ, which applies the Buckley–James boosting method with linear-least squares (Wang & Wang, 2010) to all samples with

missing values being imputed by the soft-thresholded SVD method.

For all examples, we generate the natural logarithm of the true survival time by

T¼ x > βþϵ, where ϵ�Nð0,1Þ

and set xi ¼ xi1, …, xip
� � > �Nð0,ΣÞ with Σ¼ðσjtÞ, where σjt ¼0:6jj�tj: The data are generated from three modalities whose dimensions p1,p2, and

p3 are specified in each example. The true coefficient vector is

β¼ b, b, b, 0, …, 0|fflfflffl{zfflfflffl}
p1�3

, b, b, b, 0, …, 0|fflfflffl{zfflfflffl}
p2�3

, b, b, b, 0, …, 0|fflfflffl{zfflfflffl}
p3�3

0
B@

1
CA,

where b is a constant. We generate ϵ1,ϵ2,…,ϵn �iid Nð0,1Þ. The censoring time C is generated from unifðτl,τuÞ, where τl,τu are tuned to achieve the

desired censoring rate. The censoring rates are specified in each example.

The training dataset contains 25 samples with complete observations, 25 samples with observations from the third modality, 25 samples with

observations from the first and the third modalities, and 25 samples with observations from the first modality. In other words, the missing values

in the training data are missing completely at random. The tuning dataset contains 100 samples with complete observations without censoring

response and the testing dataset includes 400 samples with complete observations without censoring response. For each method, we train our

model with different tuning parameters on the training dataset. Then we choose the optimal tuning parameters minimizing the mean squared

error on the tuning dataset.

For each example, the experiment is repeated 50 times. To evaluate the selection performance of the algorithm, we use false-positive rate

(FPR) and false-negative rate (FNR) defined as FPR¼FP=ðFPþTNÞand FNR¼FN=ðFNþTPÞ, where FN is the number of coefficients wrongly

estimated as zero, TN is the number coefficients rightfully estimated as zero, TP is the number of coefficients rightfully estimated as nonzero, and

FP is the number of coefficients wrongly estimated as nonzero. Furthermore, to evaluate the accuracy of our estimators, the mean squared error

MSE¼kTtest� T̂testk2 and the estimation error EST¼kβ� β̂k2 in the test data are used as the criteria, where Ttest is the logarithm of the survival

time vector in the test dataset, T̂test is the logarithm of the predicted survival time vector in the test dataset, and β̂ is the estimated coefficient

vector.

In Example 1, we examine how our method performs with various signal-to-noise ratios. We set p¼90, p1 ¼ p2 ¼ p3 ¼30 and the censoring

rate equal to 50%. In Example 1(a) and 1(b), we set b to be 0.5 and 2, respectively.

In Example 2, we examine how our method performs with various p. We set b¼1 and the censoring rate equal to 50%. In Example 2(a), we

set p to be 60, where p1 ¼ p2 ¼ p3 ¼20. In Example 2(b), we set p to be 120, where p1 ¼ p2 ¼ p3 ¼40.

TABLE 1 Performance comparison of different methods for Example 1 with different signal to noise ratios. The values in the parentheses are
the standard errors of the measures.

Example 1(a) [low signal to noise ratio] Example 1(b) [high signal to noise ratio]

MSE EST FPR FNR MSE EST FPR FNR

ℓ2-BJ 4.14 (0.09) 1.34 (0.01) 1.00 (0.00) 0.00 (0.00) 47.19 (1.22) 5.31 (0.05) 1.00 (0.00) 0.00 (0.00)

Imputed-ℓ2-BJ 2.91 (0.07) 1.21 (0.01) 1.00 (0.00) 0.00 (0.00) 26.26 (0.80) 4.62 (0.05) 1.00 (0.00) 0.00 (0.00)

ℓ1-BJ 3.64 (0.12) 1.40 (0.02) 0.17 (0.02) 0.49 (0.03) 29.93 (1.49) 4.54 (0.09) 0.23 (0.02) 0.24 (0.02)

Imputed-ℓ1-BJ 2.56(0.09) 1.27 (0.03) 0.16 (0.01) 0.31 (0.02) 16.84 (0.80) 4.22 (0.09) 0.20 (0.01) 0.14 (0.01)

Boosting-BJ 4.37 (0.15) 1.54 (0.03) 0.07 (0.00) 0.58 (0.02) 41.40 (1.70) 5.32 (0.09) 0.06 (0.00) 0.42 (0.03)

Imputed-Boosting-BJ 2.85 (0.09) 1.22 (0.02) 0.06 (0.00) 0.34 (0.02) 25.67 (0.98) 4.37 (0.08) 0.04 (0.00) 0.22 (0.02)

DISCOM-BJ 2.51 (0.09) 1.21 (0.03) 0.18 (0.02) 0.26 (0.02) 15.16 (0.63) 3.87 (0.08) 0.19 (0.01) 0.09(0.01)
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In Example 3, we examine how our method performs with various censoring rates. We set p¼90, p1 ¼ p2 ¼ p3 ¼30, and b¼1. In Example 3

(a) to 3(f), we respectively let ðτl ,τuÞ� fð1,6:8950Þ,ð1,3:64Þ,ð1,1:21Þ,ð�5,5Þ,ð�5,2:515Þ,ð�5,0:16Þg such that the yielding censoring rate PðT >CÞ
ranges from 0.2 to 0.7 with an increment of 0.1.

We report the simulation results in Tables 1–3. Bold numbers indicate the best results in the corresponding numerical study. Table 1 shows

the results of Example 1 with two different signal to noise ratios. Table 2 shows the results of Example 2 with two different dimensions. Table 3

shows the results of Example 3 with different censoring rates. Based on the results, we can see that imputed versions of ℓ2-BJ, ℓ1-BJ, and

Boosting-BJ perform better than the unimputed version of these methods in terms of the parameter estimation and variable selection. Compared

with other existing methods, our proposed DISCOM-BJ delivers the best performance in all these three examples.

TABLE 3 Performance comparison of different methods for Example 3 with different censoring rates. The values in the parentheses are the
standard errors of the measures.

Example 3(a) [PðT >CÞ¼0:2] Example 3(b) [PðT >CÞ¼0:3]

MSE EST FPR FNR MSE EST FPR FNR

ℓ2-BJ 9.39 (0.25) 2.43 (0.02) 1.00 (0.00) 0.00 (0.00) 10.40 (0.25) 2.52 (0.03) 1.00 (0.00) 0.00 (0.00)

Imputed-ℓ2-BJ 5.88 (0.13) 2.15 (0.02) 1.00 (0.00) 0.00 (0.00) 6.31 (0.14) 2.20 (0.02) 1.00 (0.00) 0.00 (0.00)

ℓ1-BJ 5.85 (0.31) 2.07 (0.05) 0.26 (0.02) 0.15 (0.02) 6.82 (0.31) 2.16 (0.04) 0.26 (0.02) 0.19 (0.02)

Imputed-ℓ1-BJ 4.18 (0.16) 1.99 (0.04) 0.18 (0.01) 0.10 (0.01) 4.40 (0.16) 2.01 (0.04) 0.19 (0.01) 0.10 (0.01)

Boosting-BJ 8.10 (0.34) 2.35 (0.05) 0.06 (0.00) 0.31 (0.02) 9.08 (0.35) 2.43 (0.04) 0.06 (0.00) 0.35 (0.02)

Imputed-Boosting-BJ 5.18 (0.19) 1.93 (0.03) 0.04 (0.00) 0.13 (0.01) 5.71 (0.20) 1.98 (0.03) 0.04 (0.00) 0.16 (0.02)

DISCOM-BJ 3.81 (0.14) 1.81 (0.04) 0.16 (0.01) 0.07 (0.01) 4.14 (0.13) 1.85 (0.03) 0.19 (0.01) 0.09 (0.01)

Example 3(c) [PðT >CÞ¼0:4] Example 3(d) [PðT >CÞ¼0:5]

ℓ2-BJ 11.56 (0.28) 2.57 (0.02) 1.00 (0.00) 0.00 (0.00) 12.65 (0.31) 2.64 (0.03) 1.00 (0.00) 0.00 (0.00)

Imputed-ℓ2-BJ 6.92 (0.16) 2.27 (0.02) 1.00 (0.00) 0.00 (0.00) 7.46 (0.22) 2.32 (0.03) 1.00 (0.00) 0.00 (0.00)

ℓ1-BJ 7.76 (0.32) 2.27 (0.04) 0.24 (0.02) 0.24 (0.02) 8.79 (0.39) 2.42 (0.05) 0.17 (0.01) 0.34 (0.03)

Imputed-ℓ1-BJ 4.78 (0.16) 2.08 (0.04) 0.21 (0.01) 0.11 (0.01) 5.41 (0.28) 2.19 (0.05) 0.19 (0.01) 0.18 (0.02)

Boosting-BJ 10.36 (0.36) 2.56 (0.04) 0.06 (0.00) 0.40 (0.02) 11.46 (0.53) 2.72 (0.06) 0.06 (0.00) 0.43 (0.02)

Imputed-Boosting-BJ 6.47 (0.19) 2.07 (0.03) 0.05(0.00) 0.17 (0.02) 7.14 (0.29) 2.17 (0.05) 0.04(0.00) 0.24 (0.02)

DISCOM-BJ 4.48 (0.14) 1.90 (0.04) 0.22 (0.02) 0.08 (0.01) 5.05 (0.23) 2.03 (0.05) 0.21 (0.02) 0.12(0.01)

Example 3(e) [PðT >CÞ¼0:6] Example 3(f) [PðT >CÞ¼ 0:7]

ℓ2-BJ 14.36 (0.34) 2.75 (0.03) 1.00 (0.00) 0.00 (0.00) 15.76 (0.36) 2.83 (0.03) 1.00 (0.00) 0.00 (0.00)

Imputed-ℓ2-BJ 8.95 (0.26) 2.44 (0.03) 1.00 (0.00) 0.00 (0.00) 10.82 (0.30) 2.61 (0.03) 1.00 (0.00) 0.00 (0.00)

ℓ1-BJ 10.62 (0.39) 2.54 (0.04) 0.20 (0.02) 0.37 (0.03) 12.09 (0.40) 2.61 (0.03) 0.21 (0.03) 0.44 (0.02)

Imputed-ℓ1-BJ 6.36 (0.31) 2.31 (0.05) 0.18 (0.01) 0.22 (0.02) 7.42 (0.31) 2.39 (0.05) 0.18 (0.01) 0.28 (0.02)

Boosting-BJ 13.95 (0.55) 2.99 (0.05) 0.06 (0.00) 0.52 (0.02) 17.29 (0.61) 3.36 (0.05) 0.06 (0.00) 0.59 (0.02)

Imputed-Boosting-BJ 8.81 (0.32) 2.39 (0.05) 0.04 (0.00) 0.30 (0.02) 11.39 (0.33) 2.74 (0.04) 0.04 (0.00) 0.36 (0.02)

DISCOM-BJ 5.84 (0.29) 2.16 (0.05) 0.22 (0.02) 0.17(0.02) 6.83 (0.28) 2.24 (0.04) 0.36 (0.04) 0.12(0.02)

TABLE 2 Performance comparison of different methods for Example 2 with different dimensions. The values in the parentheses are the
standard errors of the measures.

Example 2(a) [p¼60] Example 2(b) [p¼120]

MSE EST FPR FNR MSE EST FPR FNR

ℓ2-BJ 10.87 (0.34) 2.49 (0.03) 1.00 (0.00) 0.00 (0.00) 13.73 (0.31) 2.73 (0.02) 1.00 (0.00) 0.00 (0.00)

Imputed-ℓ2-BJ 5.81 (0.19) 2.16 (0.03) 1.00 (0.00) 0.00 (0.00) 8.84 (0.24) 2.43 (0.02) 1.00 (0.00) 0.00 (0.00)

ℓ1-BJ 7.58 (0.40) 2.38 (0.04) 0.24 (0.02) 0.28 (0.03) 9.91 (0.45) 2.52 (0.05) 0.14 (0.01) 0.37 (0.03)

Imputed-ℓ1-BJ 4.77 (0.17) 2.14 (0.04) 0.25 (0.01) 0.14 (0.02) 5.83 (0.22) 2.26 (0.05) 0.16 (0.01) 0.19 (0.01)

Boosting-BJ 10.28 (0.39) 2.65 (0.04) 0.08 (0.00) 0.43 (0.02) 12.65 (0.51) 2.86 (0.05) 0.06 (0.00) 0.48 (0.02)

Imputed-Boosting-BJ 6.91 (0.22) 2.16 (0.04) 0.06 (0.00) 0.23 (0.02) 7.23 (0.26) 2.20 (0.04) 0.04 (0.00) 0.24 (0.02)

DISCOM-BJ 4.46 (0.18) 1.97 (0.04) 0.29 (0.02) 0.09 (0.02) 5.52 (0.24) 2.08 (0.05) 0.16 (0.01) 0.13 (0.02)
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4 | APPLICATION TO THE ADNI STUDY

We apply the DISCOM-BJ to the ADNI study (Mueller et al., 2005) and compare it with several other approaches. A primary goal of this analysis

is to identify biological markers and neuropsychological assessments to measure the progression of MCI and early AD. We are interested in

predicting the time to convert to state AD of patients who was initially diagnosed as MCI in the ADNI study. We extract biomarkers from three

complementary data sources: MRI, PET, and CSF. Note that, as Xue and Qu (2021) stated, our sparsity assumption of the proposed method may

not be suitable for raw imaging data or imaging data at small scales since images have to show some visible atrophy for AD. However, the sparsity

assumption can still be reasonable for the region of interest (ROI) level data. Thus, we apply the DISCOM-BJ to the ROI level data in ADNI.

We process the image data following the similar procedure as in Yu et al. (2020). For the MRI, after correction, spatial segmentation and

registration steps, we obtain the image for each subject based on the Jacob template with 93 manually labeled ROIs. For each of the 93 ROIs in

the labeled MRI, we compute the volume of gray matter as a feature. For each PET image, we first align the PET image to its respective MRI image

using affine registration. Then, we calculate the average intensity of every ROI in the PET image as a feature. For the CSF modality, five

biomarkers are used in this study, namely, amyloid βðAβ42Þ, CSF total tau (t-tau), tau hyperphosphorylated at threonine 181 (p-tau), and two tau

ratios with respect to Aβ42 (i.e., t-tau/Aβ42 and p-tau=Aβ42Þ
After data processing, we have 93 features from MRI, 93 features from PET, and five features from CSF. There are 376 subjects in total,

including 56 subjects with complete MRI, PET, and CSF features and uncensored response, 38 subjects with complete MRI, PET, and CSF features

and censored response, 101 subjects with MRI and PET features only, 89 subjects with MRI and CSF features only, and 92 subjects with MRI

features only.

In our analysis, we divide the data into training, tuning, and testing sets. The training set consists of all subjects with incomplete observations

and 40 randomly selected subjects with complete features. The tuning set consists of another 18 randomly selected subjects with complete

observations. The testing set contains the remaining 36 subjects with complete observations. We train our model with different tuning parame-

ters on the training set. Then we choose the tuning parameters that minimize the mean squared error on the tuning set. The testing set is used to

evaluate different methods. We used all methods shown in the simulation study to predict the conversion time from MCI to AD. For each method,

the analysis is repeated 50 times using different partitions of the data. In addition to compare the sum of MSE of all three responses, we also

examine the top features selected by our method.

The results in Table 4 show that our proposed DISCOM-BJ method acquires the best prediction performance with smaller MSE than ℓ1-BJ,

Imputed-ℓ1-BJ, ℓ2-BJ, and Imputed-ℓ2-BJ. To further understand our results, since each MRI and PET features correspond to one ROI, we can

examine whether the selected features are meaningful by studying their corresponding brain regions. Table 5 shows the names of top eight

features selected by our method, where the first five features are ROIs, and the last three features correspond to the CSF modality. Figure 1

shows these five ROIs of the brain. Among these five brain regions, some regions such as uncus left, middle temporal gyrus left, and hippocampus

formation left are known to be highly correlated with AD and MCI by many studies using group comparison methods (Misra et al., 2009; Zhang

et al., 2012). It would be interesting to study whether the other two brain regions (middle temporal gyrus right and angular gyrus left) are truly

related to the conversion from MCI to AD.

TABLE 5 Top 8 features selected by DISCOM-BJ

Top features selected by DISCOM-BJ

Uncus left

Hippocampal formation left

Middle temporal gyrus right;

Precuneus left;

Angular gyrus left;

amyloid β (Aβ 42)

CSF total tau(t-tau);

tau hyperphosphorylated at threonine 181

TABLE 4 Performance comparison for the ADNI data. The values in the parentheses are the standard errors of the measures

method ℓ2-BJ Imputed-ℓ2-BJ ℓ1-BJ Imputed-ℓ1-BJ DISCOM-BJ

MSE 0.99(0.04) 1.01(0.04) 0.88(0.03) 0.88(0.04) 0.84(0.02)

Note: Bold numbers indicate the best results in this ADNI study.
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5 | CONCLUSION

In this paper, we propose an ℓ1-penalized Buckley–James method using block-missing multimodal predictors and censored responses. In each

iteration of Buckley–James method, with pseudo responses, we first estimate the covariance matrix of the predictors using a linear combination

of the estimates of the variance of each predictor, the intramodality covariance matrix, and the cross-modality covariance matrix. The proposed

estimator of the covariance matrix can be positive semidefinite and more accurate than the sample covariance matrix. In the second step of each

iteration, based on the estimated covariance matrix, a penalized estimator is used to deliver a sparse estimate of the coefficients. Extensive

simulation studies also indicate that our method has promising performance in estimation, prediction, and model selection for the block-missing

multimodal data. Finally, we apply the DISCOM-BJ method to the ADNI dataset to predict the conversion time of the patients from MCI to

AD. We demonstrate that our model has accurate prediction and meaningful interpretation.
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