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Data are generated at an unprecedented rate and scale these days across many disci-

plines. The field of streaming data analysis has emerged as a result of new data col-

lection and storage technologies in various areas, such as air pollution monitoring,

detection of traffic congestion, disease surveillance, and recommendation systems. In

this paper, we consider the problem of model estimation for data streams in rep-

roducing kernel Hilbert spaces. We propose an adaptive supervised learning method

with a data sparsity constraint that uses limited storage spaces and can handle non-

stationary models. We demonstrate the competitive performance of the proposed

method using simulations and analysis of the bike sharing dataset.
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1 | INTRODUCTION

With the advance in technology, the volume of data generation is increasing at a very rapid rate. Due to the challenges of big data in many appli-

cations, streaming data analysis has attracted considerable attention. Supervised learning methods analyzing streaming data need to address sev-

eral challenges, such as limited storage and concept drift. Specifically, the amount of memory required by the algorithms becomes infeasible as

the number of samples in data streams increases (Langford et al., 2009). Moreover, sometimes the data stream exhibits a phenomenon referred to

as concept drift (Gama et al., 2014), in which the underlying model evolves, causing the model constructed using old samples to become not appli-

cable to new observations. Traditional machine learning algorithms may not be able to provide a good model as they may not adapt to the new

changes.

The stochastic gradient descent (SGD) algorithm (Robbins & Monro, 1951), which can efficiently handle large-scale data sets, has gained

increasing attention in developing supervised learning tools for data streams (Hazan et al., 2007; Littlestone, 1988; Rosenblatt, 1958). Given a

convex loss function and a training set, researchers can use the SGD to obtain a sequence of models that converge to the optimal model. For

many supervised learning problems, linear models can be suboptimal when the response has a nonlinear relationship with the predictors.

Received: 1 August 2022 Revised: 27 September 2022 Accepted: 7 October 2022

DOI: 10.1002/sta4.514

Stat. 2023;12:e514. wileyonlinelibrary.com/journal/sta4 © 2022 John Wiley & Sons Ltd. 1 of 16

https://doi.org/10.1002/sta4.514

https://orcid.org/0000-0002-1686-0545
mailto:yfliu@email.unc.edu
https://doi.org/10.1002/sta4.514
http://wileyonlinelibrary.com/journal/sta4
https://doi.org/10.1002/sta4.514


To improve the flexibility of the model, various nonlinear regression models (Hastie et al., 2009) can be used. Online learning with kernels

(Kivinen et al., 2004) embeds the model in a reducing kernel Hilbert space (RKHS) (Aronszajn, 1950) to address the nonlinear relationship in the

model. Because the regression function is assumed to be in an RKHS, it is common to take the squared norm of the regression function as the

penalty. By the representer theorem (Kimeldorf & Wahba, 1971), the resulting regression function can be represented as a linear combination of

kernel functions determined by the training data. In addition to the typical squared norm penalty, Zhang et al. (2016) introduced a data sparsity

constraint. They showed that the regression model with the data sparsity constraint can have competitive prediction performance for various

problems, especially when the sample size is small or moderate, or a sparse representation of the data can reasonably approximate the underlying

function. Similar to the properties of support vector machine (SVM) (Boser et al., 1992; Cortes & Vapnik, 1995), the data points corresponding to

kernel functions with nonzero coefficients are called support vectors (SVs).

The size of SVs grows linearly over time, posing storage and computational problems for these models. This may result in increasing storage

space and training time. To resolve this issue, researchers have developed several different approaches. A family of algorithms, called “budget
online kernel learning”, has been proposed to bound the number of SVs with a fixed budget. Cavallanti et al. (2007) and Zhao et al. (2012) dis-

carded one of the existing SVs uniformly during the training process. Dekel et al. (2008) discarded the oldest SVs during the training process. Ora-

bona et al. (2008) used a new kernel function to approximate the removed SVs. These methods may suffer information loss when removing or

approximating the SVs.

Another promising strategy is to explore the functional approximation techniques for achieving scalable kernel learning (Lu et al., 2016). The

key idea is to construct a kernel-induced feature representation such that the inner product of instances in the new feature space can effectively

approximate the kernel function. Because of the approximation, the model can suffer from high variation. As pointed out by Sun et al. (2018), the

number of random features needed for consistent estimation grows when the number of SVs increases.

Many machine learning algorithms focus on a fixed model, where the relationship between the responses and the covariates does not change

over time. However, learning a fixed function may not always be suitable for data streams. Many data streams are nonstationary. As a result, the

underlying model may change over time. This problem is also known as concept drift, where the conditional distribution of the response given the

predictors changes over time. Concept drift can affect the learner's performance if not handled properly. There are many algorithms in the litera-

ture for this issue. Schaul et al. (2013) introduced the vSGD for nonstationary models. In particular, in each step of the vSGD, the algorithm deter-

mines the learning rate adaptively to minimize the loss function by using a quadratic approximation of the objective function. One drawback of

vSGD is that it may not be able to capture the model correctly when it changes rapidly.

Another common way to deal with concept drift is to detect changes and react accordingly. Concept drift can be detected by its effect

on characteristic features of the model, such as the regression or classification accuracy. Such quantitative features can be accompanied by

statistical tests to assess their significance. Such tests can rely on some well-known statistics, such as the Hoeffding bound (Frias-Blanco

et al., 2014), or suitable distances such as the Hellinger distance (Ditzler & Polikar, 2011). These indirect methods rely on statistical power

of the tests.

In this paper, we consider a supervised learning problem on data streams with the regression function in an RKHS. Our proposed method has

several important features. First, by using random feature approximation, the proposed method does not need to store all the previous data and

uses limited storage space and training time even when the total sample size is enormous. In addition, the variation of our model and the error

induced by random feature approximation is reduced by using the data sparsity constraint and a shrinkage parameter. Finally, this method can also

handle nonstationary models. In particular, at time t, our approach finds the best model in an RKHS by using the previously estimated model and

kernel functions generated by the data we observe at time t. It updates the model by a shrinkage parameter and random feature approximation.

Numerical studies in simulated and real data applications confirm that the proposed method performs competitively for data streams in both sta-

tionary and nonstationary problems.

The remainder of this paper is organized as follows. In Section 2, the problem background and the model are introduced. The simulated and

real data examples are used to demonstrate the effectiveness of our proposed method in Sections 3 and 4, respectively.

2 | METHODOLOGY

2.1 | Problem setup and notation

We consider the supervised learning problem when the observations arrive sequentially. The goal is to recover the underlying mean function. At

each time t, we are given a set of nt instances fðxti ,yti Þ,i¼1,…,ntg as our training set, where t¼1,…T,nt is the number of data we receive at time t,T

is the total number of times we observe, xti �ℝp is the p-dimensional covariate vector of the ith observation, and yti �ℝ is the response of the ith

observation. We consider fitting the model in an RKHS H¼ffjf :ℝp !ℝg with a reproducing kernel function Kð�,�Þ. The data at time t are

observed according to the model

2 of 16 WANG ET AL.



Yt ¼ ftðXtÞþϵ, ð1Þ

where Yt �ℝ,Xt �ℝp,ft �H, and ϵ�ℝ is the random noise. While traditional learning algorithms assume the data are sampled from a fixed model,

here we assume that the model ft may vary as a function of time t. Because we want to fit the model on data streams, with possibly an infinite

number of observations, it is unrealistic to store all the data. Our goal is to fit our model with limited storage space.

2.2 | Proposed method

2.2.1 | Adaptive kernel learning on data streams

First, we describe the general adaptive kernel learning model on data streams. Given the training data fðxti ,yti Þ,i¼1,…,ntg at time t, we consider the

penalized regression problem that only uses these nt samples

~ftðxÞ¼ argmin
ft �H

1
nt

Xnt
i¼1

Lðftðxti Þ,yti ÞþλJðftÞ, ð2Þ

where L is a convex and differentiable loss function which measures the goodness of fit of ft,J is a penalty function on ft to avoid overfitting, and

λ is a tuning parameter that controls the magnitude of penalty JðftÞ. By the representer theorem (Kimeldorf & Wahba, 1971), the estimated func-

tion in (2) can be written as

~ftðxÞ¼
Xnt
i¼1

~αt,iK xti , x
� �

, ð3Þ

where ~αt,i is the coefficients to be estimated, and we let ~αt ¼ð~αt,1,…,~αt,nt Þ > . To learn our model in RKHS, it is common to use the regular squared

norm penalty, which aims to solve the following optimization problem:

~ftðxÞ¼ argmin
ft �H

1
nt

Xnt
i¼1

Lðftðxti Þ,yti Þþλ ftk k2H, ð4Þ

where kftkH is the norm of ft in RKHS H.

The kernel representation of the regression function is similar to the knot structure in the smoothing splines. Each observation in the training

data can be regarded as a knot in a multidimensional space. For large sample size problems, the solution to (4) is known to be consistent with

desirable theoretical properties. However, because the sample size nt in each time is usually small in practice, using all kernel functions for the rep-

resentation may introduce a similar issue as using too many knots in spline regression. For spline regression, it is known that too many knots may

lead to overfitting and unnecessary fluctuation in the resulting estimator. To obtain the estimators with a sparse kernel function representation,

Zhang et al. (2016) proposed the data sparsity penalty to constrain the estimated kernel function coefficient vector ~αt in an ℓ1-ball. As shown in

Zhang et al. (2016), the data sparsity model is desirable in this case because it can deliver estimators with a sparse kernel function representation.

Hence, we follow their method and use the data sparsity penalty in our model as well. By (2) and (3), we aim to solve the following optimization

problem with the data sparsity constraint

α̂t ¼ arg min
αt

1
nt

Xnt
i¼1

L
Xnt
j¼1

αt,jKðxtj , xti Þ, yti

 !
þλkαtk1

" #
, ð5Þ

where αt ¼ðαt,1,…,αt,nt Þ > and kαtk1 refers to the ℓ1-norm of αt. However, model (5) only uses the training data at time t without previous infor-

mation. For t>1, in order to use both the observations we receive at time t and the previous models we estimated before time t, we rewrite our

estimated function as

f̂ tðxÞ¼ γ̂tf̂t�1ðxÞþ
Xnt
j¼1

α̂t,jK xtj , x
� �

, where γt � ½0,1�: ð6Þ

Here, the adaptive weight γ̂t illustrates how the model changes from time t�1 to time t. If the underlying true model ft does not change, γ̂t is

expected to be 1 when f̂ t�1 is a good estimator of ft�1.
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In summary, for the training dataset fðxti ,yti Þ,i¼1,…,ntg and the model f̂ t�1ðxÞ estimated at time t�1, our adaptive kernel learning model sol-

ves the following optimization at time t

ðγ̂t,α̂tÞ¼ arg min
γt ,αt

1
nt

Xnt
i¼1

L γtf̂t�1ðxti Þþ
Xnt
j¼1

αt,jKðxtj , xti Þ, yti

 !
þλkαtk1

" #
subject toγt � ½0,1�: ð7Þ

2.2.2 | Adaptive kernel learning on data streams with adjusted learning rate

When the underlying true model ft does not change from time t�1 to time t, model (7) uses
Pnt

j¼1α̂t,jKðxtj ,xti Þ to fit the residual of our last model

yti � f̂ t�1ðxÞ at time t�1. Hence, the bias of our model is reduced. However, f̂ tðxÞ is highly correlated to f̂ t�1ðxÞ due to the sequential modeling

process when γ̂t ¼1. Compared to model (5), which only uses the data at time t, our model (7) has a smaller bias but a relatively larger variation.

One advantage of the data sparsity constraint is that it can deliver estimators with a sparse kernel function representation. Hence, it is a much

simpler model with a relatively small variation.

To balance the bias and variation, we introduce a shrinkage parameter ν. After we solve the optimization problem (7), if the solution γ̂t ¼1,

then the estimator f̂ tðxÞ is updated as

f̂tðxÞ¼ f̂ t�1ðxÞþν
Xnt
j¼1

α̂t,jK xtj , x
t
i

� �
: ð8Þ

The shrinkage parameter 0 < ν≤1 controls the learning rate of our model.

If γ̂t ≠1, the underlying true model ft may be changed from time t�1 to t and it is not necessary to use the shrinkage parameter. Then the

estimator f̂ tðxÞ is still updated as

f̂ tðxÞ¼ γ̂t f̂t�1ðxÞþ
Xnt
j¼1

α̂t,jK xtj , x
t
i

� �
: ð9Þ

The learning rate parameter ν balances the learning speed and convergence rate trade-off of our model. With a large ν, our model can esti-

mate ft well with only a few batches of data but may converge to a suboptimal model. On the other hand, with a small ν, our model needs more

batches of data to estimate ft well but will converge to a model with better prediction.

Based on our numerical experience, we find that when the number of batches T is smaller than 50, or if we know that the model ft is fre-

quently changing, it is recommended to use a large ν such as 1. In contrast, when the number of batches T is larger than 1000 and the model ft

does not change, our model can eventually have a better prediction with a smaller ν, and it is recommended to use a small ν such as 0.3. In all

other cases, in order to achieve the best performance, it is recommended to perform a grid search and choose the one that can minimize the test-

ing error in predicting the responses.

2.2.3 | Adaptive kernel learning on data streams with limited storage space

In order to solve the optimization problem (7), we need to evaluate Kðxti ,xt
0
j Þ for all the covariates xt0j we receive until time t�1 to calculate

f̂ t�1ðxiÞ, where time t0 ≤ t�1. Because the total sample size n¼PT
t¼1nt can be very large, it is impossible for us to store all the data due to the lim-

ited storage. Here, we adopt random feature approximation (Lu et al., 2016) to store our model f̂ tðxÞ with limited storage for future use. The key

idea is to construct a kernel-induced feature representation zðxÞ such that the inner product of instances in the new feature space can effectively

approximate the kernel function as

K xi , xj
� �

≈ z xið Þ > z xj
� �

,

where zðxÞ�ℝD is a function of x, and D is the dimension of the function. A common random feature approximation technique, random Fourier

features, can be used in shift-invariant kernels (Rahimi & Recht, 2007). A shift-invariant kernel is a family of reproducing kernel functions that can

be written as K x1, x2ð Þ¼ kðΔxÞ, where k is some function and Δx¼ x1�x2 is the difference between two instances. Examples of shift-invariant
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kernels include some widely used kernels, such as the Gaussian and Laplace kernels. By performing an inverse Fourier transform of the

shift-invariant kernel function, one can obtain

K xi, xj
� �¼ k xi�xj

� �¼ ð
ℝp

pðuÞeiu > xi�xjð Þdu,

where

pðuÞ¼ 1
2π

� �p ð
ℝp

e�iu > ðΔxÞkðΔxÞdðΔxÞ,

which is a proper probability density function calculated from the Fourier transform of function kðΔxÞ. More specifically, for a Gaussian kernel

Kðxi,xjÞ¼ expð� xi�xj
�� ��2

2
=ð2σ2ÞÞ, where σ is the width of the Gaussian kernel, we have the corresponding random Fourier component u with the

distribution pðuÞ¼N 0, σ�2I
� �

. Then for a continuous, positive-definite and shift-invariant kernel function, according to the Bochner theorem

(Rudin, 1990), the kernel function can be expressed as

K xi , xj
� �¼ ð

ℝp

pðuÞeiu > xi�xjð Þdu

¼ Eu cos u > xið Þcos u > xj
� �þ sin u > xið Þsin u > xj

� �	 

¼ Eu sin u > xið Þ, cos u > xið Þ½ � � sin u > xj

� �
, cos u > xj

� �	 
	 

,

where the operator � refers to the dot product between two vectors. Then any shift-invariant kernel function can be expressed by the expectation

of the inner product between original data's new representation, where the new representation of the data is zðxÞ¼ sin u > xð Þ, cos u > xð Þ½ � > . We

can sample D�ℕ number of random Fourier components u1,…uD independently for constructing the new representation as

zðxÞ¼ sin u>
1 x

� �
, cos u >

1 x
� �

, …, sin u >
D x

� �
, cos u >

D x
� �� � >

:

Rahimi and Recht (2007) used Hoeffding's inequality to show that the difference between zðxÞ0zðyÞ and kðx,yÞ decays exponentially fast in D. The

kernel learning task in the original input space can be approximated by solving a linear learning task in the new feature space.

Using the above approximation, when t¼1, the model f̂1ðxÞ¼
Pn1

i¼1α̂1,iKðx1i ,xÞ can be rewritten as

f̂1ðxÞ¼
Xn1
i¼1

α̂1,iK x1i , x
� �

≈
Xn1
i¼1

α̂1,iz x1i
� � >

zðxÞ¼ ŵ >
1 zðxÞ,

where ŵ1 ¼
Pn1

i¼1α̂1,izðx1i Þ. Let μt ¼ ν when γ̂t ¼1 and μt ¼1 when γ̂t ≠1. Similarly, the model f̂2ðxÞ¼ γ̂2 f̂1ðxÞþμ2
Pn2

i¼1α̂2,iKðx2i ,xÞ can be written

as

f̂2ðxÞ≈ γ̂2ŵ
>
1 zðxÞþμ2

Xn2
i¼1

α̂2,iz x2i
� � >

zðxÞ¼ ŵ >
2 zðxÞ,

where ŵ2 ¼ γ̂2ŵ1þμ2
Pn2

i¼1α̂2,izðx2i Þ. By induction, when t>1, for given model at time t�1 as f̂ t�1ðxÞ¼ ŵ >
t�1zðxÞ, our estimated function f̂tðxÞ¼

γ̂t f̂tðxÞþμt
Pnt

i¼1α̂t,iKðxti ,xÞ can be written as

f̂tðxÞ≈ γ̂tŵt�1zðwÞþμt
Xnt
i¼1

α̂t,iz xti
� � >

zðxÞ¼ ŵ >
t zðxÞ, ð10Þ

where ŵt ¼ γ̂tŵt�1þμt
Pnt

i¼1α̂t,izðxti Þ. Then the optimization problem (7) can be written as

ðγ̂t,α̂tÞ¼ argmin
γt ,αt

1
nt

Xnt
i¼1

L γtŵ
>
t�1zðxti Þþ

Xnt
j¼1

αt,jz xtj
� � >

zðxti Þ, yti

 !
þλkαtk1

" #
subject toγt � ½0,1�, ð11Þ
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where ŵt�1 is the coefficient vector of the previous model we estimated at time t�1. If γ̂t ¼1, then the estimator ŵt is updated as

ŵt ¼ ŵt�1þν
Xnt
i¼1

α̂t,izðxti Þ:

If γ̂t ≠1, the estimator ŵt is updated as

ŵt ¼ γ̂tŵt�1þ
Xnt
i¼1

α̂t,izðxti Þ:

Then instead of keeping all the data to evaluate kernel functions at each time, we need to keep a D-dimensional vector ŵt.

The optimization problem (11) can be solved iteratively by the proximal gradient descent algorithm with a projection step in each iteration.

More specifically, in the kth iteration, we first use the projected gradient descent method to update γ̂t,k by

γ̂t,k ¼
1 z1 ≥1
z1 z1 � ð0,1Þ
0 z1 ≤0,

(

where

z1 ¼ γ̂t,k�1�
ωt

nt

Xnt
i¼1

rγ̂t,k�1
L γ̂t,k�1ŵ

>
t�1zðxti Þþ

Xnt
j¼1

α̂t,j,k�1z xtj
� � >

zðxti Þ, yti
 !

:

Then we use the proximal gradient descent method to update α̂t,j,k for 1≤ j ≤ nt by

α̂t,j,k ¼ sign z2ð Þmax 0, jz2j�ωtλð Þ,

where

z2 ¼ α̂t,j,k�1�ωt

nt

Xnt
i¼1

rα̂t,j,k�1L γ̂t,k�1ŵ
>
t�1zðxti Þþ

Xnt
j¼1

α̂t,j,k�1z xtj
� � >

zðxti Þ, yti
 !

:

Here, ωt is the step-size, r is the partial derivative operator, and

signðxÞ¼
1 x>0
0 x¼0
�1 x<0:

(

By using random feature approximation, we use
Pnt

i¼1α̂t,iz xti
� � >

zðxÞ to approximate the function
Pnt

i¼1α̂t,iK xti , x
� �

in the model (10). This induces

an approximation error kPnt
i¼1~αt,iz xti

� � >
zðxÞ�Pnt

i¼1~αt,iK xti , x
� �k2. Data sparsity constraint can also reduce this approximation error. As pointed

out by Sun et al. (2018), the dimension D of zðxÞ needed for a consistent estimation grows when the number of nonzero coefficients in our model

increases. Hence, when we use the random feature approximation with a fixed dimension D, the more nonzero coefficients ~αt,i we use in the

model (10), the larger approximation error it may generate. With the data sparsity constraint, there are fewer nonzero coefficients in our model.

Hence our model has a lower approximation error compared to the model without data sparsity constraint.

Algorithm 1 below describes the major steps of the Incremental Adaptive Data Sparsity Kernel (IADSK) learning method for a given shift-

invariant kernel function Kðx1,x2Þ¼ kðΔxÞ, the number of random Fourier components D, the learning rate ν, and the loss function L.

6 of 16 WANG ET AL.



3 | NUMERICAL STUDY

In this section, we perform three numerical studies to compare the efficiency of our proposed method (IADSK) with different learning rates ν and

two other methods. In particular, we choose ν¼1,0:5 and 0.3 for IADSK. The other two methods include

• Fourier online gradient descent (FouGD) method (Lu et al., 2016), which is an online kernel learning method using random Fourier features for

approximating kernel functions.

• Incremental Adaptive Ridge Kernel (IARK) learning method with different learning rates ν, which uses the squared norm penalty kfk2H instead

of the data sparsity penalty, where kfkH is the norm of f in RKHS H. In particular, we also choose learning rate ν¼1,0:5 and 0.3 for our pro-

posed method.

In our numerical study, we use the Gaussian kernel and the ℓ2-loss as our loss function in our training model (11). Then Lðf̂ðxÞ,yÞ¼ ðy� f̂ðxÞÞ2

and Kðxi,xjÞ¼ expð� xi�xj
�� ��2

2=ð2σ2ÞÞ. Let the number of random features D be 30. For the first two examples, we aim to compare our method

with other methods when the model is stationary. For the first example, we generate the data by

Yt ¼3expððXt�0:5Þ2Þþ expððXt�1Þ2Þþϵ:

For the second example, we generate the data by

Yt ¼10expðX2
t Þþϵ:

Let ϵ�Nð0,0:1Þ and Xt �ℝ follow a uniform distribution within ½�1,1�. In both examples, we let the size of each batch of our training samples be

10, 20, or 40, and generate 3000 batches of training samples in total.

For the third example, we aim to compare our method with other methods when the model is non-stationary. We generate the data by

Yt ¼3expððXt�0:5Þ2Þþ expððXt�1Þ2Þþϵ,
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when t� ½1,500�, and

Yt ¼3expððXtþ0:5Þ2Þþ expððXtþ1Þ2Þþϵ,

when t� ½501,1000�. Let ϵ�Nð0,0:1Þ and Xt �ℝ follow a uniform distribution within ½�1,1�. We let the size of the each batch of our training sam-

ples be 20, and generate 1000 batches of training samples in total.

For each example, we repeat the simulation 50 times. Based on our numerical experience, σ¼1 appears to work well, so we set σ¼1 for all

numerical examples. In practice, one can also tune σ using cross validation on the training data or using a separated tuning dataset. To evaluate

the prediction performance of the algorithms at time t, we generate 100 testing samples fðXt
i,text,Y

t
i,testÞ,i¼1,…,100g. Then we use the average

testing error from time 1 until time t as the criterion

F IGURE 1 Performance comparison of different methods for Example 1 with 10 samples in each batch. The top left figure compares the
performance of all methods for all 3000 batches of data. The top right figure compares the performance of IADSK with different learning rates
for the first 50 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different learning rates for the last
1000 batches of data. The bottom right figure compares the performance of IADSK with different learning rates for the last 1000 batches of data
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1
t

Xt
i¼1

1
100

X100
j¼1

ðYi
j,test� Ŷ

i
j,testÞ

2
,

where Ŷ
t

j,test ¼ f̂ tðXt
j,textÞ is the prediction using our estimated model f̂ t at time t. In addition, after we plot the performance of all methods, we zoom

in some parts of the plot to highlight the comparison of different methods. In particular, for the first and second examples, we first plot the perfor-

mance of all methods for all batches. Second, we plot the performance of IADSK with three different learning rates for the first 50 batches. Then

we plot the performance of FouGD and IADSK with three different learning rates for the last 1000 batches. Finally we plot the performance of

IADSK with three different learning rates for the last 1000 batches.

F IGURE 2 Performance comparison of different methods for Example 1 with 20 samples in each batch. The top left figure compares the
performance of all methods for all 3000 batches of data. The top right figure compares the performance of IADSK with different learning rates
for the first 50 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different learning rates for the last
1000 batches of data. The bottom right figure compares the performance of IADSK with different learning rates for the last 1000 batches of data
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For the third example, we first plot the performance of IADSK with three different learning rates, IARK with three different learning rates,

and FouGD for all batches. Then we plot the performance of FouGD and IADSK with 3 different learning rates for time t� ½400,600�. Finally, we

plot the performance of IADSK with three different learning rates for time t� ½400,600�.
We report the simulation results in Figures 1–7. Figures 1–3 show the results of Example 1 with 10, 20, and 40 training samples in each

batch, respectively. Figures 4–6 show the results of Example 2 with 10, 20, and 40 training samples in each batch, respectively. Figure 7 shows

the result of Example 3.

Compared with the other two methods, our proposed IADSK method always delivers better prediction than FouGD and IARK. Specifically,

the average testing error of IADSK with ν¼1 decreases much faster than the other methods when t≤ 50, and IADSK with ν¼1 performs better

when t is small.

F IGURE 3 Performance comparison of different methods for Example 1 with 40 samples in each batch. The top left figure compares the
performance of all methods for all 3000 batches of data. The top right figure compares the performance of IADSK with different learning rates
for the first 50 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different learning rates for the last
1000 batches of data. The bottom right figure compares the performance of IADSK with different learning rates for the last 1000 batches of data
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For the first example when nt ¼10, Figure 1 shows that the IADSK with ν¼1 always produces smaller average testing errors than the other

methods. But as time t becomes larger, the testing error of FouGD decreases faster than that of IADSK and IARK.

For the first example when nt ¼20 or 40 and the second example when nt ¼10,20 or 40, Figures 2–6 show that although the average testing

error of IADSK with ν¼1 is smaller than all the other methods when t≤50, when t>2000, the testing error of IADSK with ν¼0:3 or 0.5 becomes

smaller than IADSK with ν¼1.

For the third example, the lower right plot in Figure 7 shows that the model change at time t¼500 has more impact on the performance of

FouGD than our proposed method. In addition, the lower-left plot shows that the average testing errors of IADSK with ν¼1 decrease faster than

IADSK with ν¼0:5 or 0.3 after the model changes.

We also compare the computational cost of different methods. For the computational speed, we report the total training time of IADSK, IARK

and FouGD for Example 1 with 20 training samples in each batch in Table 1. Because FouGD processes the data points one by one, it deals fewer

data points than the two incremental learning methods IADSK and IARK. However, IADSK and IARK can still handle large samples relatively

F IGURE 4 Performance comparison of different methods for Example 2 with 10 samples in each batch. The top left figure compares the
performance of all methods for all 3000 batches of data. The top right figure compares the performance of IADSK with different learning rates
for the first 50 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different learning rates for the last
1000 batches of data. The bottom right figure compares the performance of IADSK with different learning rates for the last 1000 batches of data
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efficiently. In terms of the storage complexity, all methods need to store D p-dimensional random Fourier components, and D-dimensional ŵt and

γt. IADSK and IARK need to store the kernel matrix for each batch of training data so their storage complexity is Oðn2t þDpÞ, while the storage

complexity of FouGD is OðDpÞ.

4 | EXPERIMENTS ON REAL DATA

We demonstrate the performance of our proposed model using the bike sharing dataset from the UCI Machine Learning Repository (https://

archive.ics.uci.edu/ml/datasets/bike+sharing+dataset). The dataset is the hourly usage of a bike sharing system within 2 years in Washington,

D.C., USA. In this section, we will use different methods to predict the hourly bike rental counts by some seasonal and environmental factors such

F IGURE 5 Performance comparison of different methods for Example 2 with 20 samples in each batch. The top left figure compares the
performance of all methods for all 3000 batches of data. The top right figure compares the performance of IADSK with different learning rates
for the first 50 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different learning rates for the last
1000 batches of data. The bottom right figure compares the performance of IADSK with different learning rates for the last 1000 batches of data
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as holiday, temperature, wind speed, and humidity. There are two main reasons why we think this dataset is suitable for our proposed method.

First, the data are collected by the data stream procedure. Second, there are more than 17,000 samples in the dataset, which can be large for

direct analysis using the traditional supervised learning methods.

In our experiments, we divide the data into the training and testing sets. The testing set consists of 196 randomly selected subjects, and the

training set consists of T batches of samples, and each batch contains nt subjects, where T and nt are specified in each experiment. The analyses

were repeated 30 times for each method using different data partitions. We use the Gaussian kernel and the ℓ2-loss in our training model (11). To

evaluate the result, we use the average testing error from time 1 until time t as the criterion

1
t

Xt
i¼1

1
100

X100
j¼1

ðYi
j,test� Ŷ

i

j,testÞ
2
:

F IGURE 6 Performance comparison of different methods for Example 2 with 40 samples in each batch. The top left figure compares the
performance of all methods for all 3000 batches of data. The top right figure compares the performance of IADSK with different learning rates
for the first 50 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different learning rates for the last
1000 batches of data. The bottom right figure compares the performance of IADSK with different learning rates for the last 1000 batches of data
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In the first experiment, we let nt ¼24 and T¼416. In the second experiment, we let nt ¼72 and T¼222. The results are plotted in Figure 8. Both

results indicate that our proposed IADSK method delivers the best prediction among all methods. Although the average testing errors of IADSK

with ν¼1 are smaller than all the other methods when t≤ 50, when t>150, the testing errors of IADSK with ν¼0:5 become smaller than those

of IADSK with ν¼1.

F IGURE 7 Performance comparison of different methods for Example 3 with 20 samples in each batch. The top figure compares the
performance of all methods for all 3000 batches of data. The bottom left figure compares the performance of FouGD and IADSK with different
learning rates for time t� ½400,600�. The bottom right figure compares the performance of IADSK with different learning rates for time
t� ½400,600�p>

TABLE 1 Total training time comparison of different methods for Example 1 with 20 samples in each batch

Methods IADSK IARK FouGD

Training time 198 s 186 s 12 s
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